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ABSTRACT

While crowdsourcing is an attractive approach to collect large-scale

wireless measurements, understanding the quality and variance of

the resulting data is difficult. Our work analyzes the quality of

crowdsourced cellular signal measurements in the context of bases-

tation localization, using large international public datasets (419M

signal measurements and ∼1M cells) and corresponding ground

truth values. Performing localization using raw received signal

strength (RSS) data produces poor results and very high variance.

Applying supervised learning improves results moderately, but vari-

ance remains high. Instead, we propose feature clustering, a novel

application of unsupervised learning to detect hidden correlation

between measurement instances, their features, and localization

accuracy. Our results identify RSS standard deviation and RSS-

weighted dispersion mean as key features that correlate with highly

predictive measurement samples for both sparse and dense mea-

surements respectively. Finally, we show how optimizing crowd-

sourcing measurements for these two features dramatically improves

localization accuracy and reduces variance.

CCS Concepts

•Networks → Network measurement;
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1. INTRODUCTION
As wireless networks continue to grow in size and coverage,

network monitoring and management is becoming an increasingly

costly and resource intensive task [29]. While it used to be a stan-

dard practice to measure wireless performance by covering an area

with vehicles and specialized equipment, that is simply impractical

today. Instead, companies and research firms are turning to crowd-

sourcing as a cheap and scalable way to perform network measure-

ments at scale [1].

But just how reliable are these user-contributed measurements?

There are obvious reasons to doubt the accuracy and the consis-
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tency of user-contributed wireless network measurements. First,

unlike specialized measurement tools deployed by network providers,

user-contributed measurements tend to be generated using com-

modity equipment with less accuracy. Second, users are often less

tech-savvy, and more likely to introduce errors during operation

or through user contexts (e.g. driving, phone in pocket). Third,

crowdsourced measurements are constrained by the mobility pat-

terns of contributing users. Therefore, measurements will follow

user mobility, and are likely uneven in coverage.

With this in mind, it is critical for network providers to under-

stand the value and limitations in crowdsourced network measure-

ments. While crowdsourced measurements can be used for a num-

ber of management functions (e.g. network performance and cov-

erage measurements [39, 19, 13], transmitter localization and radio

map construction [37, 27, 2, 3], spectrum anomaly detection [36]),

they are generally not amenable to quantitative analyses, because

of the dearth of both measurement data and ground truth datasets.

In this work, we are taking a data-driven, quantitative approach

to answering some of these questions, by focusing on the specific

application of basestation localization. Basestation or transmit-

ter localization is a basic operation in wireless network manage-

ment, and critical to providers interested in locating misbehaving

transmitters or mapping out potential holes in basestation cover-

age. Besides, nowadays many mobile applications rely on cell

tower triangulation to determine user position [4] for lower energy

consumption than GPS. However, the public sources of cell tower

location are incomplete and inaccurate [2, 5]. Like other man-

agement applications, basestation localization uses received signal

strength (RSS) measurements gathered by mobile devices. Unlike

other applications, analyzing localization performance is tractable

today, given the availability of both crowdsourced RSS datasets and

ground-truth data on basestation locations.

We are interested in answering several critical questions about

user-contributed signal measurements. First, how accurately can

we locate wireless basestations using RSS measurements and known

algorithms, and does accuracy correlate strongly with intuitive prop-

erties such as number or density of measurements? Second, can

machine learning classifiers help improve location accuracy? Third,

can we develop techniques to identify features or properties of highly

accurate measurement instances, and use them to build techniques

that produce more accurate results?

Our study uses several large public datasets of crowdsourced

RSS measurements gathered by user smartphone apps around the

globe through the OpenCellID [2] and OpenBMap [3] projects.

They are unique for two reasons: they provide raw signal measure-

ments (compared to aggregate coverage maps), and include ground

truth of real basestation locations. In total, we analyze ∼1M cells

and 419M signal measurements. Using the ground truth data and



# of Measurements # of Cells
Germany Poland Russia USA Germany Poland Russia USA

OpenCellID 390M 7.9M 4.7M 15.1M 564K 87K 157K 146K
OpenCellID-GT 13.4M 2.9M 109K 0 10.6K 21.6K 3.5K 0

OpenBMap 1.2M 58K 12.4K 317K 32.4K 1.9K 991 5.2K
OpenBMap-GT 36.6K 8.2K 1.3K 0 773 294 55 0

Table 1: High-level summary of OpenCellID and OpenBMap

datasets. Each cell here is uniquely defined by its Cell ID.

existing localization algorithms, we first quantify the predictive

quality of crowdsourced data, i.e. how accurately can each mea-

surement instance predict the basestation location? We then try to

identify and improve the poor localization results by applying su-

pervised learning. Finally, we try to identify key properties of mea-

surement instances that correlate well with localization accuracy,

by taking a novel application of unsupervised learning technique

we call feature clustering.

We summarize our findings as follows:

• We apply seven popular basestation localization algorithms to

our ground truth datasets, and find that localization results have

very high variance across a number of factors, including algo-

rithms, datasets, and scenarios. In addition, there is a significant

variance in error even across cell instances in the same dataset.

• We apply ML classifiers to improve localization accuracy. While

overall accuracy is higher, error variance remains high, and our

attempts to find key impactful features produce no clear results.

• We then take a novel application of unsupervised learning to

identify hidden correlations in the data, which we call feature

clustering. We define a distance metric between measurement

instances based on similarity of their values in key features. Clus-

tering the entire dataset based on pairwise distances produces

key clusters that correlate features with localization accuracy of

data inside them. From this, we identify RSS standard devia-

tion and RSS-weighted dispersion mean as independent features

that identify highly predictive data instances for sparse and dense

measurement datasets.

• Finally, we develop an adaptive crowdsourcing technique using

these two features. Applying this technique produces dramatic

improvements in both increased localization accuracy and re-

duced variance. We also show that our results could generalize

across datasets and geographic regions.

2. DATASETS
Among various public datasets on crowdsourced cellular mea-

surements [2, 3, 6, 7, 8], we use OpenCellID [2] and OpenBMap [3],

for our analysis. These two datasets offer raw signal measurements,

while the other ones only provide aggregated coverage maps.

OpenCellID. Created to maintain a global database of cellular

basestations (identified by their Cell IDs), this dataset was collected

by volunteers running a smartphone app that records information

of their cellular connections. Each data entry is a single measure-

ment at a particular time and location, containing information on

the basestation (country, provider, Cell ID, network type) and the

signal (timestamp, GPS, RSS). No user ID is included in any entry.

We group the data by country and select four countries for our

analysis (Germany, Poland, Russia and USA). We pick the first

three since their datasets come with the ground-truth locations of a

portion of the basestations (provided by cellular service providers).

We select US because it is similar to Poland in data volume. To-

gether, they form our OpenCellID dataset, including 418M mea-

surements and 954K cell IDs. Later in §3, we use this dataset to

identify key characteristics of crowdsourced measurements.

Weekly Monthly Yearly

GSM UMTS GSM UMTS GSM UMTS

OpenCellID 16.7M 1.8M 5.4M 1.2M 725K 481K

OpenCellID-GT 883K 14.8K 292K 10.4K 44.8K 5.5K

OpenBMap 18.3K 52.9K 15.5K 43.5K 11.2K 28.3K

OpenBMap-GT 2K 201 1.6K 171 1K 109

Table 2: Per-cell crowdsourcing instances generated from the

four signal measurement datasets in Table 1.

We also create a smaller dataset OpenCellID-GT. It is a subset of

OpenCellID and contains only measurements on cells with ground-

truth basestation locations. The dataset includes 16.4M measure-

ments and 35.7K cell IDs. We use it to study crowd-based basesta-

tion localization (§4, §5). Table 1 summarizes the datasets in terms

of the number of measurements and cells covered.

OpenBMap. This dataset is similar to OpenCellID, but sig-

nificantly smaller in size (4% of OpenCellID). Its data entry has

a similar field but no ground-truth basestation locations. We will

use it as a secondary dataset to verify our analysis on OpenCel-

lID. Specifically, we consider the OpenBMap data for Germany,

Poland, Russia, and USA, in 2014 and 2015. We created two

datasets, OpenBMap with 1.6M measurements and 40.5K cells,

and OpenBMap-GT with 46K measurements and 1.1K cell IDs.

For the latter, we search for the ground-truth basestation locations

from OpenCellID-GT based on their unique Cell IDs.

Per-cell Crowdsourcing Instances. From each dataset, we cre-

ate crowdsourcing instances for each cell ID over different time

windows (week, month, and year). For each window size, we par-

tition the 2-year data into individual instances for each cell, and

remove the empty instances. As a result, each cell will have multi-

ple crowdsourcing instances for a given window size, i.e. up to 104

weekly instances, 24 monthly instances, and 2 yearly instances. We

also group instances based on their network type (GSM, UMTS1,

LTE, CDMA etc). We find that GSM and UMTS cells dominate in

both the OpenCellID (99%) and OpenBMap (95%) datasets. Ta-

ble 2 summarizes the number of instances for these four datasets.

The vast majority of basestations with ground-truth locations are

GSM based, i.e. 88%-98.8% for OpenCellID-GT and 90% for

OpenBMap-GT.

Google Basestation Location Database. We use Google’s

basestation location database as a reference for our localization

analysis. Since 2008, Google has been collecting CellID-GPS pairs

for its location-aware services [9, 10]. Also using crowdsourced

measurements, they estimate each basestation (identified by the

Cell ID) location as the centroid of its measurements [11]. Each es-

timate comes with an accuracy value ranging from 500m to 5000m,

but the metric is undefined. Leveraging Google’s Map Geolocation

API [12], we crawled the estimated basestation locations for all the

cells in OpenCellID-GT and their accuracy level.

3. INITIAL ANALYSIS
We analyze our datasets to identify key properties of crowd-

sourced cellular measurements. We examine and compare the datasets

on measurement count, spatial, and RSS statistics of per-cell mea-

surements. We also present and contrast key results observed on

OpenCellID2 and OpenBMap, as well as consistency of results

across countries and between GSM and UMTS cells.

1OpenCellID defines UMTS to include UMTS, HSPA and HSPA+.
2While OpenCellID-GT is a small subset of OpenCellID, our anal-
ysis shows that its structure properties are completely identical to
those of OpenCellID (results omitted for brevity).



Localization Methods Estimated Basestation Location

Non-RSS
Centroid (C) [15] Geometric center of all the measurements
Minimum Enclosing Circle (MEC) [31] Center of the minimum enclosing circle of all the measurements

RSS-based

Weighted Centroid (WC) [15] RSS-weighted geometric center of all the measurements
Highest RSS [45] Location of the measurement with the strongest RSS value
Model-based [28, 17] Location of the strongest RSS predicted by the calibrated propagation model
Grid-based [35] Center of the grid with the highest likelihood of RSS to be the strongest RSS
Ecolocation [49] Location with the highest value on the statistical RSS-distance relationship heatmap

Table 3: Summary of seven commonly-used base station localization methods.

Measurement Count. The number of measurements varies sig-

nificantly across cells and across instances of each cell (between 1

and 10000), where each instance is a collection of measurements

taken over some time window. The majority of cells have a small

number of measurements – even over a year, more than 50% of

cell instances have less than 20 measurements (for GSM) and 10

(for UMTS). Across countries, cells in Germany tend to have more

measurements, and those in Russia have much fewer.

Spatial Distribution. To understand the spatial layout of mea-

surements in each cell, we consider several widely used metrics [40]:

average pairwise distance between measurements, diameter, dis-

persion (the spread of measurements around their center) standard

deviation 3, and index of dispersion that quantifies the existence of

clusters. For these metrics as well, we observe significant variance

across cell instances. For GSM, the diameter ranges from 5mm

(i.e. measurements from a single stationary user) to 68km, while

the dispersion is between 0.1km (measurements are near the cen-

ter) and 10km (measurements are widely scattered and form irreg-

ular shapes). While these spatial metrics are highly correlated, they

have low correlation with the measurement count (0.02−0.1). For

UMTS, while the cell size is smaller, these spatial metrics still vary

widely across cell instances.

Across countries, the cells in Germany tend to have larger diam-

eter, higher dispersion, and more clustered cells than others. For

example, more than 55% of GSM cell instances have diameters

larger than 4km, which reduces to 6%, 20% and 29% for Russia,

US, and Poland, respectively.

RSS. Across all measurements, RSS values were evenly dis-

tributed between (-112dBm, -51dBm4) for GSM and (-120dBm, -

60dBm) for UMTS, and distributions were similar across four coun-

tries. Per-cell mean RSS and RSS standard deviation values both

vary widely across cell instances.

Intuitively, RSS values should correlate inversely with distance

to the basestation. We test this hypothesis using ground-truth bases-

tation locations in OpenCellID-GT. Since basestations are gener-

ally configured with the same transmit power, we look for this re-

lationship using the Pearson correlation coefficient γ. Ideally, γ

should be close to -1. Instead, a large portion of the cells (50%

for Germany, 40% for Poland and Russia) display weak correla-

tion (−0.5 < γ < 0.5), while 10% of cells in Poland and Russia

even display strong positive correlation (γ > 0.5). This highly

unpredictable relationship between RSS and distance to basesta-

tion is somewhat expected in crowdsourced measurements, since

so many other factors can have strong impact on RSS values. This

underscores the level of randomness present in crowdsourced mea-

surements, and is a key reason why these datasets are less useful

than controlled datasets.

3The standard deviation of the distance between measurement
point and their centroid center, a commonly used dispersion metric.
4The RSS value is capped by -51dBm in all GSM measurements.

User Context. 22% of OpenCellID measurements contain infor-

mation on moving speed and phone direction. Our analysis on these

data shows that the vast majority of measurements came from mov-

ing users. For Germany and Poland, many users were traveling at

high speeds (in vehicles). The reported phone directions were uni-

formly distributed. Finally, 3% of measurements report estimated

GPS error but the data volume is too small to offer representative

results.

OpenBMap vs. OpenCellID. While much smaller in data vol-

ume, the OpenBMap datasets have similar per-cell characteristics

as those of OpenCellID. The key difference is that for Germany,

the measurement diameter and average pairwise distance are much

smaller than those in the OpenCellID Germany datasets. As a re-

sult, the spatial properties in OpenBMaps become much more con-

sistent across the four countries.

4. LOCALIZATION PERFORMANCE
We now examine whether crowdsourced signal measurements

can be used to accurately locate basestations. Our analysis uses the

OpenCellID-GT dataset, which we have shown to closely mimic

OpenCellID in terms of structural characteristics. We also use the

OpenBMap and Google datasets to validate our findings.

We consider seven commonly known transmitter localization al-

gorithms, summarized in Table 3. Two methods (Centroid and

MEC) only use spatial data, i.e. measurement location, and the rest

five methods use both spatial and RSS data. We also consider the

“Oracle” method, which, for each crowdsourcing instance, outputs

the best localization result across the seven algorithms. It provides

the upper bound on localization accuracy assuming one can always

pick the best localization method for a given instance. We apply

these algorithms on the OpenCellID-GT dataset, focusing on cell

instances with at least three valid RSS measurements. We evaluate

these algorithms in terms of the localization error, i.e. the distance

between the estimated and ground-truth basestation locations. We

separate our analysis for GSM and UMTS cell instances, but find

that they lead to consistent conclusions. For brevity, we only show

the results for GSM cells since they dominate the dataset.

4.1 Key Results
Across the seven algorithms, we found that no single algorithm

is consistently the best, but Weighted Centroid is more likely to be

the best. As an example, Figure 1(a) plots the distribution quan-

tiles (5%, 25%, 50%, 75%, 95%) of the localization error based on

weekly measurements, where Weighted Centroid already closely

approximates “Oracle” (the best of the seven algorithms). We also

observe that for 67% of the cases, RSS methods outperform non-

RSS methods. As shown by Figure 1(a), Centroid has a much

longer tail than Weighted Centroid. This means that RSS data does

help localization but must be handled carefully.

Large Variance across Cell Instances. The most significant ob-

servation from our analysis is that for all the localization algorithms
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Figure 2: Validation using the secondary datasets (OpenBMap

and Google).

including “Oracle”, the localization error varies significantly across

crowdsourcing cell instances. For example, Figure 1(b) plots the

quantiles of the localization error of “Oracle”, for weekly, monthly,

and yearly cell instances. The localization error varies significantly

between 0.01km and 6km. The gap between the 75- and 95-

percentile values is particularly large, often more than 6x larger

than the median error value. The same applies to the other seven

localization algorithms.

To understand whether the good (or poor) performance “sticks”

to individual cells, we study localization error distribution across

each cell’s weekly crowdsourcing instances (for cells with at least

4 weekly instances). Figure 1(c) plots the quantiles of each cell’s

localization error, sorted by the median value. The error varies

significantly across crowdsourcing instances, often by more than

a factor of 10. The same applies to monthly and yearly instances

(results omitted for brevity).

Together, these results show that when localizing basestations

using crowdsourced signal measurements, the performance varies

significantly across cells and crowdsourcing instances within each

cell. Such significant variance translates into large, undesirable un-

certainty in localization accuracy.

4.2 Validation via Secondary Datasets
We validate our observations using the OpenBMap and Google

datasets. First, we consider the Cell IDs covered by OpenBMap-

GT, and use its 2-year crowdsourcing measurements to perform

basestation localization. Then, for the same set of Cell IDs, we

perform localization using the 2-year data in OpenCellID-GT and

also find the estimated basestation location from Google’s crowd-

sourced basestation localization database. For all three localization

outcomes, we compare them to the ground-truth and derive the cor-

responding localization errors. Figure 2(a) plots the quantiles of the

localization error across different datasets. While the localization

accuracy varies across the datasets and algorithms, they all display

significant variance across Cell IDs.

Next, we compare Google and OpenCellID by using the Cell

IDs covered by OpenCellID-GT. This is a larger dataset with 23.3K

Cell IDs. Figure 2(b) compares the per-Cell ID localization error

for Google, and OpenCellID (Oracle, Weighted Centroid, and Cen-

troid). The Google’s result is on par with OpenCellID Centroid.

But overall, they again display significant variance across Cell IDs.

5. PREDICTING LOCALIZATION ACCURACY

VIA CLASSIFICATION
We have observed significant variance in crowdsourced local-

ization errors. For crowdsourced measurements to be useful, we

must find techniques to distinguish “predictive” quality measure-

ment samples from others, where “predictive” is the ability to pro-

duce localization values with low error. Our goal is to answer the

question: can we develop techniques to identify the predictive abil-

ity of crowdsourced measurement samples, and what if any “fea-

tures” can help? The most intuitive feature is the number of mea-

surements in each cell instance, i.e. the more the measurements,

the better the prediction. However, we confirmed that measure-

ment count is not a reliable metric, and shows no detectable re-

lationship to localization accuracy with weak Pearson correlations

[-0.06, 0.02] across different scenarios and datasets.

In this section, we search for good indicators of a instance’s pre-

diction accuracy by applying machine learning classifiers using fea-

tures of the crowdsourced measurement data. Not only do we seek

to develop tools to identify predictive instances, but we also wish

to identify and understand the key features associated with accurate

measurement data samples. We focus on Weighted Centroid as the

localization algorithm since it performs the best in most scenarios.

5.1 Feature Selection and Training
The complex structure of crowdsourced data means that it is un-

likely that the localization accuracy is controlled by a single prop-

erty. Thus we consider a classifier-based approach. For a given

localization accuracy requirement, e.g. the localization error < x,

we seek to predict whether a crowdsourcing instance can produce

localization results meeting such requirement, while identifying the

key features that lead to such good (or poor) performance.

Feature Extraction. We build four categories of features to

characterize the crowdsourced datasets: spatial, RSS, localization

algorithm, and combined RSS and spatial. The spatial features are

those used by common spatial analysis [40]. The RSS features rep-

resent the statistical distribution of the RSS within each cell. The

algorithm features look at the difference between results of differ-

ent localization algorithms. And the combined RSS and spatial

features capture the joint distribution of RSS and spatial properties,



Dimension Feature Class Details

Spatial

measurement count
diameter
clustering: index of dispersion [18]
clustering: nearest-neighbor index
minimum enclosing circle radius
dispersion max, min, median, mean,
angular coverage StdDev, coefficient of variance
standard deviational ellipse [51] StdDev(major), StdDev(minor),

StdDev(major)/StdDev(minor)

RSS

RSS max, min, median, mean,
RSS (power level, dB) StdDev, coefficient of variance
% of RSS (power level)> γ γ=-55, -60, -65, -70
# of RSS (power level)> γ and -80dB

Algorithm distance between algorithm M and N ’s
location estimates

RSS-Spatial

RSS-weighted dispersion max, min, median, mean,
StdDev, coefficient of variance

RSS-weighted standard deviational ellipse StdDev(major), StdDev(minor),
StdDev(major)/StdDev(minor)

correlation between measurement distance
to center and RSS
spatial autocorrelation [20]
estimated path loss exponent

Table 4: Features considered in our analysis.

Feature
Feature ranking methods

CFS Information Gain Random Forest
RSS-Weighted Dispersion Mean 0.18 0.27

RSS StdDev 0.15 0.21

RSS-Weighted Dispersion StdDev 0.14 0.18

directional bias: RSS-weighted 0.09 0.2
StdDev(major)/StdDev(minor)

distance gap between Centroid
and Weighted Centroid (CWC) 0.04 0.13

Table 5: Feature selected by CFS, rankings and importance.

and the spatial properties of the strong measurements. Table 4 lists

the features and the detailed descriptions are in the Appendix.

Feature Selection. Our initial feature set in Table 4 is large,

and may contain features that are either redundant or irrelevant. To

prevent overfitting, we first apply the correlation feature selection

(CFS) [22] to identify a subset of relevant features for the classi-

fier. CFS selects features independent of the classifier, and applies

two criteria: the feature must be highly indicative, and must be

highly uncorrelated with the features which are already selected.

Table 5 lists the set of features selected via CFS, which are consis-

tent across countries and time windows.

The selected feature set is dominated by RSS related features.

It is interesting to see that the distance between the localization

results of Centroid and Weighted Centroid becomes a key feature.

Since Centroid only focuses on spatial characteristics while Weighted

Centroid utilizes both RSS and spatial properties, this feature will

likely capture the complex interaction of spatial and RSS factors

during localization.

Classifier Training and Testing. Using the above features,

we build our classifier using multiple methods including Decision

Tree, Random Forests (RF), and Support Vector Machine (SVM)5.

For a given localization accuracy requirement, e.g. localization er-

ror < x, we prepare the training data based on the localization er-

ror obtained using a specific localization algorithm, e.g. Weighted

Centroid. We label a cell instance whose localization error is less

than x as 1 (good) and otherwise as 0 (bad). The trained classifier

will output whether a testing instance is good or bad.

Following the above process, we train and test our classifier us-

ing 10-fold cross-validation and report classification accuracy, pre-

5We use the implementation of these algorthms in WEKA [21] with
default parameters.
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Figure 3: The distribution of the localization error for cell in-

stances classified as Good (<1km) and Bad (>1km).

Germany Poland Russia

1km 0.5km 1km 0.5km 1km 0.5km

Accuracy 0.84 0.84 0.84 0.88 0.82 0.80

Precision/Recall 0.84/0.85 0.84/0.84 0.84/0.84 0.87/0.88 0.81/0.82 0.79/0.80

AUC 0.91 0.92 0.92 0.93 0.88 0.88

Table 6: Classification results for the Weighted Centroid local-

ization algorithm.

cision, recall and area under ROC curve (AUC)6. As expected, Ran-

dom Forests produce the best classification result, since the crowd-

sourced data is complicated and noisy. Random Forest is better to

handle noise in the data because of ensemble technique.

Table 5 lists the top features selected by Random Forest and their

ranking in terms of the permutation importance. For comparison,

we also list their ranking values computed from CFS, i.e. the in-

formation gain. For both methods (CFS and Random Forest), the

features have similar weights, making it hard to further locate top

features among them.

5.2 Classification Results
We now present the detailed classification results using different

datasets and scenarios. We build classifiers for each country sepa-

rately. Our experiment uses OpenCellID for training and testing.

Table 6 shows the classification results when using Weighted

Centroid to perform localization, with either x = 0.5km or x =

1km as the accuracy requirement. The results are consistent across

countries – the classifier has a reasonable accuracy around 85%.

The performance of Russia is slightly worse, potentially due to its

smaller data size (10% of the other two countries).

Figure 3(a) plots the quantile distribution of the actual localiza-

tion error for the good and bad instances predicted by the classifier.

Overall, we observe clear separations between the two classes. Us-

ing the classifier trained for 1km accuracy, we can identify good

crowdsourcing instances that lead to no more than 3km localiza-

tion error, while the majority (>75%) of these instances produce

less than 1km error.

We also repeat our analysis for Oracle (the best of the 7 localiza-

tion algorithms). Because the corresponding localization algorithm

is unknown and will likely be much more complex, the predictabil-

ity of its localization outcome reduces. As a result, the accuracy,

precision, recall reduce 2%-7% and the AUC reduces 1%-4%. Fig-

ure 3(b) shows the quantile distribution of the actual error for both

classes. We see that the distinction between good and bad cases is

more clear in 3(a) than 3(b).

Impact of Training Data. We test the sensitivity of the training

data by experimenting with our classifier using different amount of

training data, and different types of training data. These include,

using the data in one year to predict another year (2014→ 2015,

6Higher AUC values indicate stronger prediction power. AUC>0.5
means the prediction is better than random guessing.



% of data 10% 50% 80% 90% 10% 50% 80% 90%

used for training 1km 0.5km

Germany 0.80 0.83 0.84 0.84 0.80 0.83 0.83 0.83

Poland 0.81 0.83 0.83 0.84 0.85 0.87 0.88 0.88

Russia 0.77 0.78 0.81 0.82 0.76 0.79 0.80 0.80

Training→Testing
Germany Poland Russia

1km 0.5km 1km 0.5km 1km 0.5km

2014 → 2015 0.83 0.80 0.84 0.86 0.80 0.77

2015 → 2014 0.84 0.82 0.84 0.85 0.81 0.79

Operator 1 → 2 0.82 0.81 0.83 0.85 0.80 0.75

Operator 2 → 1 0.81 0.80 0.82 0.83 0.81 0.79

OpenCellID → OpenBMap 0.84 0.79 0.82 0.85 0.84 0.81

Training Germany Poland Russia

Testing Poland Russia Germany Russia Germany Poland

1km 0.81 0.81 0.82 0.83 0.77 0.76

0.5km 0.80 0.80 0.81 0.80 0.78 0.78

Table 7: Training data sensitivity analysis, in terms of training

data volume, time, cellular operators, datasets, and countries.

2015→ 2014), using the data from one cellular operator to predict

another, using OpenCellID dataset to predict OpenBMap dataset,

and using the data from one country to predict another country.

Here we use OpenBMap only for testing since OpenBMap does

not have sufficient data.

Table 7 lists the classification accuracy result. First for differ-

ent training data amounts, the result shows that accuracy begins

to reduce when there are not enough data volumes. Then overall

the accuracy of prediction across data time and operators is on par

with the original result in Table 6. As for cross-validation across

countries, both Germany and Poland can well predict the other

two countries, while the accuracy reduces to 0.77 when training

with Russia. This is mostly because the Russia dataset is 10 times

smaller than the Germany and Poland datasets.

6. FEATURE CLUSTERING
Despite good classifier performance, our efforts to identify and

understand key features in predicting localization accuracy using

standard ML were unsuccessful. Both information gain metrics

and classifiers such as Random Forests produced feature impor-

tance rankings that did not clearly distinguish between key features.

While these classifiers can identify instances likely to predict loca-

tion within some error, they do not shed insights on the fundamental

features that are indicative of predictive measurement instances.

In this section, we introduce a different approach that applies

unsupervised learning to identify underlying correlations between

key features and a measurement instance’s predictive accuracy of

Weighted Centroid. We define a distance metric that captures the

similarity between key features of any two data instances. By com-

puting the similarity metric between all pairs of instances, we can

apply clustering algorithms to detect clusters of instances that cap-

ture features that tend to occur simultaneously. We call our ap-

proach unsupervised feature clustering.

6.1 Algorithm
Feature clustering groups data instances together based on their

similarity across a small group of key features. In doing so, we

are searching for possible clusters of measurement instances in the

feature space, indicating a natural correlation between key features

that may not be clear from other types of analysis.

By avoiding user-defined assumptions or constraints, feature clus-

tering reveals inherent correlations between features, and allows us

to identify natural combinations of features that produce highly pre-

dictive samples. Intuitively, this approach makes the assumption

that a specific combination of features tends to coexist in highly

predictive samples. If this assumption holds, then clusters of these

features will be easily identifiable, and examining clusters will re-

veal key features that most strongly correlate with highly predictive

measurement instances.

The process is as follows:

1. Select a small group of representative features from measure-

ment data.

2. Define a pair-wise similarity metric between two instances

based on these features.

3. Identify clusters in the measurement dataset using the simi-

larity metric.

4. Search for correlation between identified clusters and intended

outcome (in this context, prediction accuracy).

5. If strong correlation exists, use features in cluster to develop

predictors for prediction accuracy.

Features and a Distance Metric. To identify a set of repre-

sentative features from our measurement data, we rely on our prior

results for feature selection using correlation-based feature selec-

tion (CFS) [22]. Applying CFS to a wide range of features pro-

duced a small set of features, including RSS standard deviation,

RSS-weighted dispersion mean, RSS-weighted dispersion standard

deviation, RSS-weighted directional bias, and CWC Gap (distance

between Centroid and Weighted Centroid localization results).

To combine the selected features into a single distance metric,

we compute a five-tuple for each measurement sample (all mea-

surement values pertaining to a single basestation). We normalize

values for each feature using min-max normalization, i.e. normal-

ized to the max value across all tuples. Finally, we generate a single

distance metric by computing the (unweighted) Euclidean distance

between the feature vectors of any two instances (the L2 norm of

feature vectors).

Clustering. Given the distance metric, we can detect the natu-

ral clustering of measurement instances relative to our chosen fea-

tures. A number of clustering algorithms are available, including

hierarchical clustering [24], K-means, and METIS [25]. Since we

wish to find natural correlation clusters, i.e. not a specific target

number of clusters, we use hierarchical clustering, and optimize

for modularity across all clusters. As we computed clusters for

larger datasets, hierarchical clustering became a computational bot-

tleneck. We switched to K-means for all results in this section and

beyond, because it achieved nearly-identical results with an order

of magnitude lower computation. We chose these clustering meth-

ods because they are commonly used and perform well in our ex-

periments. While the choices of clustering methods could be fur-

ther optimized, we leave this to future work.

After clusters are generated, we identify the most important fea-

tures by computing each feature’s chi-square statistics [16] and its

difference between clusters. This quantifies how different the fea-

ture’s values are distributed inside and outside a cluster, and in ef-

fect captures how important each feature is to distinguishing in-

stances in a given cluster from the rest.

6.2 Results
We perform clustering on measurement datasets for Germany,

Poland and Russia respectively, and plot key results in Figure 4.

First, Figure 4(a–c) show that each of our three key datasets are

dominated by 2 or 3 large clusters. More importantly, these clus-

ters correlate strongly with our primary outcome, localization accu-

racy. In each case, one of the feature clusters identifies a group of
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Figure 4: Clusters and top features using OpenCellID-GT (candlestick graphs).

measurement samples that produce localization results with both

low error and low variance (there are two such clusters in Ger-

many). Measurement instances in the remaining clusters produce

both much higher errors and higher error variance in their localiza-

tion results. These results are extremely promising, because they

point to the strong correlation of these key features with localiza-

tion accuracy.

A closer look at the clusters shows that the key feature distin-

guishing the clusters is RSS standard deviation, and RSS-weighted

dispersion mean also plays a role. This is somewhat unexpected, as

intuition says that signal dispersion or directional bias might be

better indicators for predictive measurement instances. We plot

the values for top three features: RSS standard deviation , RSS-

weighted dispersion mean and RSS-weighted directional bias in

Figure 4(d–f) (we omit the other two features because their val-

ues are similar across clusters). In all three datasets, it is very clear

that the cluster with the lowest localization error and lowest error

variance is defined by RSS standard deviation. In Germany, we

also find a second highly predictive cluster defined by low values

for RSS-weighted dispersion mean and RSS standard deviation.

Two Primary Features. These results indicate that two pri-

mary features can effectively distinguish predictive measurement

instances from others. First, RSS-weighted dispersion mean is a

feature that measures the mean distance from each measurement

location to the estimated location of the basestation, weighted by

each measurement’s RSS value. So a high value is not likely gen-

erated by measurements near the basestation with high RSS values.

It effectively captures the ideal scenario, where there are sufficient

strong measurements close to the actual basestation. We note that

this cluster only appears in our Germany dataset, which is dense,

and contains a large number of measurements in urban settings. In

contrast, the Poland and Russia datasets don’t show this cluster in

our results, because they are much sparser, and much less likely to

have samples of dense measurements close to the basestation.

In the absence of well placed measurements with sufficient strong

RSS values, our results show that a crowdsourced instance can pro-

duce accurate results if the measurements contain high standard

deviation in RSS values. This is not an obvious result, but cap-

tures the idea that RSS measurements near the actual basestation

are more diverse. The diversity comes from the signal propaga-

tion in which RSS value changes more dramatically as the receiver

(smartphone) gets closer to the signal source (basestation), and user

context. Regardless of whether measurements are dense (Germany)

or sparse (Poland and Russia), RSS standard deviation provides a

strong signal to help guide the search for predictive instances.

7. IMPLICATIONS & APPLICATIONS
Given our insights from the previous analysis, we now consider

implications on analysis of crowdsourced wireless measurements.

In this section, we consider two questions. First, how can we use

our insights to improve crowdsourced measurements for better ac-

curacy? Second, we wish to test the generality of our findings by

extending our approach to larger datasets in Europe and the US.

“Filtering” Crowdsourced Instances. Our key result is that

RSS standard deviation and RSS-weighted dispersion mean are dom-

inant features for detecting an instance’s predictive accuracy. Gen-

erally, high RSS standard deviations and low mean RSS-weighted

dispersion are both indicative of accurate localization results.

Here, we leverage these features to adaptively improve the qual-

ity of crowdsourced measurements. Our methodology is to adap-

tively monitor these two features as crowdsourced measurement

values are gathered over time. Once a measurement instance has

met either one or both of these features, we consider it sufficient.

For measurement instance who has met neither target, we con-

sider it a low-confidence instance and wait for additional measure-

ments. We will design more complicated noise/anomaly detection

in crowdsourcing measurement as a future work.

From results in Section 6, we set the bar of RSS standard de-

viation as 100k, and the bar of RSS-weighted dispersion mean to

0.5km. We use monthly data and look at instances that fail both tar-

gets in the three countries. We gradually add more data in the fol-

lowing months until the bar is reached. When getting more data, we

combine the measurements of different months that maximize the

RSS standard derivation and minimize the RSS-weighted disper-

sion mean. Figure 5 shows the results after this “instance filtering”

process. It is clearly evident that across all countries, our filtering

process dramatically lowers mean error (often by over 50%), and

lowers error variance even more significantly (often by over 60%).

The resulting instances are more accurate and predictable.
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error between clusters using OpenCellID-GT and OpenCellID (cells with ground truth location in each cluster are selected).

Next, we compare the accuracy improvements gained by instance

filtering against various localization methods, for ground truth data

in Germany (results for Poland and Russia are also consistent). In

Figure 6, we use a CDF to show the accuracy improvement across

all portions of the error distribution. Not only does cleaning reduce

error for the bulk of all instances, but it dramatically reduces the

long tail of high error instances compared to all methods.

Generalizing Results. Despite these results, one might ques-

tion whether our findings are a result of artifacts specific to a given

dataset or location. Our hypothesis is that our conclusions are gen-

eral, and high RSS standard deviation and low RSS-weighted dis-

persion mean should be sufficient to identify highly predictive mea-

surement instances in different settings.

To test this, we extend our methodology to different and larger

datasets. In Figure 7, we apply our feature clustering technique to

the OpenCellID US dataset. While we do not have ground truth

values for this dataset, we can see that the clustered results match

Germany almost perfectly (Figure 4(d)). There are three clusters,

two clusters with low localization errors that match the high RSS

standard derivation and low RSS-weighted dispersion mean fea-

tures, and one cluster with high localization error.

Finally, we test our methodology on the whole Germany dataset

(all measurement samples, including those without ground truth lo-

cations). In Figure 8, we compare the properties of the clusters

produced from the whole dataset to those from the ground truth

samples. The whole dataset produced the same number of clusters

as the dataset of samples with ground truth, and all key properties

of each cluster match the ground-truth clusters nearly perfectly.

While these results are not as strong as our earlier results be-

cause we lack ground truth, they clearly support our hypothesis

that a) the clustering results and key features are not specific to the

ground truth data subsets, and b) the results could generalize across

datasets and geographic regions. We hope to see our methodology

tested for other crowdsourced measurements in future work.

8. RELATED WORK

Localization using Wardriving. Initial studies explored wardriv-

ing as an approach to collect RSS measurements for localizing

WiFi Access Points (AP) [15, 23, 26, 43] or cellular towers [14, 45,

47]. Kim et al. [26] concluded that state-of-art localization algo-

rithms can produce erroneous results and this will cause inaccurate

estimates of WiFi coverage. Yang et al. [47] studied the accuracy

of cell tower localization using wardriving data and showed that

frequency, antenna height, and propagation environment make cell

tower localization different from WiFi AP localization.

Localization using Crowdsourcing. Since wardriving is cum-

bersome and does not provide large-scale coverage, recent studies

leverage crowdsourcing for indoor localization of WiFi APs [37,

41, 48] or outdoor cell tower localization [34, 44, 38]. [34] exam-

ined several localization algorithms using only 950 measurements

and showed that the grid-based approach is the best. [44] studied

cell tower localization using the OpenCellID dataset and validated

the results with data from only 250 users. [38] applied different

localization algorithms on a small portion of OpenCellID dataset.

Unlike prior studies, we examine and compare seven popular local-

ization algorithms on two large-scale datasets and show that there

is no algorithm that performs consistently the best. We also exam-

ine the key factors that lead to such performance variance.

Quality of Measurements. A few works addressed issues and

challenges in crowdsourcing measurements. [19, 30] studied the

impact of user context in crowdsourcing based cellular network

measurement systems. [33] considered the problem of crowd-

sourced measurement distribution and data density in network cov-

erage prediction. Li et al [27] identified that data density and envi-

ronment diversity have major impact on indoor WiFi localization.

In contrast, our work examines the quality issues of outdoor cellu-

lar crowdsourced measurements using large-scale datasets, focus-

ing on basestation localization. We found that data density does not

matter much to localization results. [32] investigated ways to iden-

tify true information and reliable users in real-world crowd sensing



applications like air quality sensing. They require users to take

measurements at the same locations which is not practical in our

scenario.

For applications like web page mining, existing works (e.g. [50,

46, 42]) tried to remove noise and anomaly in data. Our work dif-

fers by providing a systematic framework to examine the key char-

acteristics of crowdsourced cellular measurements and to quantify

the usability of this data for basestation localization. To the best of

our knowledge, we are the first to provide a comprehensive study

on the usefulness of crowdsourced wireless measurements.

9. CONCLUSION
Our work analyzes the value of large user-contributed signal mea-

surements in the context of basestation localization, using large-

scale RSS datasets from OpenCellID and OpenBMap. We find that

even machine learning techniques cannot reduce the variance in lo-

calization results, nor can they identify key features (RSS StdDev,

RSS-weighted dispersion mean) that correlate strongly with highly

predictive data instances. Instead, we apply a feature clustering

technique to detect natural correlation patterns between measure-

ment features, and use them to identify types of measurement data

that correlate well with high or low prediction accuracy. We show

that these clustering results are general across datasets, and that

we can dramatically improve localization results using our identi-

fied features. We hope these results shed light on other types of

crowdsourced measurements, and will test the applicability of this

approach to other applications in ongoing work.

Appendix: Detailed Description of Features

• Dispersion: shows the spread or spatial variability of measure-

ments and calculates their distances to center. When weighted by

RSS, the dispersion mean is defined as d̄ =

∑
i
d(i,center)∗RSSi∑

i
RSSi

,

center is the estimated basestation location using Weighted Cen-

troid. The std is

√∑
i
(d(i,center−d̄))2∗RSSi∑

i
RSSi

.

• Angular coverage: measures how measurements distribute around

the estimated center from the angular point of view.

• Standard deviational ellipse: measures the dispersion in two di-

mensions. The major axis is defined as direction of maximum

spread of the distribution. The minor axis is perpendicular to

major axis and defines the minimum spread.

• Estimated path loss exponent: by fitting the log-normal propaga-

tion model, the estimated path loss exponent shows the relation-

ship between RSS and distance.

• Spatial autocorrelation: measures the correlation among one

point and its relatively close points. Positive spatial autocorre-

lation occurs when similar values occur near one another. Nega-

tive spatial autocorrelation occurs when dissimilar values occur

near one another.
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