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Abstract

Recent work in security and systems has embraced the
use of machine learning (ML) techniques for identify-
ing misbehavior,e.g. email spam and fake (Sybil) users
in social networks. However, ML models are typically
derived fromfixed datasets, and must be periodically
retrained. In adversarial environments, attackers can
adapt by modifying their behavior or even sabotaging
ML models by polluting training data.

In this paper1, we perform an empirical study of ad-
versarial attacks against machine learning models in the
context of detecting malicious crowdsourcing systems,
where sites connect paying users with workers willing to
carry out malicious campaigns. By using human work-
ers, these systems can easily circumvent deployed se-
curity mechanisms,e.g. CAPTCHAs. We collect a
dataset of malicious workers actively performing tasks
on Weibo, China’s Twitter, and use it to develop ML-
based detectors. We show that traditional ML techniques
are accurate (95%–99%) in detection but can be highly
vulnerable to adversarial attacks, including simpleeva-
sion attacks(workers modify their behavior) and power-
ful poisoning attacks(where administrators tamper with
the training set). We quantify the robustness of ML clas-
sifiers by evaluating them in a range of practical adver-
sarial models using ground truth data. Our analysis pro-
vides a detailed look at practical adversarial attacks on
ML models, and helps defenders make informed deci-
sions in the design and configuration of ML detectors.

1 Introduction

Today’s computing networks and services are extremely
complex systems with unpredictable interactions be-
tween numerous moving parts. In the absence of ac-
curate deterministic models, applying Machine Learning

1Our work received approval from our local IRB review board.

(ML) techniques such as decision trees and support vec-
tor machines (SVMs) produces practical solutions to a
variety of problems. In the security context, ML tech-
niques can extract statistical models from large noisy
datasets, which have proven accurate in detecting mis-
behavior and attacks,e.g. email spam [35, 36], network
intrusion attacks [22, 54], and Internet worms [29]. More
recently, researchers have used them to model and detect
malicious users in online services,e.g. Sybils in social
networks [42, 52], scammers in e-commerce sites [53]
and fraudulent reviewers on online review sites [31].

Despite a wide range of successful applications, ma-
chine learning systems have a weakness: they are vulner-
able to adversarial countermeasures by attackers aware
of their use. First, through either reading publications
or self-experimentation, attackers may become aware of
details of the ML detector,e.g. choice of classifier and
parameters used, and modify their behavior toevadede-
tection. Second, more powerful attackers can actively
tamper with the ML models by polluting the training set,
reducing or eliminating its efficacy. Adversarial machine
learning has been studied by prior work from a theoreti-
cal perspective [6, 12, 27], using simplistic all-or-nothing
assumptions about adversaries’ knowledge about the ML
system in use. In reality, however, attackers are likely to
gain incomplete information or have partial control over
the system. An accurate assessment of the robustness of
ML techniques requires evaluation underrealistic threat
models.

In this work, we study the robustness of machine
learning models against practical adversarial attacks, in
the context of detecting malicious crowdsourcing activ-
ity. Malicious crowdsourcing, also called crowdturfing,
occurs when an attacker pays a group of Internet users
to carry out malicious campaigns. Recent crowdturf-
ing attacks ranged from “artificial grassroots” political
campaigns [32, 38], product promotions that spread false
rumors [10], to spam dissemination [13, 39]. Today,
these campaigns are growing in popularity in dedicated



crowdturfing sites,e.g. ZhuBaJie (ZBJ)2 and SanDaHa
(SDH)3, and generic crowdsourcing sites [26, 48].

The detection of crowdturfing activity is an ideal con-
text to study the impact of adversarial attacks on ma-
chine learning tools. First, crowdturfing is a growing
threat to today’s online services. Because tasks are per-
formed by intelligent individuals, these attacks are unde-
tectable by normal measures such as CAPTCHAs or rate
limits. The results of these tasks, fake blogs, slander-
ous reviews, fake social network accounts, are often in-
distinguishable from the real thing. Second, centralized
crowdturfing sites like ZBJ and SDH profit directly from
malicious crowdsourcing campaigns, and therefore have
strong monetary incentive and the capability to launch
adversarial attacks. These sites have the capability to
modify aggregate behavior of their users through inter-
face changes or explicit policies, thereby either helping
attackers evade detection or polluting data used as train-
ing input to ML models.

Datasets. For our analysis, we focus on Sina Weibo,
China’s microblogging network with more than 500 mil-
lion users, and a frequent target of crowdturfing cam-
paigns. Most campaigns involve paying users to retweet
spam messages or to follow a specific Weibo account.
We extract records of 20,416 crowdturfing campaigns
(1,012,923 tasks) published on confirmed crowdturfing
sites over the last 3 years. We then extract a 28,947
Weibo accounts belonging to crowdturfing workers. We
analyze distinguishing features of these accounts, and
build detectors using multiple ML models, including
SVMs, Bayesian, Decision Trees and Random Forests.

We seek answers to several key questions. First, can
machine learning models detect crowdturfing activity?
Second, once detectors are active, what are possible
countermeasures available to attackers? Third, can ad-
versaries successfully manipulate ML models by tamper-
ing with training data, and if so, can such efforts succeed
in practice, and which models are most vulnerable?

Adversarial Attack Models. We consider two types of
practical adversarial models against ML systems: those
launched by individualcrowd-workers, and those in-
volving coordinated behavior driven by administrators of
centralizedcrowdturfing sites. First, individual workers
can performevasionattacks, by adapting behavior based
on their knowledge of the target classifier (e.g. ML al-
gorithms, feature space, trained models). We identify a
range of threat models that vary the amount of knowl-
edge by the adversary. The results should provide a com-
prehensive view of how vulnerable ML systems to eva-
sion, ranging from the worst case (total knowledge by at-
tacker) to more practically scenarios. Second, more pow-

2http://www.zhubajie.com/c-tuiguang/
3http://www.sandaha.com/

erful attacks are possible with the help of crowdturfing
site administrators, who can manipulate ML detectors by
poisoningor polluting training data. We study the im-
pact on different ML algorithms from two pollution at-
tacks: injecting false data samples, and altering existing
data samples.

Our study makes four key contributions:

• We demonstrate the efficacy of ML models for de-
tecting crowdturfing activity. We find that Random
Forests perform best out of multiple classifiers, with
95% detection accuracy overall and 99% for “pro-
fessional” workers.

• We develop adversarial models forevasion at-
tacksranging from optimal evasion to more prac-
tical/limited strategies. We find while such attacks
can be very powerful in the optimal scenario (at-
tacker has total knowledge), practical attacks are
significantly less effective.

• We evaluate a powerful class ofpoisonattacks on
ML training data and find thatinjecting carefully
crafted data into training data can significantly re-
duce detection efficacy.

• We observe a consistent tradeoff between fitting ac-
curacy and robustness to adversarial attacks. More
accurate fits (especially to smaller, homogeneous
populations) make models more vulnerable to de-
viations introduced by adversaries. The exception
is Random Forests, which naturally supports fitting
to multiple populations, thus allowing it to maintain
both accuracy and robustness in our tests.

To the best of our knowledge, this is the first study to
examine automated detection of large-scale crowdturf-
ing activity, and the first to evaluate adversarial attacks
against machine learning models in this context. Our
results show that accurate models are often vulnerable
to adversarial attacks, and that robustness against attacks
should be a primary concern when selecting ML models.

2 Datasets and Methodology

In this section, we provide background on crowdturfing,
and introduce our datasets and methodology.

2.1 Background: Crowdturfing Systems

Malicious crowdsourcing (crowdturfing) sites are web
services where attackers pay groups of human workers to
perform questionable (and often malicious) tasks. While
these services are growing rapidly world-wide, two of the
largest are Chinese sites ZhuBaJie (ZBJ) and SanDaHa
(SDH) [48]. Both sites leave records of campaigns pub-
licly visible to recruit new workers, making it possible
for us to crawl their data for analysis.
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Figure 1: Crowdturfing process.

Figure 1 illustrates how crowdturfing campaigns work.
Initially, a customerposts a campaign onto the crowd-
turfing site, and pays the site to carry it out. Each cam-
paign is a collection of smalltasks, e.g. tasks to send
or retweet messages advertising a malware site.Workers
accept the task, and use their fake accounts in the target
social network(s) (e.g. Twitter) to carry out the tasks.
Today, crowdturfing campaigns often spam web services
such as social networks, online review sites, and instant-
messaging networks [48]. While workers can be any In-
ternet user willing to spam for profit, customers often re-
quire workers to use “high quality” accounts (i.e. estab-
lished accounts with real friends) to perform tasks [48].
In the rest of the paper, we refer workers’ social network
accounts ascrowdturf accounts.

Crowdturfing on Weibo. Sina Weibo is China’s most
popular microblogging social network with over 500 mil-
lion users [30]. Like Twitter, Weibo users post 140-
charactertweets, which can beretweetedby other users.
Users can alsofollow each other to form asymmetric so-
cial relationships. Unlike Twitter, Weibo allows users to
have conversations viacommentson a tweet.

Given its large user population, Weibo is a popular tar-
get for crowdturfing systems. There are two major types
of crowdturfing campaigns. One type asks workers to
follow a customer’s Weibo account to boost their per-
ceived popularity and visibility in Weibo’s ranked social
search. A second type pays crowd-workers to retweet
spam messages or URLs to reach a large audience. Both
types of campaigns directly violate Weibo’s ToS [2]. A
recent statement (April 2014) from a Weibo administra-
tor shows that Weibo has already begun to take action
against crowdturfing spam [1].

2.2 Ground Truth and Baseline Datasets

Our study utilizes a largeground-truthdataset of crowd-
turfing worker accounts. We extract these accounts by
filtering through records of all campaigns and tasks tar-
geting Weibo from ZBJ and SDH, and extracting all

Category # Weibo IDs # (Re) Tweets # Comments
Turfing 28,947 18,473,903 15,970,215
Authent. 71,890 7,600,715 13,985,118
Active 371,588 34,164,885 75,335,276

Table 1: Dataset summary.

Weibo accounts that accepted these tasks. This is possi-
ble because ZBJ and SDH keep complete records of cam-
paigns and transaction details (i.e. workers who com-
pleted tasks, and their Weibo identities) visible.

As of March 2013, we collected a total of 20,416
Weibo campaigns (over 3 years for ZBJ and SDH), with a
total of 1,012,923 individual tasks. We extracted 34,505
unique Weibo account IDs from these records. 5,558 of
which have already been blocked by Weibo. We col-
lected user profiles for the remaining 28,947 active ac-
counts, including social relationships and the latest 2000
tweets from each account. These accounts have per-
formed at least one crowdturfing task. We refer to this
as theTurfingdataset.

Baseline Datasets for Comparison. We need a base-
line dataset of “normal” users for comparison. We start
by snowball sampling a large collection of Weibo ac-
counts4. We ran breadth-first search (BFS) in November
2012 using 100 Seeds randomly chosen from Weibo’s
public tweet stream, giving us 723K accounts. Because
these crawled accounts can include malicious accounts,
we need to do further filtering to obtain a real set of “nor-
mal” users.

We extract two different baseline datasets. First, we
construct a conservativeAuthenticateddataset, by in-
cluding only Weibo users who have undergone an op-
tional identity verification by phone number or Chinese
national ID (equivalent to US drivers license). A user
who has bound her Weibo account to her real-world iden-
tity can be held legally liable for her actions, making
these authenticated accounts highly unlikely to be used
as crowdturfing activity. OurAuthenticateddataset in-
cludes 71,890 accounts from our snowball sample. Sec-
ond, we construct a larger, more inclusive baseline set of
Activeusers. We define this set as users with at least 50
followers and 10 tweets (filtering out dormant accounts5

and Sybil accounts with no followers). We also cross ref-
erence these users against all known crowdturfing sites
to remove any worker accounts. The resulting dataset
includes 371,588 accounts. While it is not guaranteed to
be 100% legitimate users, it provides a broader user sam-
ple that is more representative of average user behavior.

4Snowball crawls start from an initial set of seed nodes, and runs
breadth-first search to find all reachable nodes in the socialgraph [3].

5Dormant accounts are unlikely to be workers. To qualify for jobs,
ZBJ/SDH workers must meet minimum number of followers/tweets.
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Figure 2: Followee-to-Follower ratio.
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Figure 3: Reciprocity.
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Figure 4: Ratio of commented tweets.

This is likely to provide a lower bound for detector accu-
racy, since more carefully curated baselines would pro-
duce higher detection accuracy. Our datasets are listed in
Table 1.

2.3 Our Methodology

We have two goals: evaluating the efficacy of ML clas-
sifiers to detect crowdturfing workers, and evaluating the
practical impact of adversarial attacks on ML classifiers.

• We analyze ground-truth data to identify key behav-
ioral features that distinguish crowdturfing worker
accounts from normal users (§3).

• We use these features to build a number of pop-
ular ML models, including Bayesian probabilistic
models via Bayes’ theorem (i.e. conditional prob-
ability), Support Vector Machines (SVMs), and al-
gorithms based on single or multiple decision trees
(e.g.Decision Trees, Random Forests) (§4).

• We evaluate ML models against adversarial attacks
ranging from weak to strong based on level of
knowledge by attackers (typically evasion attacks),
and coordinated attacks potentially guided by cen-
tralized administrators (possible poison or pollution
of training data).

3 Profiling Crowdturf Workers

We begin our study by searching for behavioral fea-
tures that distinguish worker accounts from normal users.
These features will be used to build ML detectors in §4.

User Profile Fields. We start with user profile fea-
tures commonly used as indicators of abnormal behav-
ior. These features include followee-to-follower ratio
(FFRatio), reciprocity (i.e. portion of user’s followees
who follow back), user tweets per day, account age, and
ratio of tweets with URLs and mentions.

Unfortunately, our data shows that most of these fea-
tures alone cannot effectively distinguish worker ac-
counts from normal users. First, FFRatio and reci-
procity are commonly used to identify malicious spam-

mers [4, 43, 50]. Intuitively, spammers follow a large
number of random users and hope for them to follow
back, thus they have high FFRatio and low reciprocity.
However, our analysis shows worker accounts have bal-
anced FFRatios, the majority of them even have more
followers than followees (Figure 2), and their reciprocity
is very close to those of normal users (Figure 3). Other
profile features are also ineffective, including account
age, tweets per day, ratio of tweets with URLs and men-
tions. For example, existing detectors usually assume
attackers create many “fresh” accounts to spam [4, 43],
thus account age has potential. But we find that more
than 75% of worker accounts in our dataset have been
active for at least one year.

These results show that crowd-worker accounts in
many respects resemble normal users, and are not eas-
ily detected by profile features alone [47].

User Interactions. Next, we move on to features re-
lated to user interactions. The intuition is that crowdturf
workers are task-driven, and log on to work on tasks, but
spend minimal time interacting with others. User interac-
tions in Weibo are dominated by comments and retweets.
We perform analysis on both of them and find consistent
results which show they are good metrics to distinguish
workers from non-workers. For brevity, we limit our dis-
cussion to results on comment interactions.

Figure 4 shows crowdturf accounts are less likely to
receive comments on their tweets. For 80% of crowdturf
accounts, less than 20% of their tweets are commented;
while for 70% of normal users, their ratio of commented
tweets exceeds 20%. This makes sense, as the fake con-
tent posted by crowdturf workers may not be interesting
enough for others to comment on. We also examine the
number of people that each user has bidirectional com-
ments with (bi-commentors). Crowdturf workers rarely
interact with other users, with 66% of accounts having at
most one bi-commentor.

Tweeting Clients. Next we look at the use of tweeting
clients (devices). We can use the “device” field associ-
ated with each tweet to infer how tweets are sent. Tweet
clients fall into four categories: web-based browsers,
apps on mobile devices, third-party account management
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Figure 5: Tweet client usage.

 0

 20

 40

 60

 80

 100

 1  10  100

C
D

F
 o

f U
se

rs
 (

%
)

Max # consecutive tweets with all intervals < d

Authenticated
Active

Turfing

Figure 6: Max size of tweeting burst
(thresholdd = 1 minute).
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Figure 7: Normalized entropy of
tweeting inter-arrival time.

Categ. Top Tweet Clients
Web Weibo Web, Weibo PC, 360Browser, Weibo Pro.
Mobile iPhone, Android, iPad, XiaoMi
Auto PiPi, Good Nanny, AiTuiBao, Treasure Box
Share Taobao, Youku, Sina Blog, Baidu

Table 2: High-level categories for tweeting clients.

tools, and third-party websites via “share” buttons (Ta-
ble 2). Figure 5 shows key differences in how differ-
ent users use tweet clients. First, crowdturf workers
use mobile (10%) much less than normal users (36%−
46%). One reason is that crowdturf workers rely on web
browsers to interact with crowdturfing sites to get (sub-
mit) tasks and process payment, actions not supported by
most mobile platforms.

We also observe that crowdturf workers are more
likely to use automated tools. A close inspection shows
that workers use these tools to automatically post non-
spam tweets retrieved from a central content repository
(e.g. a collection of hot topics). Essentially, crowdturf
accounts use these generic tweets as cover traffic for their
crowdturfing content. Third, crowdturf accounts “share”
from third-party websites more often, since that is a com-
mon request in crowdturfing tasks [48].

Temporal Behavior. Finally, we look at temporal char-
acteristics of tweeting behavior: tweet burstiness and pe-
riodicity. First, we expect task-driven workers to send
many tweets in a short time period. We look for poten-
tial bursts, where each burst is defined asm consecutive
tweets with inter-arrival times< d. We examine each
user’s maximum burst size (m) with different time thresh-
olds d, e.g. Figure 6 depicts the result ford is set to 1
minute. We find that crowdturf accounts are more likely
to post consecutive tweets within one-minute, something
rarely seen from normal users. In addition, crowdturf
workers are more likely to produce big bursts (e.g. 10
consecutive tweets with less than one-minute interval).

Second, workers accept tasks periodically, which can
leave regular patterns in the timing of their tweets. We
useentropy to characterize this regularity [16], where

low entropy indicates a regular process while high en-
tropy indicates randomness of tweeting. We treat each
user’s tweeting inter-arrival time as a random variable,
and compute the first-order entropy [16]. Figure 7 plots
user’s entropy, normalized by the largest entropy in our
dataset. Compared to normal users, crowdturf accounts
in general have lower entropy, indicating their tweeting
behaviors have stronger periodic patterns.

4 Detecting Crowdturfing Workers

We now use the features we identified to build a number
of crowdturfing detectors using machine learning mod-
els. Here, we summarize the set of features we use
for detection, and then build and evaluate a number of
machine-learning detectors using our ground-truth data.

4.1 Key Features

We chose for our ML detectors a set of 35 features across
five categories shown below.

• Profile Fields (9). We use 9 user profile fields6 as
features: follower count, followee count, followee-
to-follower ratio, reciprocity, total tweet count,
tweets per day, mentions per tweet, percent of
tweets with mentions, and percent of tweets with
embedded URLs.

• User Interactions (8).We use 8 features based on
user interactions,i.e. comments and retweets. 4
features are based on user comments: percent of
tweets with comments, percent of all comments that
are outgoing, number of bi-commentors, and com-
ment h-index (a user with h-index ofh has at leasth
tweets each with at leasth comments). We include
4 analogous retweet features.

• Tweet Clients (5).We compute and use the % of
tweets sent from each tweet client type (web, mo-
bile, automated tools, third-party shares and others)
as a feature.

6Although profile fieldsalonecannot effectively detect crowdturf
accounts (§3), they are still useful when combined with otherfeatures.



Alg. Settings
NB Default
BN Default, K2 function
SVMr Kernelγ =1, Cost parameterC=100
SVMp Kernel degreed =3, Cost parameterC=50
J48 Confidence factorC=0.25, Instance/leafM =2
RF 20 trees, 30 features/tree

Table 3: Classifier configurations.

• Tweet Burstiness (12).These 12 features capture
the size and number of tweet bursts. A burst ism
consecutive tweets where gaps between consecutive
tweets are at mostd minutes. For each user, we first
compute the maximum burst size (m) while varying
thresholdd from 0.5 to 1, 30, 60, 120, 1440. Then
we setd to 1 minute, and compute the number of
bursts while varying sizem over 2, 5, 10, 50, 100,
and 500.

• Tweeting Regularity (1).This is the entropy value
computed from each user’s tweeting time-intervals.

4.2 Classification Algorithms

With these features, we now build classifiers to detect
crowdturf accounts. We utilize a number of popular
algorithms widely used in security contexts, including
two Bayesian methods: Naive Bayesian (NB) [20] and
BayesNet (BN) [18]; two Support Vector Machine meth-
ods [33]: SVM with radial basis function kernel (SVMr)
and SVM with polynomial kernel (SVMp); and two
Tree-based methods: C4.5 Decision Tree (J487) [34] and
Random Forests (RF) [7]. We leverage existing imple-
mentations of these algorithms in WEKA [17] toolkits.

Classifier and Experimental Setup. We start by
constructing two experimental datasets, each contain-
ing all 28K turfing accounts, plus 28K randomly sam-
pled baseline users from the “authenticated” and “active”
sets. We refer to them asAuthenticated+TurfingandAc-
tive+Turfing.

We use a small sample of ground-truth data to tune the
parameters of different classifiers. At a high-level, we
use grid search to locate the optimized parameters based
on cross-validation accuracy. For brevity, we omit the
details of the parameter tuning process and give the final
configurations in Table 3. Note that features are normal-
ized for SVM algorithms (we tested unnormalized ap-
proach which produced higher errors). We use this con-
figuration for the rest of our experiments.

Basic Classification Performance. We run each clas-
sification algorithm on both experimental datasets with

7J48 is WEKA’s C4.5 implementation.
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Figure 8: Classification error rates. Tree-based algo-
rithms and SVMs outperform Bayesian methods.

10-fold cross-validation.8 Figure 8 presents their classi-
fication error rates, including false positives (classifying
normal users as crowdturf workers) and false negatives
(classifying crowdturf accounts as normal users).

We make four key observations. First, the two sim-
ple Bayesian methods generally perform worse than
other algorithms. Second, Decision Tree (J48) and Ran-
dom Forests (RF) are more accurate than SVMs. This
is consistent with prior results that show SVMs excel
in addressing high-dimension problems, while Tree al-
gorithms usually perform better when feature dimen-
sionality is low (35 in our case) [8]. Third, Random
Forests outperform Decision Tree. Intuitively, Random
Forests construct multiple decision trees from training
data, which can more accurately model the behaviors of
multiple types of crowdturf workers [7]. In contrast, de-
cision tree would have trouble fitting distinct types of
worker behaviors into a single tree. Finally, we observe
that the two experiment datasets show consistent results
in terms of relative accuracy across classifiers.

Comparing the two datasets, it is harder to differen-
tiate crowdturf workers fromactiveusers than fromau-
thenticatedusers. This is unsurprising, sinceauthenti-
catedaccounts often represent accounts of public figures,
while active users are more likely to be representative
of the normal user population. In the rest of the experi-
ments, wherever the two datasets show consistent results,
we only present the results onActive+Turfingfor brevity,
which captures the worse case accuracy for detectors.

4.3 Detecting Professional Workers

Our machine learning detectors are generally effective in
identifying worker accounts. However, the contribution
of tasks per worker is quite skewed,i.e. 90% of all tasks
are completed by the top 10% most active “professional”
workers (Figure 9). Intuitively, these “professional work-
ers” are easier to detect than one-time workers. By focus-

8Cross-validation is used to compare the performance of different
algorithms. We will split the data for training and testing the detectors
later.
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ing on them, we can potentially improve detection accu-
racy while still effectively eliminate the largest majority
of crowdturf output.

We evaluate classifier accuracy in detecting profes-
sional workers, by setting up a series of datasets each
consisting of workers who performed more thann tasks
(with n set to 1, 10, and 100). Each dataset also contains
an equal number of randomly sampled normal users. We
focus on the most accurate algorithms: Random Forests
(RF), Decision Tree (J48) and SVM (SVMr and SVMp),
and run 10-fold cross-validation on each of the datasets.

Figure 10 shows the classification results onAc-
tive+Turfing. As expected, our classifiers are more ac-
curate in identifying “professional” workers. Different
algorithms converge in accuracy as we raise the mini-
mum productivity of professional workers. Accuracy is
high for crowdturf workers who performed>100 tasks:
Random Forests only produce 1.2% false positive rate
and 1.1% false negative rate (99% accuracy). Note that
while these top workers are only 8.9% of the worker pop-
ulation, they are responsible for completing 90% of all
tasks. In the rest of the paper, we use “professional work-
ers” to refer to workers who have completed>100 tasks.

False Positives vs. False Negatives.In practice, differ-
ent application scenarios will seek different tradeoffs be-
tween false positives (FP) and false negatives (FN). For
example, a system used as a pre-filter before more so-
phisticated tools (e.g. manual examination) will want to
minimize FN, while an independent system without ad-
ditional checks will want to minimize false positives to
avoid hurting good users.

Figure 11 shows the ROC9 curves of the four algo-
rithms on the dataset of professional workers. Again,
Random Forests perform best: they achieve extremely
low false positive rate of<0.1% with only 8% false neg-
ative rate, or<0.1% false negative rate with only 7%
false positive rate. We note that SVMs provide better
false positive and false negative tradeoffs than J48, even

9ROC (receiver operating characteristic) is a plot that illustrates
classifier’s false positives and true positives versus detection threshold.

though they have similar accuracy rates.

Imbalanced Data. We check our results on imbalanced
data, since in practice there are more normal users than
crowdturf workers. More specifically, we run our clas-
sifier (RF, professional) on imbalancedtestingdata with
turfing-to-normal ratio ranging from 0.1 to 1. Note that
we can still train our classifiers on balancedtraining data
since we use supervised learning (we make sure training
and testing data have no overlap). We find all the classi-
fiers have accuracy above 98% (maximum FP 1.5%, FN
1.3%) against imbalanced testing data. We omit the plot
for brevity.

Summary. Our results show that current ML sys-
tems can be used to effectively detect crowdturf workers.
While this is a positive result, it assumes no adversarial
response from the crowdturfing system. The following
sections will examine detection efficacy under different
levels of adversarial attacks.

5 Adversarial Attack: Evasion

We show that ML detectors can effectively identify “pas-
sive” crowdturf accounts in Weibo. In practice, however,
crowdturfing adversaries can be highly adaptive: they
will change their behaviors over time or can even in-
tentionally attack the ML detectors to escape detection.
We now re-evaluate the robustness of ML detectors un-
der different adversarial environments, focusing on two
types of adversaries:

1. Evasion Attack: individual crowd-workers adjust
their behavior patterns to evade detection by trained
ML detectors.

2. Poisoning Attack: administrators of crowdturfing
sites participate, manipulating the ML detector
training process by poisoning the training data.

We focus on evasion attacks in this section, and de-
lay the study of poisoning attacks to §6. First, we define
the evasion attack model. We then implement evasion
attacks of different strengths, and study the performance



of ML detectors accordingly. Specifically, we consider
“optimal evasion” attacks, where adversaries have full
knowledge about the ML detectors and the Weibo sys-
tem, and more “practical” evasion attacks, where adver-
saries have limited knowledge about the detectors and
the Weibo system.

5.1 Basic Evasion Attack Model

Evasion attacks refer to individual crowdturfing workers
seeking to escape detection by altering their own behav-
ior to mimic normal users. For example, given knowl-
edge of a deployed machine learning classifier, a worker
may attempt to evade detection by selecting a subset of
user features, and replacing their values with themedian
of the observed normal user values. Since mimicking
normal users reduces crowdturfing efficiency, workers
are motivated to minimize the number of features they
modify. This means they need to identify a minimal core
set of features enabling their detection.10

This attack makes two assumptions.First, it assumes
that adversaries,i.e. workers, know the list of features
used by the classifiers. Technical publications,e.g. on
spam detection [4, 43, 50], make it possible for adver-
saries to make reasonable guesses on the feature space.
Second, it assumes that adversaries understand the char-
acteristics of normal users in terms of these features. In
practice, this knowledge can be obtained by crawling a
significant portion of Weibo accounts.

Depending on their knowledge of the ML features and
of normal user behavior, adversaries can launch evasion
attacks of different strengths. We implement and evalu-
ate ML models on a range of threat models with vary-
ing levels of adversary knowledge and computational ca-
pabilities. We start from theoptimal evasionscenario,
where adversaries havecompleteknowledge of the fea-
ture set. The corresponding ML detector results repre-
sent worst-case performance (or lower bound) under eva-
sion attacks. We also study a set ofpractical evasion
models where adversaries have limited (and often noisy)
knowledge, and constrained resources.

5.2 Optimal Evasion Attack

In this ideal case, adversaries have perfect knowledge
about the set of features they need to modify. To un-
derstand the impact of the feature choices, we look at
multiple variants of the optimal evasion models. These
include theper-worker optimal evasion model, where
each worker finds her own optimal set of features to alter,
theglobal optimal evasionwhere all workers follow the
same optimal set of features to alter, andfeature-aware
evasionwhere workers alter the most important features.

10For simplicity, we consider features to be independent.

We implement these evasion models on our ground-truth
dataset, and evaluate ML detector accuracy. Note that
these attacks we identify are not necessarily practical,
but are designed to explore worse-case scenarios for ML
models.

Per-worker Optimal Evasion. Intuitively, each
worker should have her own optimal strategy to alter
features,e.g. some workers need to add followers first,
while others need to reduce tweeting burstiness. Doing
so is hard in practice: each worker has to apply exhaus-
tive search to identify its optimal strategy that minimizes
the set of features to modify.

We implement this scenario on ourActive+Turfing
dataset. We first split the data into equal-sized training
and testing datasets, and use the top-4 most accurate al-
gorithms to build classifiers with authentic training data.
We then run detection on worker accounts in the testing
dataset. Here for each worker, we exhaustively test all
combinatorial combinations of possible features to mod-
ify until the classifier classifies this worker as normal. In
this way, we find the minimal set of features each user
must modify to avoid detection.

Figure 12(a) plots the evasion rate for the four ML
algorithms. Clearly, this optimal evasion model is
highly effective. By simply altering one feature, 20-50%
of workers can evade detection (different workers can
choose to alter different features). And by altering five
features, 99% of workers can evade all four classifiers.
We also observe that the Random Forests (RF) algorithm
achieves the best robustness, since it requires the most
number of features to be altered.

Global Optimal Evasion. The per-worker model
makes a strong assumption that each worker can iden-
tify her own optimal feature set. Next, we loosen this
assumption and only assume that all workers exercise a
uniform strategy. This is possible if a third-party (e.g.
site admin) guides workers in altering their features.

To identify the global optimal strategy, we search ex-
haustively through all possible feature combinations, and
locate the feature set (for a given size) that allows the ma-
jority of workers to achieve evasion. The corresponding
evasion rate result is in Figure 12(b). 99% of workers
can successfully evade all four detectors by altering 15
features, which is much larger than the per-worker case
(5 features). This is because any one-size-fits-all strat-
egy is unlikely to be ideal for individual workers, thus
the feature set must be large enough to cover all workers.

Feature-aware Evasion. Achieving optimal evasion is
difficult, since it requires adversaries to have knowledge
of the trained classifiers. Instead, this model assumes that
adversaries can accurately identify the relatively “impor-
tance” of the features. Thus workers alter the most im-
portant features to try to avoid detection.
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(c) Feature Importance Aware Evasion

Figure 12: Evasion rate of optimal evasion strategies (all workers).

We implement this attack by building the classifiers
and then computing the feature importance. For this we
use theχ2 (Chi Squared) statistic [51], a classic metric
to measure feature’s discriminative power in separating
data instances of different classes11. During detection,
workers alter features based on their rank.

Figure 12(c) plots evasion results for the four classi-
fiers. We make two key observations. First, this feature-
aware strategy is still far away from the per-worker op-
timal case (Figure 12(a)), mostly because it is trying
to approximate global optimal evasion. Second, perfor-
mance depends heavily on the underlying classifier. For
RF and J48, performance is already very close to that
of the global optimal case, while the two SVM algo-
rithms are more resilient. A possible explanation is that
theχ2 statistic failed to catch the true feature importance
for SVM, since SVM normalizes feature values before
training the classifier. These results suggest that without
knowing the specific ML algorithm used by the defend-
ers, it is hard to avoid detection even knowing the impor-
tance of features.

5.3 Evasion under Practical Constraints

Our results show workers can evade detection given com-
plete knowledge of the feature set and ML classifiers.
However, obtaining complete knowledge is very difficult
in practice. Thus we examinepractical evasion threat
models to understand their efficacy compared to optimal
evasion models. We identify practical constraints facing
adversaries, present several practical threat models and
evaluate their impact on our detectors.

Practical Constraints. In practice, adversaries face
two key resource constraints. First, they cannot reverse-
engineer the trained classifier (i.e. the ML algorithm
used or its model parameters) by querying the classifier
and analyzing the output – it is too costly to establish
millions of profiles with controlled features and wait for
some of them to get banned. Thus workers cannot per-

11We also tested information gain to rank features, which produced
similar ranking results (i.e. the same top-10 as usingχ2).

form exhaustive search to launch optimal evasion attacks,
but have to reply on their partial knowledge for evasion.
Second, it is difficult for adversaries to obtaincomplete
statistics of normal users. They can estimate normal user
statistics via a (small) sampling of user profiles, but esti-
mation errors are likely to reduce their ability to precisely
mimic normal users.

Next, we will examine each constraint separately, and
evaluate the likely effectiveness of attacks under the
more realistic conditions.

Distance-aware Evasion. We consider the first con-
straint which forces workers to rely onpartial knowl-
edge to guide their evasion efforts. In this case, individ-
ual workers are only aware of their own accounts and
normal user statistics. When choosing features to alter,
they can prioritize features with the largest differential
between them and normal users. They must quantify the
“distance” between each crowdturf account and normal
users on a given feature. Here, we pick two very intu-
itive distance metrics and examine the effectiveness of
the corresponding evasion attacks. For now, we ignore
the second constraint by assuming workers have perfect
knowledge of average user behaviors.

• Value Distance (VD):Given a featurek, this cap-
tures the distance between a crowd-workeri and
normal user statistics byVD(i,k)= |Fk(i)−Median(Nk)|

Max(Nk)−Min(Nk)

whereFk(i) is the value of featurek in workeri, and
Nk is normal user statistical distribution on feature
k. When altering featurek, worker i replacesFk(i)
with Median(Nk).

• Distribution Distance (DD): Here the distance
depends on whereFk(i) is positioned within
Nk. For example, if Fk(i) is around 50%-
tile of Nk, then worker i is similar to a nor-
mal user. Therefore, we define the distance by
DD(i,k) = |Percentile(Nk,Fk(i))− 50|/100 where
Percentile(Nk,Fk(i)) is the percentile ofFk(i) in the
normal user CDFNk. Note that whenFk(i) exceeds
the range ofNk, this distance metric becomes in-
valid. However, our data suggests that this rarely
happens (<1%).
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(a) Random Evasion Strategy (Random)
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(b) Value Distance Aware Strategy (VD)
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(c) Distribution Distance Aware Strategy (DD)

Figure 13: Evasion rate of practical evasion strategies (all workers).
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Figure 14: Evasion rate using distri-
bution distance aware strategy (DD)
for professional workers.
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Figure 15: The percentile ofesti-
matedmedian value in the true nor-
mal user CDF.
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Figure 16: Impact of median value es-
timation error on evasion rate, using
DD evasion on SVMp.

To evaluate the impact of practical evasion attacks,
we split theActive+Turfingdata into equal-sized train-
ing and testing sets. After classifier training, we sim-
ulate the distance-aware evasion attacks on the testing
data. Figure 13(b) and 13(c) show evasion rates based on
VD and DD respectively. As a baseline, we also show
Figure 13(a) where adversariesrandomlyselect features
to alter. Compared to random evasion, distance-based
approaches require much less feature altering. For ex-
ample, when altering 15 features, random approach only
saves<40% of workers, while distance strategies pro-
vide as high as 91% (VD-SVMp) and 98% (DD-SVMp).

The four classifiers perform very differently. RF and
J48 classifiers are much more vulnerable to DD based
evasion than to VD based evasion. While SVMs perform
similarly in both strategies. In general, Tree-based al-
gorithms are more robust than SVM classifiers against
distance-aware evasions. This is very different to what
we observed in the optimal evasion cases (Figure 12(a)–
12(b)), where SVMs are generally more robust. This
suggests that theoretical bounds on ML algorithms may
not truly reflect their performance in practice.

Consistently, the impact of practical evasion attacks
is much weaker than that of optimal evasion (i.e. per-
worker optimal). Adversaries are severely constrained by
lack of knowledge of detection boundaries of the classi-
fiers, and have to guess based on “distance” information.
The implication is that the less adversaries know about
classifiers, the harder it is for them to evade detection.

We also evaluate the attack impact on classifiers to de-
tect professional workers. We find the general trends are
similar and only show the results of DD-based attack in
Figure 14. We note that it is easier to evade classifiers
dedicated to detect professionals (compared with Fig-
ure 13(c)). This is because when trained to a smaller,
more homogeneous worker population, classifiers expect
strong malicious behaviors from crowd-workers. Thus
even a small deviation away from the model towards nor-
mal users will help achieve evasion.

Impact of Normal User Estimation Errors. We ex-
tend the above model by accounting for possible errors in
estimating normal user behaviors (the second constraint).
These errors exist because adversaries can only sample
a limited number of users, leading to noisy estimations.
Here, we investigate the impact of sampling strategies on
the attack efficacy.

For all 35 features, we vary the sampling rate,i.e. the
ratio of normal users sampled by adversaries, by taking
random samples of 0.001%, 0.01% to 0.1% of theActive
dataset. We repeat each instance 100 times, and com-
pute the mean and standard deviation of the estimated
median feature values (Figure 15). We show each fea-
ture’spercentilein the true CDF of theActivedataset. In
this case, the optimal value is 50%. Clearly sampling rate
does impact feature estimation. With the 0.001% sam-
pling rate, the estimated value varies significantly across
instances. Raising the sample rate to 0.1% means attack-
ers can accurately estimate the median value using only



a few instances. Furthermore, we see that burstiness fea-
tures (e.g. features 30-34) are easy to sample, since nor-
mal user values are highly skewed to zero.

Finally, we evaluate the impact of estimation errors
on practical evasion attacks. This time we run distance-
aware evasions based on theestimatedmedian feature
values. For each worker’s featurek, we estimate the me-
dian valueM′(k) with a given bound of error∆. That
is, M′(k) is randomly picked from the percentiles within
[50%−∆,50%+∆] on the true CDF of normal user be-
haviors. By iterating through different∆ (from 5% to
25%), our results show that∆ only has a minor impact.
The most noticeable impact is on SVMp using DD dis-
tance (Figure 16). Overall, we conclude that as long as
adversaries can get a decent guess on normal user be-
haviors, the residual noise in the estimation∆ should not
affect the efficacy of evasion attacks.

Summary. Our work produces two key observations.

• Given complete knowledge, evasion attacks are
very effective. However, adversaries under more re-
alistic constraints are significantly less effective.

• While no classifier is robust against all attack sce-
narios, there is a consistent inverse relationship be-
tween single model fitting accuracy and robustness
to adversarial evasion. Highly accurate fit to a
smaller, more homogeneous population (e.g. pro-
fessionals) makes models more vulnerable to eva-
sion attacks.

6 Adversarial Attack: Poisoning

After examining evasion attacks, we now look at how
centralized crowdturfing sites can launch more powerful
attacks to manipulate machine learning models. Specifi-
cally, we consider the poisoning attack where administra-
tors of crowdturfing sites intentionally pollute the train-
ing dataset used to build ML classifiers, forcing defend-
ers to produce inaccurate classifiers. Since the training
data (i.e. crowdturfing accounts) actually comes from
these crowdturfing sites, administrators are indeed capa-
ble of launching these attacks.

In the following, we examine the impact of poison-
ing attacks on ML detection accuracy. We consider two
mechanisms for polluting training data. The first method
directly adds misleading/synthetic samples to the train-
ing set. Adversaries in the second method simply alter
data records, or modify operational policies to alter the
composition of the training data used by ML models.

6.1 Injecting Misleading Samples

Perhaps the simplest way to pollute any training data is
to add misleading or false samples. In our case, since

the training data has two classes (groups) of accounts,
this can be done by mixing normal user samples into the
“turfing” class, i.e. poisoning the turfing class, or mix-
ing crowdturf samples into the “normal” user class,i.e.
poisoning the normal class. Both introduce incorrectly
labeled training data to mislead the classifier.

Poisoning Turfing Class. To poison the turfing class,
adversaries (e.g. ZBJ and SDH administrators) add nor-
mal Weibo accounts to the public submission records in
their own systems. Since ML classifiers take ground-
truth crowdturf accounts from those public records, these
benign accounts will then be mixed into the training data
and labeled as “turfing.” The result is a model that marks
some characteristics of normal users as crowdturfing be-
havior, likely increasing false positive rate in detection.

We simulate the attack with our ground-truth dataset.
At a high level, we train the classifiers on “polluted”
training data, and then examine changes in classifiers’
detection accuracy. Here we experiment with two strate-
gies to pollute the turfing class. First, as a baseline strat-
egy, adversariesrandomlyselect normal users as poison
samples to inject into the turfing class. Second, adver-
saries can injectspecifictypes of normal users, causing
the classifiers to producetargetedmistakes.
Random Poisoning: We simulate this poisoning at-
tack with Active+Turfingdataset, where adversaries in-
ject random normal accounts to the turfing class. Specif-
ically, for training, the turfing class (14K accounts) is a
mixture of crowdturf accounts and poison samples ran-
domly selected fromActive, with a mixing ratio of p.
The normal class is another 14K normal accounts from
Active. Then we use 28K of the rest accounts (14K turf-
ing and 14K normal users) for testing. For any givenp,
we repeat the experiment 10 times with different random
poison samples and training-testing partitions to compute
average detection rates.

Results are shown in Figure 17(b). As a baseline com-
parison, we also present the results of the classifiers for
professional workers in Figure 17(a). We have three ob-
servations. First, as poison-to-turfing ratiop increases,
false positive rates go up for all four algorithms. False
negative rates are not much affected by this attack, thus
are omitted from the plot.12 Second, we find that the
SVM classifiers are more resilient: SVMp’s false posi-
tive rate increases<5% asp approaching 1.0, while the
analogous increases exceed 10% for Random Forests and
J48. Particularly, J48 experiences more drastic fluctua-
tions around average, indicating it is very sensitive to the
choice of poison samples. This is consistent with our
prior observation that more accurate single model fitting
(i.e. J48 is more accurate than SVM) is more vulnerable
to adversarial attacks. Similarly, highly accurate detec-

12False negative rates increase< 2% whenp approaches 1.0.
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Figure 17: Poisoning training dataset by injecting random
normal user samples to the turfing class.
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(a) Injecting Accounts with> 50%
tweets commented
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(b) Injecting Accounts with< 150
followers

Figure 18: Targeted poisoning. Adversaries inject specific
type of normal users to the turfing class (all workers).

tion of the more homogeneous population of professional
workers (§4) means the models experience larger rela-
tive impacts from attacks compared to classifiers over all
workers.

Note that we limited the poison-to-turfing ratio<1,
since in practice adversaries cannot inject unlimited poi-
son samples to defender’s training data. First, injecting
noise causes inconvenience to their own customers in lo-
cating qualified workers. Second, defenders may collect
ground-truth records from multiple crowdturfing sites.
Targeted Poisoning: Next, we exploretargetedpoi-
soning to the turfing class. Here the adversaries want
to carefully inject selected poison samples so classifiers
make targeted mistakes. For example, our classifier uses
“ratio of commented tweets” as a feature with the intu-
ition that worker’s tweets rarely receive comments (§3).
Once adversaries gain this knowledge, they can inten-
tionally select accounts whose tweets often receive com-
ments as the poison samples. As a result, the trained
classifier will mistakenly learn that users with high com-
ment ratio can be malicious, thus are likely to misclassify
this kind of normal users as crowd-workers.

To evaluate the impact of targeted poisoning, we per-
form similar experiments, except that we select poison
samples based on specific feature. Figure 18 shows the
attacking results on two example features: ratio of tweets
with comments and follower count. Compared with Fig-
ure 17, targeted poisoning can trigger higher false posi-
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Figure 19: Poisoning training dataset by adding turfing
samples to normal class.

tives than randomly selecting poison samples. Also, the
previous observations still hold with SVM being more
robust and J48 experiencing unstable performance (large
deviation from average).

Poisoning Normal User Class. Next, we analyze the
other direction where adversaries inject turfing samples
into the “normal” class to boost thefalse negative rate
of classifiers. This may be challenging in practice since
the normal user pool – Weibo’s whole user population –
is extremely large. Hence it requires injecting a signifi-
cant amount of misleading samples in order to make an
impact. Here from defender’s perspective, we aim to un-
derstand how well different classifiers cope with “noisy”
normal user data.

We repeat the previous “Random Poisoning” attack on
the normal class. Figure 19(a) and Figure 19(b) show
the attack results on classifiers for professional workers
and all workers respectively. As we increase the ratio of
poison samples, the false negatives of all four classifiers
increase. This is expected as the classifiers will mistak-
enly learn crowdturf characteristics when modeling nor-
mal users, thus are likely to misclassify turfing accounts
as benign later. In addition, we find the robustness of dif-
ferent classifiers varies, with Random Forests algorithm
producing the lowest overall false negatives. Finally, we
again observe that the more accurate classifier for profes-
sional workers suffers larger relative impacts from adver-
saries than classifiers for all-workers.

6.2 Altering Training Data

The above poisoning attacks focus on misleading classi-
fiers to catch the wrong target. However, it does not fun-
damentally prevent crowd-workers from detection, since
workers’ behavior patterns are still very differently from
normal users. To this end, we explore a second poison-
ing attack, where adversaries directlyalter the training
data by tuning crowd-workers’ behavior to mimic normal
users. The goal is to make it difficult (or even impossi-
ble) to train an accurate classifier that isolates crowdturf
accounts with normal accounts.
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(a) Random Forests
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(b) J48
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Figure 20: Performance of different classifiers when adversaries alter crowd-workers’ features to mimic normal users.
The horizontal lines represent the baseline false positive(false negative) rates when no feature is altered.

To carry out this attack, adversaries (e.g. administra-
tors of ZBJ and SDH) need to modify the behaviors of
numerous crowdturf workers. This can be done by cen-
trally enforcing operational policies to their own system.
For example, enforcing minimal time interval between
taking tasks to reduce the tweeting burstiness or enforc-
ing screening mechanisms to reject worker accounts with
“malicious” profile features. In the following, we evalu-
ate the attack impact using simulations, followed by the
discussion of practical costs.

Feature Altering Attack. To simulate this attack, we
let adversaries select a set of featuresF of crowdturf ac-
counts and alterF to mimic the corresponding features
of normal users. Unlike evasion attacks that can sim-
ply mimic normal users’ median values, here we need
to mimic the whole distribution in order to make the two
classes indistinguishable on these features. Since the fea-
ture altering is for all workers in the crowdturfing sys-
tem, thus it actually applies to crowdturf accounts in both
training and testing datasets. Finally, note that features
are not completely independent,i.e. changing one fea-
ture may cause changes in others. To mitigate this, we
tune features under the same category simultaneously.

Figure 20 shows the attack results onTurfing+Active
dataset. We attack each feature category and repeat the
experiment for 10 times. Here we simulate attacking one
category at a time, and will discuss attacking category
combinations later. In general, the attack makes all clas-
sifiers produce higher error rates compared with baseline
where no feature is altered (the horizontal lines). How-
ever the impact is mild compared to injection-based poi-
soning attacks. For example, the most effective attack is
on J48 when altering interaction features, which causes
error rate increased by 4%, while injection-based attack
can boost error rate by more than 20% (Figure 18). One
possible reason is that unlike injection-based poisoning,
altering-based poisoning does not cause inconsistencies
in training and testing data, but only make the two classes
harder to separate.

Costs of Altering. In practice, feature altering comes
with costs, and some features may be impossible to ma-

Features Error Rate (FP %, FN %)
Attacked RF J48 SVMr SVMp
None (6.2, 3.4) (6.7, 6.8) (7.7, 10.1) (7.9, 12.1)
C+B (5.7, 4.4) (7.9, 8.7) (8.7, 12.2) (8.0, 14.0)
B+E (6.5, 3.9) (7.1, 7.8) (8.7, 12.5) (7.3, 13.1)
C+E (6.4, 4.5) (7.9, 8.2) (7.5, 11.8) (6.3, 13.8)
C+B+E (5.8, 4.2) (8.3, 8.5) (8.6, 13.2) (7.7, 15.2)

Table 4: Error rates when features are altered in combi-
nations. We focus on attacking low-cost features: Tweet
Client (C), Burstiness (B) and Entropy (E).

nipulate even by crowdturfing administrators. For in-
stance,Tweeting Regularity(Entropy) andBurstiness
features are easier to alter. Recall that crowdturfing sys-
tems can enforce minimal (random) time delay between
workers taking on new tasks, or use delays to increase
entropy. Changing theTweet Clientfeature is also pos-
sible, since crowdturfing systems can develop mobile
client software for their workers, or simply release tools
for workers to fake their tweeting clients.

ProfileandInteractionfeatures are more difficult to al-
ter. Some features are mandatory for common tasks. For
example, workers need to maintain a certain number of
followers in order to spread spam to reach large enough
audiences. In addition, some features are rooted in the
fact that crowd-workers don’t use their accounts organ-
ically, which, making it hard to generate normal user
interactions. Although, crowdturfing systems could po-
tentially use screening mechanisms to reject obviously-
malicious crowdturf accounts from their system. How-
ever, this high bar will greatly shrink the potential worker
population, and likely harm the system’s spam capacity.

Considering practical costs, we consider whether it is
more impactful to alter the combinations of features from
different categories. Here we focus on altering the low
cost features inTweet Client(C), Burstiness(B) andEn-
tropy (E). As shown in Table 4, attacking feature combi-
nations produces slightly higher error rates than attack-
ing a single feature category, but the overall effect is still
small (less than 4% error rate increase).



Summary and Discussion. Through our analysis, we
find that injecting misleading samples into training data
causes more significant errors than uniformly altering
worker behavior. In addition, we again observe the in-
verse relationship between single model fitting accuracy
and robustness.

To protect their workers, crowdturfing sites may also
try to apply stronger access control to their public records
in order to make training data unavailable for ML detec-
tors13. However, this creates obvious inconvenience for
crowdturfing sites, since they rely on these records to at-
tract new workers. Moreover, even if records were pri-
vate, defenders can still obtain training data by joining as
“customers,” offering tasks, and identifying accounts of
participating workers.

7 Related Work

Crowdturfing. Prior works used measurements on
crowdturfing sites to understand their operation and eco-
nomic structure [23, 24, 26, 48]. Some systems have
been developed to detect paid human spammers in on-
line review sites [31] and Q&A systems [9, 45]. To the
best of our knowledge, our work is the first to explore de-
tection of crowdturfing behaviors in adversarial settings.

OSN Spammer Detection. Researchers have de-
veloped mechanisms to detect fake accounts (Sybil)
and spam campaigns in online social networks, includ-
ing Facebook [15, 49], Twitter [43], Renren [52] and
LinkedIn [46]. Most prior works develop ML models
using features of spammer profiles (e.g. FFRatio, black-
listed URLs) or bot-like behaviors [4, 11, 42, 47, 50].
However, a recent study shows dedicated spam bots
can still infiltrate social networks without being de-
tected [14]. In our case, crowdturf accounts are care-
fully maintained by human users, and their questionable
activities are camouflaged with synthetic cover traffic.
This makes their detection challenging, until we add ad-
ditional behavioral features (e.g. user-interaction, task-
driven behavior).

Adversarial Machine Learning. In an early
study [19], researchers classify ML adversarial attacks
into two high-level categories:causativeattacks where
adversaries alter the training process to damage the clas-
sifier performance, andexploratory attacks where ad-
versaries try to circumvent an already-trained classi-
fier. Much of existing work focuses onexploratoryat-
tacks [5, 12, 25, 28] with less focusing oncausativeat-
tacks [6, 37], since it’s usually more difficult for adver-
saries to access training data in practice. In this paper, we

13As of late 2013, some crowdturfing sites (e.g. ZBJ) have already
started to follow this direction, by limiting access to public transaction
records to verified active participants.

studied both angles as both attacks are practically feasi-
ble from crowdturfing adversaries.

Several studies have examined attacks on specific ML-
based applications, from email spam detection [12] to
network intuition detection [37, 40, 44] to malicious
(PDF) file classification [5, 25, 41] and malware detec-
tion [21]. Our work focuses on crowdturfing and ex-
plores a wider range of adversarial attacks, including ac-
tive evasion and more powerful poison attacks against the
model training process.

8 Conclusion and Discussion

We use a large-scale ground truth dataset to develop ma-
chine learning models to detect malicious crowdsourcing
workers. We show that while crowdturfing workers re-
semble normal users in their profiles, ML models can ef-
fectively detect regular workers (95% accuracy) or “pro-
fessionals” (99% accuracy) using distinguishing features
such as user interactions and tweet dynamics.

More importantly, we use crowdturfing defense as
context to explore the robustness of ML algorithms
against adversarial attacks. We evaluate multiple adver-
sarial attack models targeting both training and testing
phases of ML detectors. We find that these attacks are
effective against all machine learning algorithms, and co-
ordinated attacks (such as those possible in crowdturfing
sites) are particularly effective. We also note a consistent
tradeoff where more accurate fits (especially to a smaller,
more homogeneous population) result in higher vulner-
ability to adversarial attacks. The exception appears to
be Random Forests, which often achieves both high ac-
curacy and robustness to adversaries, possibly due to its
natural support for multiple populations.

Limitations and Future Work. We note that our
study has several limitations. First, our analysis focuses
on Weibo, and our adversary scenarios may not gener-
alize fully to other platforms (e.g. review sites, instant
message networks). However, more work is necessary
to validate our findings on other platforms. Second, our
adversarial models use simplifying assumptions,i.e. fea-
tures are independent and costs for feature modification
are uniform. In addition, attackers may behave differ-
ently to disrupt the operation of ML detectors.

Moving forward, one goal is to validate our adversar-
ial models in practice, perhaps by carrying out a user-
study on crowdturfing sites where we ask workers to ac-
tively evade and disrupt ML detectors. In addition, our
results show we must explore approaches to improve the
robustness of ML-based systems. Our analysis showed
that ML algorithms react differently to different adver-
sarial attacks. Thus one possible direction is to develop
hybrid systems that integrate input from multiple classi-



fiers, ideally without affecting overall accuracy. We also
observe that limiting adversaries’ knowledge of the tar-
get system can greatly reduce their attack abilities. How
to effectively prevent adversaries from gaining knowl-
edge or reverse-engineering models is also a topic for
future work.
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