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Abstract (ML) techniques such as decision trees and support vec-
. . tor machines (SVMs) produces practical solutions to a
Recent WOI’k.In secun.ty and system; has empraceq th\‘?ariety of problems. In the security context, ML tech-
use O.f machme Iearmng_ (ML) techniques for _|dent|fy- niques can extract statistical models from large noisy
N9 mlsbehaV|ore.g. email spam and fake (Sybil) USETS jatasets, which have proven accurate in detecting mis-
n s_omal netwprks. However, ML models are t_ypl_cally behavior and attack®,g. email spam [35, 36], network
denv_ed fromfixed datas_ets, af_‘d must be periodically intrusion attacks [22, 54], and Internet worms [29]. More
retrained. In _ao_lversarl_al envm_)nments, attackers _Ca'?ecently, researchers have used them to model and detect
adapt by modn‘ymg_thew pe_hawor or even sabotagingp, jicious users in online servicesg. Sybils in social
ML mo_dels by polluting training data._ ) networks [42, 52], scammers in e-commerce sites [53]
In this papet, we perform an empirical study of ad- ad fraudulent reviewers on online review sites [31].

versarial attacks against machine learning models in the . . L
Despite a wide range of successful applications, ma-

context of detecting malicious crowdsourcing systems, , . . i
: . . . thine learning systems have a weakness: they are vulner-
where sites connect paying users with workers willing to

. . . able to adversarial countermeasures by attackers aware
carry out malicious campaigns. By using human work-

L of their use. First, through either reading publications
ers, these systems can easily circumvent deployed S8r self-experimentation, attackers may become aware of
curity mechanismsge.g. CAPTCHAs. We collect a P : y

o . . details of the ML detector.g. choice of classifier and
dataset of malicious workers actively performing tasks arameters used, and modify their behavicevadede-
on Weibo, China’s Twitter, and use it to develop ML- P ’

o : tection. Second, more powerful attackers can activel
based detectors. We show that traditional ML teChmque?amper with the ML modgls by polluting the training set y
04H—0004) | i i !
3;%2?;5{?; (:(?vﬁrsasargl) ;Ttsflz:aifcnlu%l:; ce;r: be h_'ghlyreducing or eliminating its efficacy. Adversarial machine
. . o ding st ple learning has been studied by prior work from a theoreti-
sion attackgworkers modify their behavior) and power-

ful poisoning attackgwhere administrators tamper with ;2!5?1?7:8Eiﬁgvaeb[gﬂtlazc,j\zlg,sgzgg ilr:nggc Zlggg&oﬁé ML
the training set). We quantify the robustness of ML clas- P 9

o . : . system in use. In reality, however, attackers are likely to
sifiers by evaluating them in a range of practical adver- 7. " . . .
. . . gain incomplete information or have partial control over
sarial models using ground truth data. Our analysis pro:
. . . . the system. An accurate assessment of the robustness of
vides a detailed look at practical adversarial attacks o

. "ML techniques requires evaluation undealistic thr
ML models, and helps defenders make informed deci- techniques requires evaluation undealistic threat

. . . . . models.
sions in the design and configuration of ML detectors. ode S_ )
In this work, we study the robustness of machine

learning models against practical adversarial attacks, in
1 Introduction the context of detecting malicious crowdsourcing activ-
ity. Malicious crowdsourcing, also called crowdturfing,

Today’s computing networks and services are extremel\?CCUrs when an _a;tacker pays a group of Internet users
complex systems with unpredictable interactions bel0 carry out malicious campaigns. Recent crowdturf-
tween numerous moving parts_ In the absence Of aclng attacks ranged from “artificial graSSI’OOtS" p0||t|Ca.|

curate deterministic models, applying Machine Learningt@mpaigns [32, 38], product promotions that spread false
rumors [10], to spam dissemination [13, 39]. Today,

10ur work received approval from our local IRB review board. these campaigns are growing in popularity in dedicated




crowdturfing sitese.g. ZhuBaJie (ZBJ and SanDaHa erful attacks are possible with the help of crowdturfing

(SDH)?, and generic crowdsourcing sites [26, 48].

site administrators, who can manipulate ML detectors by

The detection of crowdturfing activity is an ideal con- poisoningor polluting training data. We study the im-
text to study the impact of adversarial attacks on ma-act on different ML algorithms from two pollution at-
chine learning tools. First, crowdturfing is a growing tacks: injecting false data samples, and altering existing
threat to today’s online services. Because tasks are pe@lata samples.
formed by intelligent individuals, these attacks are unde- Our study makes four key contributions:

tectable by normal measures such as CAPTCHASs or rate
limits. The results of these tasks, fake blogs, slander-
ous reviews, fake social network accounts, are often in-
distinguishable from the real thing. Second, centralized
crowdturfing sites like ZBJ and SDH profit directly from
malicious crowdsourcing campaigns, and therefore have
strong monetary incentive and the capability to launch
adversarial attacks. These sites have the capability to
modify aggregate behavior of their users through inter-
face changes or explicit policies, thereby either helping
attackers evade detection or polluting data used as train-
ing input to ML models.

Datasets. For our analysis, we focus on Sina Weibo,
China’s microblogging network with more than 500 mil-
lion users, and a frequent target of crowdturfing cam-
paigns. Most campaigns involve paying users to retweet
spam messages or to follow a specific Weibo account.
We extract records of 20,416 crowdturfing campaigns
(1,012,923 tasks) published on confirmed crowdturfing
sites over the last 3 years. We then extract a 28,947
Weibo accounts belonging to crowdturfing workers. We
analyze distinguishing features of these accounts, and
build detectors using multiple ML models, including
SVMs, Bayesian, Decision Trees and Random Forests.

e We demonstrate the efficacy of ML models for de-

tecting crowdturfing activity. We find that Random
Forests perform best out of multiple classifiers, with
95% detection accuracy overall and 99% for “pro-
fessional” workers.

We develop adversarial models favasion at-
tacksranging from optimal evasion to more prac-
tical/limited strategies. We find while such attacks
can be very powerful in the optimal scenario (at-
tacker has total knowledge), practical attacks are
significantly less effective.

We evaluate a powerful class pbisonattacks on
ML training data and find thainjecting carefully
crafted data into training data can significantly re-
duce detection efficacy.

We observe a consistent tradeoff between fitting ac-
curacy and robustness to adversarial attacks. More
accurate fits (especially to smaller, homogeneous
populations) make models more vulnerable to de-
viations introduced by adversaries. The exception
is Random Forests, which naturally supports fitting
to multiple populations, thus allowing it to maintain
both accuracy and robustness in our tests.

We seek answers to several key questions. First, can 10 the best of our knowledge, this is the first study to

machine learning models detect crowdturfing activity?exami”e automated detection of large-scale crowdturf-
Second. once detectors are active. what are possibi@g activity, and the first to evaluate adversarial attacks

countermeasures available to attackers? Third, can ad@dainst machine learning models in this context.

Our

versaries successfully manipulate ML models by tamperf€Sults show that accurate models are often vulnerable
ing with training data, and if so, can such efforts succeed© adversarial attacks, and that robustness against attack

in practice, and which models are most vulnerable?

Adversarial Attack Models. We consider two types of

should be a primary concern when selecting ML models.

practical adversarial models against ML systems: thos€ Datasets and Methodology

launched by individualcrowd-workers and those in-

volving coordinated behavior driven by administrators of " this section, we provide background on crowdturfing,

centralizedcrowdturfing sites First, individual workers
can performevasiomattacks, by adapting behavior based
on their knowledge of the target classifierd. ML al-
gorithms, feature space, trained models). We identify a

and introduce our datasets and methodology.

2.1 Background: Crowdturfing Systems

range of threat models that vary the amount of knowI-MaI'C'ous crowdsourcing (crowdturfing) sites are web

edge by the adversary. The results should provide a Con,ﬁ_ervices wherg attackers pay groups.o.f human worker§ to
prehensive view of how vulnerable ML systems to eVa_perform guestionable (and often malicious) tasks. While

sion, ranging from the worst case (total knowledge by at_these services are growing rapidly world-wide, two of the

tacker) to more practically scenarios. Second, more pOWI_argest are Chinesg sites ZhuBalie (ZBJ) and. SanbaHa
(SDH) [48]. Both sites leave records of campaigns pub-

licly visible to recruit new workers, making it possible
for us to crawl their data for analysis.

2htt p: // ww. zhubaj i e. conl c- t ui guang/
Shtt p: / / www. sandaha. coml



Crowdturfing Sites Target Social Networks Category | # Weibo IDs | # (Re) Tweets| # Comments
Turfing 28,947 18,473,903 15,970,215
Authent. 71,890 7,600,715 13,985,118
Active 371,588 34,164,885 75,335,276

Table 1: Dataset summary.

Weibo accounts that accepted these tasks. This is possi-
ble because ZBJ and SDH keep complete records of cam-
paigns and transaction detaiise( workers who com-
pleted tasks, and their Weibo identities) visible.
As of March 2013, we collected a total of 20,416
Figure lillustrates how crowdturfing campaigns work. Weibo campaigns .(ov'er' 3years for ZBJ and SDH), with a
Initially, a customerposts a campaign onto the crowd- total of 1,012,923 individual tasks. We extracted 34,505

turfing site, and pays the site to carry it out. Each cam-Unique Weibo account IDs from these records. 5,558 of

paign is a collection of smatasks e.g. tasks to send Which have already been blocked by Weibo. We col-
or retweet messages advertising a malware giterkers lected user pr.oflles fpr the remaining 28,947 active ac-
accept the task, and use their fake accounts in the targgf)“nts' including social relationships and the latest 2000
social network(s) €.g. Twitter) to carry out the tasks. Weets from each account. These accounts have per-
Today, crowdturfing campaigns often spam web servicedormed at_ least one crowdturfing task. We refer to this
such as social networks, online review sites, and instan@S theTurfingdataset.

messaging networks [48]. While workers can be any In-Baseline Datasets for Comparison. We need a base-
ternet user willing to spam for profit, customers often re-line dataset of “normal” users for comparison. We start
quire workers to use *high quality” accounise( estab- by snowball sampling a large collection of Weibo ac-
lished accounts with real friends) to perform tasks [48].count$. We ran breadth-first search (BFS) in November
In the rest of the paper, we refer workers’ social network2012 using 100 Seeds randomly chosen from Weibo's
accounts asrowdturf accounts public tweet stream, giving us 723K accounts. Because
these crawled accounts can include malicious accounts,
we need to do further filtering to obtain a real set of “nor-
mal” users.

We extract two different baseline datasets. First, we
construct a conservativAuthenticateddataset, by in-
cial relationships. Unlike Twitter, Weibo allows users to qludlng only Welpp users who have undergone an op-
have conversations vVizommentsn a tweet. tlor!al identity ve_rlflcatlon by pho_ne nur_nber or Chinese

. . : o national 1D (equivalent to US drivers license). A user

Given its large user population, Weibo is a popular tar- . :

. . who has bound her Weibo account to her real-world iden-
get for crowdturfing systems. There are two major types

of crowdturfing campaigns. One type asks workers tot|ty can be held legally liable for her actions, making

follow a customer's Weibo account to boost their per_these authenticated accounts highly unlikely to be used
: : o I ._ as crowdturfing activity. OuAuthenticateddataset in-
ceived popularity and visibility in Weibo's ranked social
search. A second type pays crowd-workers to retwee ludes 71,890 accounts from our snowball sample. Sec-
spam n."nessa es or URLS to reach a large audience Bo%nd’ we construct a larger, more inclusive baseline set of
tp es of camgai ns directly violate Wei%o’s ToS [2]' A ctiveusers. We define this set as users with at least 50
yp paig rectly . == " followers and 10 tweets (filtering out dormant acco@ints
recent statement (April 2014) from a Weibo administra- . ;
tor shows that Weibo has already bequn to take actio r‘?md Sybil accounts with no followers). We also cross ref-
against crowdturfing spam [1] y beg erence these users against all known crowdturfing sites
g gsp ' to remove any worker accounts. The resulting dataset
includes 371,588 accounts. While it is not guaranteed to
2.2 Ground Truth and Baseline Datasets be 100% legitimate users, it provides a broader user sam-
ple that is more representative of average user behavior.

Figure 1: Crowdturfing process.

Crowdturfing on Weibo. Sina Weibo is China’s most
popular microblogging social network with over 500 mil-
lion users [30]. Like Twitter, Weibo users post 140-
charactetweets which can baetweetedy other users.
Users can alstollow each other to form asymmetric so-

Our study utilizes a largground-truthdataset of crowd- Z o

turfing worker accounts. We extract these accounts by Snowball crawls start from an initial set of seed nodes, amd r
. . readth-first search to find all reachable nodes in the sggh [3].
flltgrlng thr_OUQh records of all campaigns and tafSkS tar- - spormant accounts are unlikely to be workers. To qualify fargo
geting Weibo from ZBJ and SDH, and extracting all zBJ/SDH workers must meet minimum number of followers/tweets.
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Figure 2: Followee-to-Follower ratio. Figure 3: Reciprocity. Figure 4: Ratio of commented tweets.

This is likely to provide a lower bound for detector accu- mers [4, 43, 50]. Intuitively, spammers follow a large
racy, since more carefully curated baselines would pronumber of random users and hope for them to follow
duce higher detection accuracy. Our datasets are listed inack, thus they have high FFRatio and low reciprocity.

Table 1. However, our analysis shows worker accounts have bal-
anced FFRatios, the majority of them even have more
2.3 Our Methodology followers than followees (Figure 2), and their reciprocity

is very close to those of normal users (Figure 3). Other

We have two goals: evaluating the efficacy of ML clas- profile features are also ineffective, including account
sifiers to detect crowdturfing workers, and evaluating theage, tweets per day, ratio of tweets with URLs and men-
practical impact of adversarial attacks on ML classifiers.tions. For example, existing detectors usually assume
_ _ attackers create many “fresh” accounts to spam [4, 43],

e We analyze ground-truth data to identify key behav-ihus account age has potential. But we find that more
ioral features that distinguish crowdturfing worker nan 750 of worker accounts in our dataset have been

accounts from normal users (§3). active for at least one year.

° VYe use the;elfegtu:eg. to build a numbgr 81; POP- These results show that crowd-worker accounts in
ular ML models, including Bayesian probabilistic many respects resemble normal users, and are not eas-

models via Bayes’ theorem.€. conditional prob- ily detected by profile features alone [47].
ability), Support Vector Machines (SVMs), and al-

gorithms based on single or multiple decision treesUser Interactions.  Next, we move on to features re-
(e.g.Decision Trees, Random Forests) (§4). lated to user interactions. The intuition is that crowdturf
e We evaluate ML models against adversarial attack$VOrkers are task-driven, and log on to work on tasks, but
ranging from weak to strong based on level of SPe€nd minimaltime interacting with others. User interac-
knowledge by attackers (typically evasion attacks),lions in Weibo are dominated by comments and retweets.
and coordinated attacks potentially guided by cen-We perform analysis on both of them and find consistent

tralized administrators (possible poison or pollution results which show they are good metrics to distinguish
of training data). workers from non-workers. For brevity, we limit our dis-

cussion to results on comment interactions.

Figure 4 shows crowdturf accounts are less likely to
3 Profiling Crowdturf Workers receive comments on their tweets. For 80% of crowdturf
accounts, less than 20% of their tweets are commented,;
We begin our Study by Searching for behavioral fea-While for 70% of normal users, their ratio of commented
tures that distinguish worker accounts from normal userstweets exceeds 20%. This makes sense, as the fake con-
These features will be used to build ML detectors in §4. tent posted by crowdturf workers may not be interesting
User Profile Fields.  We start with user profile fea- enough for others to comment on. We gls_,o egamine the
tures commonly used as indicators of abnormal behav['umber Qf pepple that each user has bidirectional com-
ior. These features include followee-to-follower ratio ments W't.h (bl—commentorg). Cr;)wdturf workers "?“e'y
(FFRatio), reciprocity i(e. portion of user's followees interact W|tr_1 other users, with 66% of accounts having at
who follow back), user tweets per day, account age, anélnOSt one bi-commentor.
ratio of tweets with URLs and mentions. Tweeting Clients. Next we look at the use of tweeting
Unfortunately, our data shows that most of these fea<lients (devices). We can use the “device” field associ-
tures alone cannot effectively distinguish worker ac-ated with each tweet to infer how tweets are sent. Tweet
counts from normal users. First, FFRatio and reci-clients fall into four categories: web-based browsers,

procity are commonly used to identify malicious spam-apps on mobile devices, third-party account management
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Figure 5: Tweet client usage.

Categ. | Top Tweet Clients

Web Weibo Web, Weibo PC, 360Browser, Weibo Pro.
Mobile | iPhone, Android, iPad, XiaoMi

Auto PiPi, Good Nanny, AiTuiBao, Treasure Box
Share | Taobao, Youku, Sina Blog, Baidu

Table 2: High-level categories for tweeting clients.

tools, and third-party websites via “share” buttons (Ta-
ble 2). Figure 5 shows key differences in how differ-

Max # consecutive tweets with all intervals < d

Turfing === 0 ke
100 0

0.2

0.3 0.4 0.5
Entropy

0.6

Figure 6: Max size of tweeting burstFigure 7: Normalized entropy of
(thresholdd = 1 minute).

tweeting inter-arrival time.

low entropy indicates a regular process while high en-
tropy indicates randomness of tweeting. We treat each
user’s tweeting inter-arrival time as a random variable,
and compute the first-order entropy [16]. Figure 7 plots
user’s entropy, normalized by the largest entropy in our
dataset. Compared to normal users, crowdturf accounts
in general have lower entropy, indicating their tweeting
behaviors have stronger periodic patterns.

4 Detecting Crowdturfing Workers

ent users use tweet clients. First, crowdturf workers,ye o\, use the features we identified to build a number

use mobile (10%) much less than normal users (36%

of crowdturfing detectors using machine learning mod-

46%). One reason is that crowdturf workers rely on webg

Here, we summarize the set of features we use

browsers to interact with crowdturfing sites to get (Sub-¢, getection, and then build and evaluate a number of
mit) tasks and process payment, actions not supported by, chine-learning detectors using our ground-truth data.

most mobile platforms.
We also observe that crowdturf workers are more

likely to use automated tools. A close inspection shows"’-1 Key Features

that workers use these tools to automatically post nonyye chose for our ML detectors a set of 35 features across
spam tweets retrieved from a central content repositoryiye categories shown below.

(e.g. a collection of hot topics). Essentially, crowdturf
accounts use these generic tweets as cover traffic for their o
crowdturfing content. Third, crowdturf accounts “share”
from third-party websites more often, since that is a com-
mon request in crowdturfing tasks [48].

Temporal Behavior. Finally, we look at temporal char-
acteristics of tweeting behavior: tweet burstiness and pe-
riodicity. First, we expect task-driven workers to send
many tweets in a short time period. We look for poten-
tial bursts, where each burst is definedasonsecutive
tweets with inter-arrival timesc d. We examine each
user’s maximum burst sizenj with different time thresh-
oldsd, e.g. Figure 6 depicts the result fatis set to 1
minute. We find that crowdturf accounts are more likely
to post consecutive tweets within one-minute, something
rarely seen from normal users. In addition, crowdturf
workers are more likely to produce big bursesg. 10
consecutive tweets with less than one-minute interval).
Second, workers accept tasks periodically, which can

Profile Fields (9). We use 9 user profile fielfsas
features: follower count, followee count, followee-
to-follower ratio, reciprocity, total tweet count,
tweets per day, mentions per tweet, percent of
tweets with mentions, and percent of tweets with
embedded URLs.

User Interactions (8).We use 8 features based on
user interactionsi.e. comments and retweets. 4
features are based on user comments: percent of
tweets with comments, percent of all comments that
are outgoing, number of bi-commentors, and com-
ment h-index (a user with h-index bfhas at least
tweets each with at leaktcomments). We include

4 analogous retweet features.

Tweet Clients (5).We compute and use the % of
tweets sent from each tweet client type (web, mo-
bile, automated tools, third-party shares and others)
as a feature.

leave regular patterns in the timing of their tweets. We

6Although profile fieldsalone cannot effectively detect crowdturf

useentropyto characterize this regularity [16], where accounts (§3), they are still useful when combined with ofatures.



Alg. Settings

NB Default

BN Default, K2 function

SVMr | Kernely =1, Cost parameteéZ =100

SVMp | Kernel degre@ =3, Cost parametel =50
J48 Confidence facto€ =0.25, Instance/ledil =2
RF 20 trees, 30 features/tree
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Table 3: Classifier configurations.

Figure 8: Classification error rates. Tree-based algo-

e Tweet Burstiness (12)These 12 features capture fithms and SVMs outperform Bayesian methods.
the size and number of tweet bursts. A bursinis
consecutive tweets where gaps between consecuti
tweets are at most minutes. For each user, we first
compute the maximum burst siz@)(while varying
thresholdd from 0.5 to 1, 30, 60, 120, 1440. Then
we setd to 1 minute, and compute the number of

Vfo-fold cross-validatiof. Figure 8 presents their classi-
fication error rates, including false positives (classifyi
normal users as crowdturf workers) and false negatives
(classifying crowdturf accounts as normal users).

bursts while varying sizen over 2, 5, 10, 50, 100, We makg four key observations. First, the two sim-

ple Bayesian methods generally perform worse than
and 500. . -
. . L other algorithms. Second, Decision Tree (J48) and Ran-

o Tweeting Regularity (1).This is th? e”.”OpY value dom Forests (RF) are more accurate than SVMs. This

computed from each user's tweeting t|me—|ntervals.is consistent with prior results that show SVMs excel
in addressing high-dimension problems, while Tree al-

e . gorithms usually perform better when feature dimen-

4.2 Classification Algorithms sionality is low (35 in our case) [8]. Third, Random

With these features, we now build classifiers to deteciorests outperform Decision Tree. Intuitively, Random
crowdturf accounts. We utilize a number of popular Forests construct multiple decision trees from training
algorithms widely used in security contexts, including data, which can more accurately model the behaviors of
two Bayesian methods: Naive Bayesian (NB) [20] andMultiple types of crowdturf workers [7]. In contrast, de-
BayesNet (BN) [18]; two Support Vector Machine meth- cision tree would have trouble fitting distinct types of
ods [33]: SVM with radial basis function kernel (SVMr) Worker behaviors into a single tree. Finally, we observe
and SVM with polynomial kernel (SVMp); and two that the two experiment datasets show consistent results
Tree-based methods: C4.5 Decision Tree (Jf®1] and  in terms of relative accuracy across classifiers.

Random Forests (RF) [7]. We leverage existing imple- Comparing the two dataset_s, it is harder to differen-
mentations of these algorithms in WEKA [17] toolkits. tiate crowdturf workers fronactiveusers than fronau-

Classifier and Experimental Setup. ~ We start by thenticatedusers. This is unsurprising, sinegithenti-

constructing two experimental datasets, each Containc_:atedaccountsoften represent accounts of public figures,

ing all 28K turfing accounts, plus 28K randomly sam- while active users are more likely to be representative

pled baseline users from the “authenticated” and “active’pf the normal user population. In the rest of_the experi-
sets. We refer to them aithenticated+Turfin@ndAc- ments, wherever the two datasets show consistent results,

tive+Turfing we only present the results éwrtive+Turfingfor brevity,

We use a small sample of ground-truth data to tune théNh'Ch captures the worse case accuracy for detectors.

parameters of different classifiers. At a high-level, we . .
use grid search to locate the optimized parameters basel3 Detecting Professional Workers

on cross-validation accuracy. For brevity, we omit the hine | ing detect Iy effective |
details of the parameter tuning process and give the finaﬁ)ur machine jearning detectors are generatly efiective In

configurations in Table 3. Note that features are normal-Identlfylng worker accounts. However, the contribution

. . ; 0
ized for SVM algorithms (we tested unnormalized ap- of tasks per worker Is quite skewdd;. 90% of all tasks

proach which produced higher errors). We use this con?€ completed by the top 10% most active "professional”

figuration for the rest of our experiments. WoEkers (Flgure 9). Intuitively, thesg professional work

) o ers” are easier to detect than one-time workers. By focus-
Basic Classification Performance. We run each clas-
sification algorithm on both experimental datasets with ®Cross-validation is used to compare the performance of ifter

algorithms. We will split the data for training and testing thetectors
7J48 is WEKAs C4.5 implementation. later.
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Figure 9: % of Tasks finished by topFigure 10: Classifying different levelsFigure 11: ROC curves of classi-
% of workers. The majority of spamsof workers. Workers are filtered by #ying professional workers (workers
were produced by top active workersof crowdturfing tasks finished. who finished more than 100 tasks).

ing on them, we can potentially improve detection accu-though they have similar accuracy rates.

racy while still effectively eliminate the largest majgrit | mpalanced Data. We check our results on imbalanced
of crowdturf output. data, since in practice there are more normal users than
We evaluate classifier accuracy in detecting profescrowdturf workers. More specifically, we run our clas-
sional workers, by setting up a series of datasets eacsifier (RF, professional) on imbalancesstingdata with
consisting of workers who performed more thatasks  turfing-to-normal ratio ranging from 0.1 to 1. Note that
(with nset to 1, 10, and 100). Each dataset also containge can still train our classifiers on balandesining data
an equal number of randomly sampled normal users. Weince we use supervised learning (we make sure training
focus on the most accurate algorithms: Random Forestand testing data have no overlap). We find all the classi-
(RF), Decision Tree (J48) and SVM (SVMr and SVMp), fiers have accuracy above 98% (maximum FP 1.5%, FN
and run 10-fold cross-validation on each of the datasets1.394) against imbalanced testing data. We omit the plot
Figure 10 shows the classification results &a-  for brevity.
tive+Turfing As expected, our classifiers are more aC-gummary. Our results show that current ML sys-
curate in identifying “professional” workers. Different (o mnq can be used to effectively detect crowdturf workers.
algorithms converge in accuracy as we raise the miniyyhije this is a positive result, it assumes no adversarial
mum productivity of professional workers. Accuracy is response from the crowdturfing system. The following

high for crowdturf workers who performesl100 tasks:  ggctions will examine detection efficacy under different
Random Forests only produce 1.2% false positive rat§qye|s of adversarial attacks.

and 1.1% false negative rate (99% accuracy). Note that
while these top workers are only 8.9% of the worker pop- . .
ulation, they are responsible for completing 90% of all>  Adversarial Attack: Evasion

tasks. In the rest of the paper, we use “professional work- ) ) .
ers” to refer to workers who have completed00 tasks. V& Show that ML detectors can effectively identify “pas-
» ) ) ) sive” crowdturf accounts in Weibo. In practice, however,
False Positives vs. False Negativesin practice, differ- .\ qturfing adversaries can be highly adaptive: they
ent application scenarios will seek different tradeoffs be 4, change their behaviors over time or can even in-
tween false positives (FP) and false negatives (FN). Fofgniionally attack the ML detectors to escape detection.
example, a system used as a pre-filter before more sqyg oy re-evaluate the robustness of ML detectors un-

phisticated tools€.g. manual examination) will want o e gifferent adversarial environments, focusing on two
minimize FN, while an independent system without ad'types of adversaries:

ditional checks will want to minimize false positives to

avoid hurting good users. 1. Evasion Attack: individual crowd-workers adjust
Figure 11 shows the RGCcurves of the four algo- their behavior patterns to evade detection by trained

rithms on the dataset of professional workers. Again, ML detectors.

Random Forests perform best: they achieve extremely 2. Poisoning Attack: administrators of crowdturfing

low false positive rate 0£0.1% with only 8% false neg- sites participate, manipulating the ML detector

ative rate, or<0.1% false negative rate with only 7% training process by poisoning the training data.

false positive rate. We note that SVMs provide better

false positive and false negative tradeoffs than J48, even Ve focus on evasion attacks in this section, and de-
lay the study of poisoning attacks to §6. First, we define

ROC (receiver operating characteristic) is a plot thatstiates ~ the evaSion_ attack model. We then implement evasion
classifier's false positives and true positives versusatietethreshold.  attacks of different strengths, and study the performance




of ML detectors accordingly. Specifically, we consider We implement these evasion models on our ground-truth
“optimal evasion” attacks, where adversaries have fulldataset, and evaluate ML detector accuracy. Note that
knowledge about the ML detectors and the Weibo systhese attacks we identify are not necessarily practical,
tem, and more “practical” evasion attacks, where adverbut are designed to explore worse-case scenarios for ML
saries have limited knowledge about the detectors andhodels.

the Weibo system. Per-worker Optimal Evasion. Intuitively, each

worker should have her own optimal strategy to alter
5.1 Basic Evasion Attack Model featurese.g. some workers need to add followers first,

Evasi ttacks refer to individual dturfi K while others need to reduce tweeting burstiness. Doing
vasion atfacks refer to individual Crowaturting Workers o, 5 parq jn practice: each worker has to apply exhaus-

fseeklng.to. escape detection by altering thelr own behavﬂve search to identify its optimal strategy that minimizes
ior to mimic normal users. For example, given knowl-

edge of a deployed machine learning classifier aworke?he set of features to modify.
g ploy g ' We implement this scenario on odctive+Turfing

may attempt to evade detection by selecting a subset 0Jataset. We first split the data into equal-sized training

user features, and replacing their values withrttezlian .
P 9 and testing datasets, and use the top-4 most accurate al-

of the observed normal user values. Since mimicking_ . . o . . -
: - orithms to build classifiers with authentic training data.
normal users reduces crowdturfing efficiency, worker%v

are motivated to minimize the number of features theyd € then run detection on worker accounts in the testing

. . . : - ataset. Here for each worker, we exhaustively test all
modify. This means they need to identify a minimal core . . o :
. : ; combinatorial combinations of possible features to mod-
set of features enabling their detectith.

. o ify until the classifier classifies this worker as normal. In
This attack makes two assumptioristst, it assumes . : .
o . this way, we find the minimal set of features each user
that adversaried,e. workers, know the list of features

used by the classifiers. Technical publicatioagy. on must modify to avoid detection.

spam detection [4, 43, 50], make it possible for adver- Figur:e 12(a) lplotls thi.evasi(.)n rlate for the fOLO’Ir IM_L
saries to make reasonable guesses on the feature spa@!&qor't ms. Ceary, this opt'|ma evasion model 1S
ighly effective. By simply altering one feature, 20-50%

Secondit assumes that adversaries understand the chap-

acteristics of normal users in terms of these features. Iff WOrkers can evade detection (different workers can
choose to alter different features). And by altering five

ractice, this knowledge can be obtained by crawlin .
P g y g afeatures, 99% of workers can evade all four classifiers.

significant portion of Weibo accounts. )
Depending on their knowledge of the ML features ang"Ve also observe that the Random Forests (RF) algorithm

of normal user behavior, adversaries can launch evasioﬂCh'eves the best robustness, since it requires the most

attacks of different strengths. We implement and evaly"Umber of features to be altered.

ate ML models on a range of threat models with vary-Global Optimal Evasion. The per-worker model

ing levels of adversary knowledge and computational camakes a strong assumption that each worker can iden-
pabilities. We start from theptimal evasiorscenario, tify her own optimal feature set. Next, we loosen this
where adversaries hagampleteknowledge of the fea- assumption and only assume that all workers exercise a
ture set. The corresponding ML detector results repreuniform strategy. This is possible if a third-partg.g.
sent worst-case performance (or lower bound) under evasite admin) guides workers in altering their features.

sion attacks. We also study a setmfctical evasion To identify the global optimal strategy, we search ex-
models where adversaries have limited (and often noisyhaustively through all possible feature combinations, and
knowledge, and constrained resources. locate the feature set (for a given size) that allows the ma-
jority of workers to achieve evasion. The corresponding
5.2 Optimal Evasion Attack evasion rate result is in Figure 12(b). 99% of workers

can successfully evade all four detectors by altering 15
In this ideal case, adversaries have perfect knowledgéeatures, which is much larger than the per-worker case
about the set of features they need to modify. To un<5 features). This is because any one-size-fits-all strat-
derstand the impact of the feature choices, we look akgy is unlikely to be ideal for individual workers, thus

multiple variants of the optimal evasion models. Thesethe feature set must be large enough to cover all workers.
include theper-worker optimal evasion modelvhere

each worker finds her own optimal set of features to alter
the global optimal evasionvhere all workers follow the
same optimal set of features to alter, dadture-aware
evasionwvhere workers alter the most important features

Feature-aware Evasion. Achieving optimal evasion is
difficult, since it requires adversaries to have knowledge
of the trained classifiers. Instead, this model assumes that
adversaries can accurately identify the relatively “impor
‘tance” of the features. Thus workers alter the most im-
10F0r simplicity, we consider features to be independent. portant features to try to avoid detection.
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Figure 12: Evasion rate of optimal evasion strategies (atkers).

We implement this attack by building the classifiers form exhaustive search to launch optimal evasion attacks,
and then computing the feature importance. For this weéout have to reply on their partial knowledge for evasion.
use thex? (Chi Squared) statistic [51], a classic metric Second, it is difficult for adversaries to obtainmplete
to measure feature’s discriminative power in separatingtatistics of normal users. They can estimate normal user
data instances of different clases During detection,  statistics via a (small) sampling of user profiles, but esti-
workers alter features based on their rank. mation errors are likely to reduce their ability to precysel

Figure 12(c) plots evasion results for the four classi-mimic normal users.
fiers. We make two key observations. First, this feature- Next, we will examine each constraint separately, and
aware strategy is still far away from the per-worker op-evaluate the likely effectiveness of attacks under the
timal case (Figure 12(a)), mostly because it is tryingmore realistic conditions.
to approximate global optimal evasion. Second, perforpjstance-aware Evasion. We consider the first con-
mance depends heavily on the underlying classifier. FOL;aint which forces workers to rely guartial knowl-

RF and J48, performance is already very close t0 thalyge tg guide their evasion efforts. In this case, individ-
of the global optimal case, while the two SVM algo- 5 workers are only aware of their own accounts and
rithms are more resilient. A possible explanation is thaty o ma| yser statistics. When choosing features to alter,
the x? statistic failed to catch the true feature importancethey can prioritize features with the largest differential
for SVM, since SVM normalizes feature values beforeyanveen them and normal users. They must quantify the
training the classifier. These results suggest that withoUtyisiance” between each crowdturf account and normal
knovyipg the specifi_c ML alg_orithm used b)_/ the de_fend- users on a given feature. Here, we pick two very intu-
ers, itis hard to avoid detection even knowing the impor-sjye distance metrics and examine the effectiveness of
tance of features. the corresponding evasion attacks. For now, we ignore
the second constraint by assuming workers have perfect

5.3 Evasion under Practical Constraints knowledge of average user behaviors.

Our results show workers can evade detection given com- ® Value Dlsta_nce (VD)Given a featurek, this cap-
plete knowledge of the feature set and ML classifiers. ks d|stan_cg betwegn a Cro‘ﬁvqmgg( E,'i,md
However. obtainin : o normal user statistics BYD(i, k) = M
: g complete knowledge is very difficult Max(Ni) —Min(N)

in practice. Thus we examingractical evasion threat whereR(i) is the value of featurkin workeri, and
models to understand their efficacy compared to optimal Nk is normal user statistical distribution on feature
evasion models. We identify practical constraints facing K- When altering featurk, workeri replaces(i)
adversaries, present several practical threat models and ~ With Median(Ny).
evaluate their impact on our detectors. e Distribution Distance (DD): Here the distance
depends on wherer (i) is positioned within
Nk. For example, if /(i) is around 50%-
tile of Ny, then workeri is similar to a nor-
mal user. Therefore, we define the distance by
DD(i,k) = |PercentiléNy, F(i)) — 50//100 where
PercentiléNy, F(i)) is the percentile oF(i) in the
normal user CDMg. Note that wheri(i) exceeds
the range ofl\k, this distance metric becomes in-

e also tested information gain to rank features, which predu valid. However, our data suggests that this rarely
similar ranking resultsi . the same top-10 as using). happens<1%).

Practical Constraints.  In practice, adversaries face
two key resource constraints. First, they cannot reverse-
engineer the trained classifiere( the ML algorithm
used or its model parameters) by querying the classifier
and analyzing the output — it is too costly to establish
millions of profiles with controlled features and wait for
some of them to get banned. Thus workers cannot per-
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bution distance aware strategy (DDpatedmedian value in the true nor-timation error on evasion rate, using
for professional workers. mal user CDF. DD evasion on SVMp.

To evaluate the impact of practical evasion attacks, We also evaluate the attack impact on classifiers to de-
we split theActive+Turfingdata into equal-sized train- tect professional workers. We find the general trends are
ing and testing sets. After classifier training, we sim-similar and only show the results of DD-based attack in
ulate the distance-aware evasion attacks on the testingigure 14. We note that it is easier to evade classifiers
data. Figure 13(b) and 13(c) show evasion rates based aledicated to detect professionals (compared with Fig-
VD and DD respectively. As a baseline, we also showure 13(c)). This is because when trained to a smaller,
Figure 13(a) where adversariendomlyselect features more homogeneous worker population, classifiers expect
to alter. Compared to random evasion, distance-basestrong malicious behaviors from crowd-workers. Thus
approaches require much less feature altering. For exeven a small deviation away from the model towards nor-
ample, when altering 15 features, random approach onlynal users will help achieve evasion.
saves<40% of workers, while distance strategies pro- Impact of Normal User Estimation Errors.  We ex-

1 i 0, - 0, -
vide as high as 91% (VD-SVMp) and 98% (DD-SVMp). tend the above model by accounting for possible errors in

The four classifiers perform very differently. RF and estimating normal user behaviors (the second constraint).
J48 classifiers are much more vulnerable to DD basedhese errors exist because adversaries can only sample
evasion than to VD based evasion. While SVMs performa limited number of users, leading to noisy estimations.
similarly in both strategies. In general, Tree-based alHere, we investigate the impact of sampling strategies on
gorithms are more robust than SVM classifiers againsthe attack efficacy.
distance-aware evasions. This is very different to what
we observed in the optimal evasion cases (Figure 12(a)
12(b)), where SVMs are generally more robust. This

For all 35 features, we vary the sampling rate, the
ratio of normal users sampled by adversaries, by taking
random samples of 0.001%, 0.01% to 0.1% ofAlctive
Yataset. We repeat each instance 100 times, and com-
pute the mean and standard deviation of the estimated
Consistently, the impact of practical evasion attacksmedian feature values (Figure 15). We show each fea-
is much weaker than that of optimal evasiomr.( per-  ture’spercentilein the true CDF of thé\ctivedataset. In
worker optimal). Adversaries are severely constrained bythis case, the optimal value is 50%. Clearly sampling rate
lack of knowledge of detection boundaries of the classi-does impact feature estimation. With the 0.001% sam-
fiers, and have to guess based on “distance” informatiorpling rate, the estimated value varies significantly across
The implication is that the less adversaries know aboutnstances. Raising the sample rate to 0.1% means attack-
classifiers, the harder it is for them to evade detection. ers can accurately estimate the median value using only

not truly reflect their performance in practice.



a few instances. Furthermore, we see that burstiness fe#he training data has two classes (groups) of accounts,
tures €.g.features 30-34) are easy to sample, since northis can be done by mixing normal user samples into the
mal user values are highly skewed to zero. “turfing” class,i.e. poisoning the turfing class, or mix-
Finally, we evaluate the impact of estimation errorsing crowdturf samples into the “normal” user clags,
on practical evasion attacks. This time we run distancepoisoning the normal class. Both introduce incorrectly
aware evasions based on tbstimatedmedian feature labeled training data to mislead the classifier.
values. For each worker's featukewe estimate the me-  poisoning Turfing Class. To poison the turfing class,
dian valueM’(k) with a given bound of errod. That  yersariese.g. ZBJ and SDH administrators) add nor-
is, M'(k) is randomly picked from the percentiles within 5| \weibo accounts to the public submission records in
[50%-— A,50%-+ 4] on the true CDF of normal user be- heir own systems. Since ML classifiers take ground-
haviors. By iterating through differer (from 5% t0 ¢t crowdturf accounts from those public records, these
25%), our results show thi only has a minor impact.  penign accounts will then be mixed into the training data
The most noticeable impact is on SVMp using DD dis- 5nq |abeled as “turfing.” The result is a model that marks
tance (Figure 16). Overall, we conclude that as long agome characteristics of normal users as crowdturfing be-
adversaries can get a decent guess on normal user bgayior, Jikely increasing false positive rate in detection
haviors, the residual noise in the estimatbshould not v simylate the attack with our ground-truth dataset.
affect the efficacy of evasion attacks. At a high level, we train the classifiers on “polluted”
Summary. Our work produces two key observations.  training data, and then examine changes in classifiers’

e Given complete knowledge, evasion attacks aredetection accuracy. Here we experiment with two strate-
very effective. However, adversaries under more regies to pollute the turfing class. First, as a baseline strat-
alistic constraints are significantly less effective. ~ €9Y, adversariemandomlyselect normal users as poison

e While no classifier is robust against all attack Sce_sar_nples to.|r.11ect mt_o. the turfing class. Second, a(_:iver—
narios, there is a consistent inverse relationship beS2r€s can injecspecifictypes of normal users, causing

tween single model fitting accuracy and robustnesdn® classifiers to produdargetedmistakes.
to adversarial evasion. Highly accurate fit to a Random Poisoning: We simulate this poisoning at-
smaller, more homogeneous populati@ng( pro- tack with Active+Turfingdataset, where adversaries in-

fessionals) makes models more vulnerable to eval€ct random normal accounts to the turfing class. Specif-
sion attacks. ically, for training, the turfing class (14K accounts) is a
mixture of crowdturf accounts and poison samples ran-
domly selected fromActive with a mixing ratio ofp.
6 Adversarial Attack: Poisoning The normal class is another 14K normal accounts from
Active Then we use 28K of the rest accounts (14K turf-
After examining evasion attacks, we now look at howing and 14K normal users) for testing. For any giygn
centralized crowdturfing sites can launch more powerfulwe repeat the experiment 10 times with different random
attacks to manipulate machine learning models. Specifipoison samples and training-testing partitions to compute
cally, we consider the poisoning attack where administraaverage detection rates.
tors of crowdturfing sites intentionally pollute the train-  Results are shown in Figure 17(b). As a baseline com-
ing dataset used to build ML classifiers, forcing defend-parison, we also present the results of the classifiers for
ers to produce inaccurate classifiers. Since the trainingrofessional workers in Figure 17(a). We have three ob-
data {.e. crowdturfing accounts) actually comes from servations. First, as poison-to-turfing rapdncreases,
these crowdturfing sites, administrators are indeed capdalse positive rates go up for all four algorithms. False
ble of launching these attacks. negative rates are not much affected by this attack, thus
In the following, we examine the impact of poison- are omitted from the plo Second, we find that the
ing attacks on ML detection accuracy. We consider twoSVM classifiers are more resilient: SVMp’s false posi-
mechanisms for polluting training data. The first methodtive rate increases5% asp approaching 1.0, while the
directly adds misleading/synthetic samples to the train-analogous increases exceed 10% for Random Forests and
ing set. Adversaries in the second method simply alteg48. Particularly, J48 experiences more drastic fluctua-
data records, or modify operational policies to alter thetions around average, indicating it is very sensitive to the
composition of the training data used by ML models.  choice of poison samples. This is consistent with our
prior observation that more accurate single model fitting
6.1 Injecting Misleading Samples (i.e. J48 is more accurate than SVM) is more vulnerable

) o _to adversarial attacks. Similarly, highly accurate detec-
Perhaps the simplest way to pollute any training data is

to add misleading or false samples. In our case, since ?False negative rates increase% whenp approaches 1.0.
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Figure 17: Poisoning training dataset by injecting randorfRigure 19: Poisoning training dataset by adding turfing
normal user samples to the turfing class. samples to normal class.

w| R i tives than randomly selecting poison samples. Also, the
» S 4 previous observations still hold with SVM being more

robust and J48 experiencing unstable performance (large
deviation from average).

False Positive Rate (%)

False Positive Rate (%)
N
v

H Poisoning Normal User Class. Next, we analyze the
oo 01 t 0oL 01 ! other direction where adversaries inject turfing samples

Ratio of Poison-to-Turfing Ratio of Poison-to-Turfing . « ” R
o ) o ) into the “normal” class to boost thialse negative rate
(a) Injecting Accounts with> 50% (b) Injecting Accounts with< 150 e . . . . .
tweets commented followers of classifiers. This may be challenging in practice since

the normal user pool — Weibo’s whole user population —
Figure 18: Targeted poisoning. Adversaries inject specifi§ €xtremely large. Hence it requires injecting a signifi-
type of normal users to the turfing class (all workers). ~cant amount of misleading samples in order to make an

impact. Here from defender’s perspective, we aim to un-

derstand how well different classifiers cope with “noisy”
tion of the more homogeneous population of professionahormal user data.
workers (84) means the models experience larger rela- We repeat the previous “Random Poisoning” attack on
tive impacts from attacks compared to classifiers over althe normal class. Figure 19(a) and Figure 19(b) show
workers. the attack results on classifiers for professional workers

Note that we limited the poison-to-turfing ratiol,  and all workers respectively. As we increase the ratio of
since in practice adversaries cannot inject unlimited poi{poison samples, the false negatives of all four classifiers
son samples to defender’s training data. First, injectingncrease. This is expected as the classifiers will mistak-
noise causes inconvenience to their own customers in loenly learn crowdturf characteristics when modeling nor-
cating qualified workers. Second, defenders may collecmal users, thus are likely to misclassify turfing accounts
ground-truth records from multiple crowdturfing sites.  as benign later. In addition, we find the robustness of dif-
Targeted Poisoning: Next, we exploreargetedpoi-  ferent classifiers varies, with Random Forests algorithm
soning to the turfing class. Here the adversaries wanroducing the lowest overall false negatives. Finally, we
to carefully inject selected poison samples so classifier@gain observe that the more accurate classifier for profes-
make targeted mistakes. For example, our classifier usedonal workers suffers larger relative impacts from adver-
“ratio of commented tweets” as a feature with the intu-saries than classifiers for all-workers.
ition that worker’s tweets rarely receive comments (83).
ane adversaries gain this knowledge, they can inten6_2 Altering Training Data
tionally select accounts whose tweets often receive com-
ments as the poison samples. As a result, the traine@the above poisoning attacks focus on misleading classi-
classifier will mistakenly learn that users with high com- fiers to catch the wrong target. However, it does not fun-
ment ratio can be malicious, thus are likely to misclassifydamentally prevent crowd-workers from detection, since
this kind of normal users as crowd-workers. workers’ behavior patterns are still very differently from
To evaluate the impact of targeted poisoning, we pernormal users. To this end, we explore a second poison-

form similar experiments, except that we select poisoning attack, where adversaries direcéiter the training
samples based on specific feature. Figure 18 shows thaata by tuning crowd-workers’ behavior to mimic normal
attacking results on two example features: ratio of tweetsisers. The goal is to make it difficult (or even impossi-
with comments and follower count. Compared with Fig- ble) to train an accurate classifier that isolates crowdturf
ure 17, targeted poisoning can trigger higher false posiaccounts with normal accounts.
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Figure 20: Performance of different classifiers when adrgs alter crowd-workers’ features to mimic normal users.
The horizontal lines represent the baseline false podialse negative) rates when no feature is altered.

To carry out this attack, adversariesd. administra- Features Error Rate (FP %, FN %)
tors of ZBJ and SDH) need to modify the behaviors of| Attacked | RF J48 SVMr SVMp
numerous crowdturf workers. This can be done by cent None (6.2,34)| (6.7,6.8)| (7.7,10.1)| (7.9,12.1)
trally enforcing operational policies to their own system.| ¢+B (5.7,4.4)| (7.9,8.7)| (8.7,12.2)| (8.0,14.0)
For example, enforcing minimal time interval between (B::'é Eg'i’ jg; g; ;g Eg; ﬁg; gg géi
_taklng task_s to reduce_ the tweeting burstiness or enforc-C+B+E (5.8: 4.2) (8'3: 8.5) (8.6: 13.2) (7.7: 15.2)
ing screening mechanisms to reject worker accounts with

“malicious” profile features. In the following, we evalu-

ate the attack impact using simulations, followed by theTable 4: Error rates when features are altered in combi-
discussion of practical costs. nations. We focus on attacking low-cost features: Tweet

Feature Altering Attack.  To simulate this attack, we Client (C), Burstiness (B) and Entropy (E).
let adversaries select a set of featuresf crowdturf ac-

counts and alteF to mimic the corresponding features nipulate even by crowdturfing administrators. For in-

of normal users. Unlike evasion attacks that can sim- : . .
- . : tance, Tweeting RegularityEntropy) andBurstiness
ply mimic normal users’ median values, here we needfS

- SRR eatures are easier to alter. Recall that crowdturfing sys-
to mimic the whole distribution in order to make the two - . gy
e . tems can enforce minimal (random) time delay between
classes indistinguishable on these features. Since the fea . .

L ; . workers taking on new tasks, or use delays to increase
ture altering is for all workers in the crowdturfing sys-

tem, thus it actually applies to crowdturf accounts in bothentropy. Changing théweet Clienfieature is also pos-

. . . ibl i i I il
training and testing datasets. Finally, note that fea\turegIb €, since crowdturfing systems can develop mobile

. . : Client software for their workers, or simply release tools
are not completely independeng. changing one fea-

ture may cause changes in others. To mitigate this W(faorworkers to fake their tweeting clients.
Y g : 9 ' Profile andinteractionfeatures are more difficult to al-

tune features under the same category simultaneously.
gory Y- ter. Some features are mandatory for common tasks. For

Figure 20 shows the attack results dwrfing+Active oy ample workers need to maintain a certain number of
dataset. We attack each feature category and repeat théy o vers in order to spread spam to reach large enough
experiment for 10 times. Here we simulate attacking one, jiences. In addition, some features are rooted in the

category at a time, and will discuss attacking category, ot that crowd-workers don't use their accounts organ-
combinations later. In general, the attack makes all Clasl'cally which, making it hard to generate normal user

sifiers produce higher error rates compared with base"”%teractions. Although, crowdturfing systems could po-

where no feature is altered (the horizontal lines). HoW-yopiially use screening mechanisms to reject obviously-

ever the impact is mild compared to injection-based poi-,5jicious crowdturf accounts from their system. How-

soning attacks. qu ex_ample, _the most effectiv_e attack i%ver, this high bar will greatly shrink the potential worker
on J48 When altering |nteract|o_n f_ea_ture_zs, which Causeﬁopulation, and likely harm the system’s spam capacity.
error rate increased by 4%, while injection-based attack Considering practical costs, we consider whether it is

can boost error rate by more than 20% (Figure 18). On'?nore impactful to alter the combinations of features from

possible reason is that unlike injection-based pOisoningdifferent categories. Here we focus on altering the low
altering-based poisoning does not cause inconsistenci%%St features ifweet Clien(C), BurstinesgB) andEn-
in training and testing data, but only make the two Classe?ropy(E). As shown in Table 4’ attacking feature combi-
harder to separate. '

nations produces slightly higher error rates than attack-
Costs of Altering.  In practice, feature altering comes ing a single feature category, but the overall effect i$ stil
with costs, and some features may be impossible to masmall (less than 4% error rate increase).



Summary and Discussion. Through our analysis, we studied both angles as both attacks are practically feasi-
find that injecting misleading samples into training datable from crowdturfing adversaries.
causes more significant errors than uniformly altering Several studies have examined attacks on specific ML-
worker behavior. In addition, we again observe the in-based applications, from email spam detection [12] to
verse relationship between single model fitting accuracyetwork intuition detection [37, 40, 44] to malicious
and robustness. (PDF) file classification [5, 25, 41] and malware detec-
To protect their workers, crowdturfing sites may alsotion [21]. Our work focuses on crowdturfing and ex-
try to apply stronger access control to their public recordlores a wider range of adversarial attacks, including ac-
in order to make training data unavailable for ML detec-tive evasion and more powerful poison attacks against the
tors'. However, this creates obvious inconvenience formodel training process.
crowdturfing sites, since they rely on these records to at-
tract new workers. Moreover, even if records were pri-
vate, defenders can still obtain training data by joiningas3 Conclusion and Discussion
“customers,” offering tasks, and identifying accounts of
participating workers. We use a large-scale ground truth dataset to develop ma-
chine learning models to detect malicious crowdsourcing
workers. We show that while crowdturfing workers re-
semble normal users in their profiles, ML models can ef-
fectively detect regular workers (95% accuracy) or “pro-
Crowdturfing.  Prior works used measurements on fessjonals” (99% accuracy) using distinguishing features
crowdturfing sites to understand their operation and ecogch as user interactions and tweet dynamics.
nomic structure [23, 24, 26, 48].  Some systems have \jore importantly, we use crowdturfing defense as
been developed to detect paid human spammers in ORyntext to explore the robustness of ML algorithms
line review sites [31] and Q&A systems [9, 45]. To the ygainst adversarial attacks. We evaluate multiple adver-
best of our knowledge, our work is the first to explore de-g4ria| attack models targeting both training and testing
tection of crowdturfing behaviors in adversarial settings.pf1ases of ML detectors. We find that these attacks are
OSN Spammer Detection. Researchers have de- effective against all machine learning algorithms, and co-
veloped mechanisms to detect fake accounts (Sybilprdinated attacks (such as those possible in crowdturfing
and spam campaigns in online social networks, includsites) are particularly effective. We also note a conststen
ing Facebook [15, 49], Twitter [43], Renren [52] and tradeoff where more accurate fits (especially to a smaller,
LinkedIn [46]. Most prior works develop ML models more homogeneous population) result in higher vulner-
using features of spammer profilesd. FFRatio, black-  ability to adversarial attacks. The exception appears to
listed URLS) or bot-like behaviors [4, 11, 42, 47, 50]. be Random Forests, which often achieves both high ac-
However, a recent study shows dedicated spam botsuracy and robustness to adversaries, possibly due to its
can still infiltrate social networks without being de- natural support for multiple populations.
tected [14]. In our case, crowdturf accounts are carey;mnitations and Future Work. We note that our
fully maintained by human users, and their questionableyy,,qy has several limitations. First, our analysis focuses

act.ivities are cgmouflaged with syr_1thetic gover traf'fic.on Weibo, and our adversary scenarios may not gener-
This makes their detection challenging, until we add ad-yjiz¢ fylly to other platformsd.g. review sites, instant

dit.ional behayioral feature®(g. user-interaction, task- message networks). However, more work is necessary
driven behavior). to validate our findings on other platforms. Second, our
Adversarial Machine Learning. In an early adversarial models use simplifying assumptioses fea-
study [19], researchers classify ML adversarial attacksures are independent and costs for feature modification
into two high-level categoriescausativeattacks where are uniform. In addition, attackers may behave differ-
adversaries alter the training process to damage the claently to disrupt the operation of ML detectors.
sifier performance, anexploratory attacks where ad-  Moving forward, one goal is to validate our adversar-
versaries try to circumvent an already-trained classijal models in practice, perhaps by carrying out a user-
fier. Much of existing work focuses oexploratoryat-  study on crowdturfing sites where we ask workers to ac-
tacks [5, 12, 25, 28] with less focusing causativeat-  tively evade and disrupt ML detectors. In addition, our
tacks [6, 37], since it's usually more difficult for adver- results show we must explore approaches to improve the
saries to access training data in practice. In this paper, Wepbustness of ML-based systems. Our analysis showed
13As of late 2013, some crowdturfing sitesq. ZBJ) have already thaF ML algorithms react diffe.rently. to d.iﬁer.em adver-
started to follow this direction, by limiting access to putiiansaction ~ Sarial attacks. Thus one possible direction is to develop
records to verified active participants. hybrid systems that integrate input from multiple classi-

7 Related Work




fiers, ideally without affecting overall accuracy. We also[12] DALvI, N., DOMINGOS, P., MAUSAM, SANGHAI, S.,

observe that limiting adversaries’ knowledge of the tar-

get system can greatly reduce their attack abilities. How
to effectively prevent adversaries from gaining knowl- [13]
edge or reverse-engineering models is also a topic for
future work.
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