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Reputation systems help establish social control in peer-to-peer networks. To be truly effective, however, a reputation system should
counter attacks that compromise the reliability of user ratings. Existing reputation approaches either average a peer’s lifetime rat-
ings or account for rating credibility by weighing each piece of feedback by the reputation of its source. While these systems improve
cooperation in a P2P network, they are extremely vulnerable to unfair ratings attacks. In this paper, we recommend that reputation
systems decouple a peer’s service provider reputation from its service recommender reputation, thereby, making reputations more
resistant to tampering. We propose a scalable approach to system-wide decoupled service and feedback reputations and demon-
strate the effectiveness of our model against previous nondecoupled reputation approaches. Our results indicate that decoupled
approache significantly improves reputation accuracy, resulting in more successful transactions. Furthermore, we demonstrate the
effectiveness and scalability of our decoupled approach as compared to PeerTrust, an alternative mechanism proposed for decou-
pled reputations. Our results are compiled from comprehensive logs collected from Maze, a large file-sharing system with over 1.4
million users supporting searches on 226TB of data.
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1. INTRODUCTION

The explosive growth of Internet connections in the last
decade has resulted in an increase in the use and popularity
of online peer-to-peer (P2P) communities. While the growth
of these communities advances distributed applications like
file transfer, remote storage, and computation, it is becom-
ing increasingly critical to manage trust relationships in or-
der to improve the performance of these applications. Large-
scale P2P communities, like Gnutella [1], rely on cooper-
ation among network peers. These communities, however,
neither enforce cooperation nor centrally control peers. Peers
are anonymous and self-interested, behaving only in their
best interests. While this open nature of a P2P community
is increasing the number of participating peers, it also makes
these communities extremely difficult to police and vulnera-
ble to attacks, thereby reducing the performance of the net-
work.

As a popular P2P network, Gnutella is susceptible to a
variety of attacks. One common attack is “whitewashing,”
where a free-riding node repeatedly joins the network un-
der a new identity in order to avoid the penalties imposed
on free-riders. A more serious attack is when dishonest peers

distribute viruses and Trojan horses hidden as files. The
VBS.Gnutella worm, for example, stores Trojan-horse exe-
cutable files on network peers [2]. Meanwhile, a Gnutella
worm called Mandragora registers itself as an active peer in
the network, and provides a renamed copy of itself for down-
load in response to intercepted queries [3]. Finally, dishonest
peers often pass corrupted or blank files as legitimate con-
tent.

In order to reduce transaction risks and improve per-
formance, P2P networks need to motivate cooperation and
honest participation within their networks. Reputation sys-
tems help address this need by establishing a trust mecha-
nism that enables peers to decide who to trust before un-
dertaking a transaction. The predictive power of reputation
assumes that a peer’s past behavior is indicative of its future
behavior. Feedback from all the peers that have previously in-
teracted with a peer are aggregated to compute the first peer’s
reputation. Such a reputation mechanism, consequently, en-
ables a community to police itself in order to establish social
control.

A large amount of literature confirms the fact that rep-
utation systems are an effective means of social control [3–
9]. Within the bounds of their assumptions, these systems
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demonstrate the ability to significantly reduce the number
of malicious transactions and improve cooperation in a net-
work. Despite these proposals, designing a robust and reli-
able reputation system is still largely an open challenge. The
trust model used in existing reputation systems is extremely
vulnerable to misleading or unfair feedback.

The challenge, therefore, lies in building a reputation sys-
tem that is effective despite attacks that compromise the re-
liability of feedback. Most existing reputation systems either
average a peer’s lifetime ratings, resulting in the “increased
trust by increased volume” vulnerability, or correlate service
trust to imply feedback trust. The latter assumes that peers
reputed to provide trustworthy service, in general, provide
trustworthy feedback. While useful as a simple defense, such
an assumption can easily fail or be manipulated. For exam-
ple, colluding nodes can offer honest service for the express
purpose of boosting their reputations so they can badmouth
other peers. Countering false feedback attacks is a critical
challenge that needs to be addressed to improve the perfor-
mance of reputation systems, and consequently, peer-to-peer
networks.

With this research challenge in mind, this paper offers
three contributions. First, we discuss the various types of
false feedback (or rating) attacks that can compromise exist-
ing reputation systems. We then discuss different reputation-
based trust approaches that have been proposed for P2P net-
works and analyze their ability to overcome these false rat-
ing attacks. Next, we describe our scalable globally decou-
pled reputation model, which decouples each per-user repu-
tation rating into a service rating and a feedback rating. The
credibility of a peer’s feedback in our model is weighed by
its reputation as a service recommender, and not as a ser-
vice provider. Finally, we use extensive evaluations to com-
pare our trust model against some of the existing approaches,
including the approach of averaging lifetime ratings, the cou-
pled trust approach, and PeerTrust’s personalized similarity
trust metric, a system that employs a similar decoupled trust
policy [10]. Our simulations show that decoupled trust mod-
els provide significantly more accurate reputations by detect-
ing and isolating malicious peers. We also demonstrate the
effectiveness and scalability of our decoupled system on peer
traces gathered from Maze, a large scale peer-to-peer file-
sharing system.

The remainder of the paper is organized as follows. We
begin by identifying related work in Section 2. In Section 3,
we describe our decoupled trust model and present our repu-
tation system. Next, we classify unfair ratings attacks and dis-
cuss some reputation-based approaches employed to counter
these attacks in Section 4. Our experimental evaluations in
Section 5 perform detailed comparisons of our proposed
trust model with respect to the different reputation models
and different unfair ratings attacks discussed in Section 4. We
evaluate our system using trace-driven simulations from the
Maze file-sharing system in Section 6. Furthermore, we em-
ploy the Maze logs to compare the PeerTrust decoupled algo-
rithm and our decoupling approach and highlight some vul-
nerabilities inherent to PeerTrust. Finally, we discuss impli-
cations of our system in Section 7 and conclude in Section 8.

2. RELATED WORK

Significant prior work has shown that reputation systems, if
reliable, can effectively motivate trustworthiness and cooper-
ation [3, 5, 7–13]. Reputation systems can build trust mod-
els using two approaches. One approach is to use only first-
hand information to evaluate peers. While highly reliable, a
firsthand-only approach does not employ all reputation in-
formation available in the network, making it highly ineffi-
cient and unscalable. Firsthand information proves sufficient
if a peer locates honest service providers with which it repeat-
edly transacts [14].

Almost all reputation systems use global information,
that is, peers aggregate opinions of all other peers that have
interacted with them in the past. While global reputations are
efficient and help to quickly detect misbehavior in the sys-
tem, they are vulnerable to false ratings and collusion. One
technique that incorporates global information is a simple
averaging or summarizing of ratings. EBay, the largest online
auction site, uses a reputation-based trust scheme where, af-
ter each transaction, buyers and sellers rate each other using
the Feedback Forum [15]. Because EBay uses a central author-
ity to manage all communication and coordination between
peers, it essentially eliminates much of the complexity that
exists in a decentralized system.

Simple summarizing schemes, in general, are highly vul-
nerable to malicious participants that increase their trans-
action volume to hide frequent misbehavior. A peer could
increase its trust value by increasing its transaction volume,
thereby hiding the fact that it frequently misbehaves at a cer-
tain rate. For example, a peer could undertake a thousand
good transactions of low value (say, worth $1) and use the
accumulated good reputation towards one dishonest trans-
action of high value (say, worth $1000). Additionally, if all
ratings are given an equal weight, Sybil attacks and collusion
are encouraged.

Therefore, to incorporate global information effectively,
trust models must account for the credibility of the service
raters using different trust propagation mechanisms. Exam-
ples include transitive trust, coupled trust, or decoupled trust.
The underlying principle of transitive trust is if A trusts B
and B trusts C, then it is likely that A trusts C. Reputation
systems employ such web-of-trust chains to establish and
propagate trust among peers. In general, longer chains im-
ply greater risk of encountering a malicious link. Schemes
like weighing ratings of a transitive chain by the reputation
of the least reputed peer in the chain [16], employing a node
distrust table [6], and using pretrusted peers [8] have been
proposed.

Coupled trust approaches assume that peers reputed to
provide trustworthy service, in general, will be likely to pro-
vide trustworthy feedback. We cite two well-known exam-
ples of reputation systems that rely on the correlated trust
assumption. Aberer and Despotovic propose a decentralized
reputation system for P2P networks where data is stored on
a P-Grid [5]. Their system assumes that most network peers
are honest, and reputations in the system are expressed as
complaints. EigenTrust is a reputation system for P2P net-
works designed to combat the spread of fake files [8]. Each
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peer is associated with a global trust value that reflects the
experiences of all other peers with it. These values are used as
a metric of reliability when choosing download sources.

Alternatively, some systems make use of decoupled trust,
which involves using separate metrics to evaluate service
trust and feedback trust [10, 11]. To decouple feedback trust
from service trust in PeerTrust [10, 17], peers use a person-
alized similarity measure to more heavily weigh opinions of
peers who have provided similar ratings for a common set of
past partners. In a large P2P system, however, finding a sta-
tistically significant set of such past partners is a challenge.
Peers are likely to make choices among a set of candidates
for which there is no information. In Section 6.3, we empir-
ically demonstrate how this lack of trust data information
can impact the effectiveness and scalability of PeerTrust in its
computation of trust values.

Confidant, another decoupled trust mechanism, attacks
the problem of false ratings using a Bayesian approach in a
mobile ad hoc network [11]. They distinguish between repu-
tation, which they define as how well a node behaves in rout-
ing, and trust, which is how well it behaves in the reputa-
tion system. A node distributes only firsthand information
to other nodes and only accepts other firsthand information
if those opinions are similar to its own opinion. Compared to
Confidant, where a node’s referral is interpreted subjectively
per node, our proposal produces a system-wide referrer rat-
ing per node.

Reputation ratings are normally associated with peers.
But in some cases, a reputation rating is associated with a re-
source, for example, a file in a file-sharing P2P network [18].
Damiani et al. present a detailed discussion on the advan-
tages and disadvantages of employing a pure resource-based
or peer-based reputation and propose combining both rep-
utations [3]. Storage overheads are substantially higher be-
cause the number of resources in any system tends to be sig-
nificantly larger than the number of peers. Also, it is often
not possible for a single resource to be widespread enough
to have a sufficient number of raters for it. Credence [18]
overcomes this problem by employing a web-of-trust in the
absence of direct observations.

3. OUR SCALABLE DECOUPLED TRUST MODEL

We now discuss our decoupled reputation framework and
describe the trust model used to update reputation ratings.

3.1. Reputation propagation framework

Our reputation system associates two sets of reputation rat-
ings with each peer: an aggregated service rating (SR) and an
aggregated feedback rating (FR). The service rating indicates
a peer’s trustworthiness as a service provider, for example, a
peer’s overall file-sharing behavior in a P2P file-sharing sys-
tem. The feedback rating of a peer indicates its overall trust-
worthiness as a service recommender. Additionally, each peer
maintains a list of peers that has rated it and the ratings pro-
vided by them. Service reputations are normalized values be-
tween 0.0 and 1.0 with 1.0 indicating a perfect service repu-
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Figure 1: Decoupling service and feedback reputation: after inter-
acting with B, peer A modifies B’s service reputation and also mod-
ifies the feedback reputations of B’s previous raters, C and D.

tation. Similarly, feedback reputations are normalized values
that range from 0.0 and 1.0 with 1.0 indicating a perfect rater.
Initially, SR and FR are set to 1.0 for all peers.

Consider a peer,A, that queries for a file. In order to make
a decision about which responding peer with which to trans-
act, A chooses the peer with the highest aggregated service
rating. While this choice can result in an unbalanced load
distribution in the network, a probabilistic approach can be
employed to distribute load [8]. After finishing a transaction
with service provider B, A provides B with either a rating of
0 (unsatisfactory) or 1 (satisfactory), depending on the out-
come. This rating is weighted by FR(A), that is, the feedback
rating of A. This weighting implies that A needs to be wellre-
puted as a feedback provider in order for its opinions to have
an effect on B’s service reputation. In other words, feedback
from peers with higher feedback trust ratings will have more
impact than those with lower feedback ratings. While we cur-
rently employ binary ratings to rate transaction outcomes,
our design framework works for complex ratings schemes as
well. For example, subjective ratings like Very Good, Good,
OK, Bad, Very Bad can be mapped to quantitative rating val-
ues.

At the end of the transaction, A also needs to send feed-
back rating updates to all peers that had rated B earlier. A
provides a rating of 1 to all peers that rated B with a value
consistent with A’s firsthand experience. In the case where
the outcome of A’s transaction with B did not match with a
prior service rating, A generates a feedback rating of 0 to the
originator of the rating. This rating is in turn weighted by A’s
feedback rating. This process is shown in Figure 1, where A
interacts with B, updates B’s service reputation, and updates
the feedback ratings of C and D, who contributed to B’s ser-
vice reputation.

Feedback reputations pose additional storage and man-
agement overhead. By maintaining reputation information
for only a window of recent transactions, the amount of
overheads can be controlled. Our experiments in Section 5
demonstrate that the increase in reputation accuracy justifies
this additional storage overhead.

We do not explicitly address storage and communication
issues in our model, since they are largely orthogonal to our
problem of decoupling reputation. Our trust model would
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work with a number of different storage models. For exam-
ple, peers can compute and maintain their reputations in
a self-storing model [9]. While digital signatures and time
stamps need to be built into the reputation system to en-
sure validity and integrity of the reputation data, such local
storage schemes ensure data availability, thus eliminating the
problem of a reputation storer being offline while the target
is online. Alternatively, peer reputations can be stored and
computed independently by third parties using distributed
hash table- (DHT-) based approaches [5, 8]. The dissemina-
tion of reputations can leverage the communication protocol
of the peer-to-peer network [3] or employ lookup schemes
for structured storage [10].

3.2. The trust model

In this section, we formalize our trust metric for updating
service and feedback reputations.

Our trust model is based on peer evaluation. Each peer
observes two kinds of peer evaluations: service rating(s) af-
ter it serves as a service provider and feedback rating(s) af-
ter it provides service evaluations. For each transaction be-
tween two peers (i, j), where i represents the service provider
and j represents the service requester, we define the following
terms:

(i) transaction rating (si, j): j’s firsthand observation of i’s
service for their most recent transaction (0: unsatisfac-
tory, 1: satisfactory);

(ii) transaction set, Ti: let |Ti| represent the cardinality of
the set of peers that have transacted with peer i;

(iii) peer i’s average service rating, SR(i): the life-time aver-
age rating of i based on peer evaluation;

(iv) peer j’s average feedback rating, FR( j): the life-time av-
erage rating on j’s feedback. In other words, this value
is the average credibility of j’s feedback on service sat-
isfaction.

For each peer, i, its average service rating is an average of
all the firsthand observations provided by peers with which it
transacted, weighted by their individual feedback credibility.
That is,

SR(i) = 1
∣
∣Ti

∣
∣
·
∑

j∈Ti

si, j · FR( j). (1)

Like the service rating, each peer’s feedback credibility is
based on peer evaluation. In particular, at the end of each
transaction (i, j), the service requester, j, not only sends feed-
back on i’s service, but also updates feedback ratings of all
peers that have previously transacted and rated i.

We define fk, j as the feedback rating of k by j based on
j’s current transaction with i and k’s most recent transaction
with i. If the service ratings are consistent, j rates k’s feedback
helpful or malicious. That is,

fk, j =
⎧

⎨

⎩

1, si, j = si,k,

0, si, j �= si,k.
(2)

The overall (average) feedback rating of k is the average
of the most recent feedback ratings from its peers, weighed
by their feedback credibility. The derivation is as follows:

FR(k) = 1
∣
∣T

f
k

∣
∣
·
∑

j∈T f
k

fk, j · FR( j), (3)

where T
f
k represents the set of peers that have provided feed-

back ratings for k.
In this way, we incorporate peer evaluations on both the

service provider and the requester in the computation of
trust values making them robust to peer maliciousness.

3.3. Handling dynamic peer personalities

In our proposed trust metric, a peer’s service or feedback rat-
ing is an aggregation of all the firsthand service or feedback
observations it has received in its lifetime. This long-term
aggregation makes our reputation system slow to react to
changes in a peer’s “personality.” A peer can establish a good
reputation in order to behave badly, without the results sig-
nificantly impacting its reputation. In addition, honest peers
can be subverted at any time by attackers and begin behav-
ing badly. Therefore, peer reputations must be representative
of more recent behavior rather than old ratings. To address
the issue of dynamic behavior, we employ a simple window-
based adaptation of our metric, a technique similar to that of
PeerTrust [10].

We define the following:

(a) peer i’s reference service rating, SRref(i): i’s service rating
averaged over the set ofM recent transactions.1 That is,

SRref(i) = 1
M

M
∑

m=1

SRm(i), (4)

where SRm(i) represents i’s average service rating af-
ter the (M − m)th most recent transactions provided
by i. SRref(i) provides a guideline to regulate i’s dy-
namic behavior. In particular, the following actions are
performed (in order) after each transaction with i:

SR(i) = 1
∣
∣Ti

∣
∣
·
∑

j∈Ti

si, j · FR( j)

{calculate average service rating},

SRref(i) = 1
M

M
∑

m=1

SRm(i)

{calculate reference service rating},

SR(i) =
⎧

⎨

⎩

SRref(i), SR(i)− SRref(i) > ε
SR(i), otherwise

1 M is a design parameter. We assume that, in our system, transactions oc-
cur periodically. Hence, M also directly relates to the length of the average
time window.
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{check whether performance has dropped recently},
SRm+1(i) = SRm(i), m = 1 · · ·M − 1

{update ratings over M recent transactions},
SR1(i) = SR(i); (5)

(b) peer j’s reference feedback rating, FRref( j): j’s service
rating averaged over the set of M recent feedback rat-
ings provided to j. FRref( j) is derived in a manner sim-
ilar to SRref(i).

In (3.3), if SRref(i) is smaller than SR(i) by a specified
threshold ε, it means that a peer’s performance has dropped
significantly within some recent time frame. In this case,
SRref(i) is assigned as the peer’s new reputation rating. This
time-based adaptation allows reputations to be more sensi-
tive to recent behavior and helps our system to quickly adapt
to changes in peer behavior. This approach proves particu-
larly adept in counteracting oscillating peers who alternate
between honest and dishonest behavior in order to build and
abuse good reputations.

4. SAFEGUARDING REPUTATIONS

The reliability of reputation systems is compromised by a
variety of attacks. In this section, we discuss some impor-
tant attacks to reputations, namely, unfair ratings attacks, dy-
namic peer personalities, and collusion. We also discuss three
statistical-based approaches, namely, conventional, coupled,
and decoupled PeerTrust PSM, used to safeguard reputation
systems. Our experimental evaluations in Section 5 offer a
detailed comparison of our proposed trust model with the
three reputation models and with respect to the different rep-
utation attacks discussed in this section.

4.1. Attacks to reputation systems

(i) Unfair ratings. An honest peer is one that is honest in pro-
viding service recommendations to other peers. A malicious
peer, on the other hand, tries to subvert a system by falsely
rating a bad transaction as good, and vice versa. This behav-
ior could be due to jealousy, competition, or other malicious
reasons. A malicious peer with a static personality (e.g., al-
ways behaving badly) is easily detected in the network. A
strategic peer, on the other hand, is a malicious peer that may
choose to behave honestly with some probability, in order to
confuse other peers and cheat the reputation system.

(ii) Dynamic (oscillating) peer personalities. Some peers
can exhibit a dynamic personality, that is, switching between
an honest and dishonest behavior. Behavior changes can be
based on the type or value of the transaction or the party
involved at the other end. Reputation milkers, or oscillating
peers, are one type of peer personality that builds a good rep-
utation and then takes advantage of it to do harm.

(iii) Collusion. Dellarocas identifies four scenarios in
which peers can intentionally try to “rig the system,” result-
ing in biased reputation estimates [19]. In ballot stuffing, a
colluding group inflates the colluder’s reputation which then
allows the colluder to use its good reputation towards other
malicious motives. Similarly, in badmouthing, a malicious

collective conspires against one or more peers in the network
by assigning unfairly low ratings to the target peers, thereby,
hurting their reputation. Finally, positive (and negative) dis-
crimination arises when peers provide good (and poor) ser-
vice to a few targeted peers. Controlled anonymity has been
shown to avoid badmouthing and negative discrimination,
while cluster filtering can be used to reduce ballot stuffing
and positive discrimination [19].

(iv) Sybil attacks. Douceur has shown that unless there is
a centrally trusted party, it is impractical to establish distinct
identities (i.e., one identity for one entity) in a large-scale
decentralized network [20]. There are no certificate author-
ities in a P2P network, and peers are free to generate their
own identities. This availability of free identities results in
the whitewashing attack, where a free-riding malicious peer
rejoins the network under a new identity to avoid imposed
penalties on its behavior. A peer can also generate a large
number of identities or “Sybils” to maliciously increase the
reputation of one or more of its identities. Sybil-proofing rep-
utation systems is an open challenge to current reputation
systems [21].

Current reputation schemes are highly vulnerable to
tampering via ratings attacks including the above-mentioned
unfair ratings attacks, collusion, and Sybil attacks. These vul-
nerabilities limit the reliability of reputations in predicting
a peer’s trustworthiness. By decoupling each per-peer repu-
tation rating into a service rating and a feedback rating, a
peer is accountable for its behavior both as a service provider
and service recommender. Assuming that a majority of net-
work peers are honest in nature, malicious peers that provide
poor ratings to honest peers will have little agreement with
the network as a whole. Their feedback credibility, conse-
quently, will be low. In order to cheat the reputation system,
an intelligent (or strategic) malicious peer may occasionally
concur with the network majority and rate an honest peer
correctly, thereby, getting itself a good feedback reputation.
But, by ensuring that a good feedback and service reputa-
tion is difficult to gain and easy to lose, our decoupled trust
approach forces a strategic malicious peer (or an oscillating
peer) to constantly rebuild its reputation rating. A malicious
peer spends a greater amount of time rebuilding its reputa-
tion rather than performing malicious transactions. In gen-
eral, a greater number of feedback disagreements with honest
peers results in a more rapid decline in maliciously acquired
reputations. This discourages peers from providing incorrect
service and feedback reputation ratings.

Similarly, a collusive group will give good ratings to peers
within the group and false ratings to the outside network.
Even one transaction with an honest peer, however, can bring
down the service reputation of the malicious service provider
and feedback reputations of the collusive group. Honest
peers not only rate a colluding peer poorly for bad service,
but also rate other colluding peers poorly for their incorrect
feedback. A greater number of interactions with honest peers
outside the colluding group results in a more rapid decline of
reputations within the group. Additionally, by ensuring that
a good reputation is difficult to gain and easy to lose, a ma-
licious peer spends a greater amount of time colluding and
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rebuilding its reputation rating rather than performing ma-
licious transactions. Therefore, by reducing the productivity
of unfair raters and colluders, our decoupled trust mecha-
nism is able to curtail ratings attacks.

4.2. Reputation-based trust models

We now identify three statistical reputation-based trust ap-
proaches and discuss the effectiveness of these approaches in
the presence of false feedback attacks. We will perform a de-
tailed comparison of our proposed trust model with respect
to these reputation models in our evaluation.

(i) Conventional approach. This approach is the simple
technique of averaging service ratings in order to measure the
trustworthiness of peers [7, 15]. The service trust rating of
peer, i, denoted by SRconv(i), for the conventional approach,
is derived as

SRconv(i) = 1
∣
∣Ti

∣
∣
·
∑

j∈Ti

si, j . (6)

Here, si, j is the rating given by peer j to i, valued at 0 (un-
satisfactory) or 1 (satisfactory). Ti indicates the set of nodes
that have previously transacted with i.

A simple averaging approach is flawed in several respects.
A peer can easily increase its transaction volume to hide an
occasional, or even, frequent misbehavior. Incremental rat-
ings do not affect a peer once it has established a good reputa-
tion, thereby, giving a peer little incentive to behave honestly.
For such a scheme, decaying a peer’s reputation is important,
that is, a peer’s reputation should be representative of recent
behavior rather than old behavior.

(ii) Coupled approach. This approach weighs the cred-
ibility of a peer’s feedback by its reputation as a service
provider [5, 8]. The service trust rating of peer i, denoted
by SRcoupled(i), for the coupled approach, is derived as

SRcoupled(i) = 1
∣
∣Ti

∣
∣
·
∑

j∈Ti

si, j · SRcoupled( j). (7)

By taking into account the credibility of the feedback source,
a coupled approach performs better than the simple averag-
ing approach. However, a good service provider cannot be as-
sumed to always provide good recommendations, and a bad
service provider cannot be assumed to always provide bad
recommendations. A peer providing honest service may pro-
vide false feedback about other peers’ service due to jealousy
or competition.

(iii) PeerTrust personalized similarity measure. PeerTrust
PSM decouples feedback trust from service trust [10, 17].
PeerTrust uses a personalized similarity measure to more
heavily weigh opinions of peers who have provided similar
ratings for a common set of past partners. Each peer, x, in
PeerTrust maintains a local copy of all feedback provided by
the peer. This information is accessed up by a peer, y, that
wishes to evaluate its feedback similarity with x. The root
mean square or standard deviation (dissimilarity) of x’s and
y’s feedbacks is used to compute their feedback similarity.
While statistically hard to find a significant set of such over-
lapping past partners in a large-scale network, PeerTrust is

reasonably robust compared to other approaches in handling
unfair attacks and peer collusion.

In the following sections, we perform two sets of detailed
experiments to evaluate the effectiveness, benefits, and scala-
bility of our decoupled trust approach. The first set of exper-
iments compares the effectiveness and benefits of our decou-
pled approach with the afore-mentioned approaches for rep-
utation modeling, namely, conventional averaging, coupled
service and feedback trust approach, and PeerTrust PSM. The
second set of experiments, performed on Maze transaction
logs, demonstrates the effectiveness and scalability of our
reputation system on peers in that system. We also employ
the Maze logs to compare the PeerTrust decoupled algorithm
to our system-wide decoupling approach and highlight some
of the vulnerabilities inherent in PeerTrust.

5. EXPERIMENTAL EVALUATION

We evaluate our decoupled trust model using a number of
simulated and trace-driven experiments. In the following
section, we describe our simulation setup, and examine the
accuracy of our system in a variety of environments ranging
from a network with malicious peers, strategic peers, peers
with oscillating behavior, and colluding peers.

5.1. Simulation setup

We have implemented our simulator in C using tools in-
cluded with the Stanford Graph-Base (SGB) [22]. We use
graphs in the SGB platform to represent members of a P2P
community. For our simulations, we use graphs of 100 to
5000 peers generated from the GT-ITM topology generator
[23]. Table 1 summarizes the main parameters related to the
peer model and the simulation. Our results are generated
from a simulated community of 64 to 100 peers. We also run
our experiments on a community of 5000 peers but observed
no qualitative difference in the results.

Our network simulations proceed in cycles. We assume,
for simplicity, that every peer in the network makes one
transaction in each query cycle. With the help of the trust-
based selection scheme, the peer requesting the service ini-
tiates a transaction with the peer that has the highest trust
value. At the end of the transaction, the requesting peer gives
the service provider peer a rating of either 0, indicating a bad
transaction, or 1, indicating a satisfactory transaction.

The peer model includes the five types of behavior pat-
terns discussed in section, namely, honest, malicious, strategic,
oscillating, and colluding. Our experiments illustrate the ef-
fectiveness of our model against all these types of attacks and
also show better performance when compared to the three
existing reputation-based trust approaches, namely, the con-
ventional approach of averaging lifetime ratings, the coupled
approach of weighing feedback by the service reputation of
its source, and PeerTrust’s personalized similarity measure.

5.2. Metrics and experiments

In the first set of experiments, we employ three metrics
in our simulations, namely, transaction success rate, trust
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Table 1: Simulation parameters.

Parameter Value range Default value

Peer model

Number of peers in the network 50–5000 100

Percentage of honest peers 0–100 75

Percentage of malicious peers 0–100 25

Percentage of strategic peers 0–100 25

Percentage of oscillating peers 0–100 5

Percentage of colluding peers 0–25 10

Percentage of peers responding to a query request 0–20 5

Simulation
Number of query cycles in one experiment 100–10000 100

Number of experiments over which results are averaged 5 5

computation error, and computed reputation rating. First,
we define the transaction success rate as the ratio of the num-
ber of successful transactions over the total number of trans-
actions in the system. This metric enables us to illustrate the
benefit of a trust-based peer selection scheme over a random
peer selection process.

Second, we define trust computation error [10] to evalu-
ate the effectiveness of our trust model against malicious and
strategic peers. The trust computation error is the root mean
square (RMS) of the computed trust value for all peers and
the actual probability of those peers performing a satisfac-
tory transaction, that is, 1 for good peers, and 0 for mali-
cious peers. The RMS error is a value that ranges from 0 to 1.
A lower RMS error indicates a more accurate reflection of a
peer’s trustworthiness.

Finally, in order to evaluate the effectiveness of our sys-
tem against peer oscillation and collusion, we measure the
average reputation value of the oscillating and colluding peers
as transactions are being performed by them in the network.
Periodically, measuring the reputation values enables us to
measure the increase and decrease in reputation values for
these peers as they perform malicious, collusive, and honest
transactions.

5.3. Simulation results

We now present the results of our experiments and demon-
strate the effectiveness of our decoupled trust model as com-
pared to other reputation models. Data points in our figures
represent an average of results from five randomized runs.

5.3.1. Benefit of trust-based peer selection

The first experiment demonstrates the benefits of a trust-
based reputation scheme in a peer-to-peer system. A trans-
action is deemed successful if, at the end of the transaction,
the service provider is given a rating of 1. We define the trans-
action success rate to be the ratio of the number of successful
transactions over the total number of transactions. The ex-
periment proceeds by having honest peers repeatedly initiate
transactions. This method ensures completely honest feed-
back in the reputation system. As seen in Figure 2, without a
trust model, there is a 50% probability of a transaction be-
ing satisfactory. When any type of trust model is used, how-

ever, a much higher success rate is achieved. All of the models
have a success rate close to 100%. Clearly, a peer community
with a higher transaction success rate is more productive. By
avoiding transactions with untrustworthy peers, the number
of unsatisfactory transactions is reduced. This experiment,
therefore, indicates that having any kind of trust model in
place provides a significant benefit for a peer-to-peer system.

5.3.2. Effectiveness against malicious behavior

In this experiment, our objective is to evaluate the effective-
ness of our decoupled model against malicious peers as com-
pared to other trust models. A malicious peer is defined as
one that provides dishonest service and dishonest feedback at
all times. We perform the evaluations after conducting 6,400
transactions over 100 peers, that is, an average of 100 transac-
tions per peer. The percentage of malicious peers varies from
10% to 70% and the trust computation error is measured.
We define the trust computation error [10] as the root mean
square (RMS) of the computed trust value for all peers and
the actual probability of those peers performing a satisfac-
tory transaction, that is, 1 for good peers and 0 for malicious
peers.

As Figure 3 shows, the conventional approach of averag-
ing ratings is not effective against malicious behavior. This
result occurs because the approach does not consider the
credibility of the feedback provider and is particularly vul-
nerable to unfair ratings. We note that the correlated trust
approach performs well when a small percentage of network
peers is malicious. In the correlated approach, ratings as-
signed to the service provider at the end of a transaction
are weighed by the service rating of the rater. That is, the
feedback from those peers with higher service ratings will be
weighed more than those with lower service ratings. When
malicious peers exhibit static personalities, the assumption
that a dishonest peer will provide dishonest feedback holds
true. Hence, traditional reputation models that correlate ser-
vice and feedback trust work well. Malicious peers are easily
detected and avoided, resulting in a low trust computation
error.

As malicious peers become the majority (>50%), how-
ever, they begin to overwhelm honest nodes, resulting in a
significant increase in the trust computation error. Both our
decoupled approach and the PeerTrust PSM models exhibit
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Figure 2: The benefit of a trust-based peer selection scheme.
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Figure 3: Trust computation error in a network with a varying per-
centage of malicious peers.

a trust computation error of nearly 0. This result occurs be-
cause both models are sensitive to the credibility of the feed-
back source. Again, as the malicious peers become the major-
ity (> 50%), there is a slight increase in the trust computa-
tion error with our decoupled approach. This result demon-
strates the natural collusion between dishonest nodes when
they form a network majority.

5.3.3. Effectiveness against strategic behavior

The objective of this experiment is to evaluate the benefits of
decoupling service and feedback trust compared to the corre-
lated trust approach and the conventional approach. We in-
troduce strategic behavior in this experiment. Strategic peers
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Figure 4: Trust computation error in a network with varying mali-
cious rate of strategic peers.

are malicious peers that try to “rig the system” by provid-
ing honest feedback, instead of dishonest feedback, in some
cases. We use a network with 25% strategic peers and 75%
honest peers. We vary the percent of maliciousness, X , such
that a strategic peer will act maliciously, for service and feed-
back, for 10% to 100% of the total number of its transactions.
It will provide honest feedback for the rest of its transactions.
For this experiment, we define the trust computation error
as the root mean square of the computed trust value for all
peers and the actual probability of those peers performing a
satisfactory transaction, that is, 1 for good peers, and 1-X for
malicious peers.

A number of interesting observations can be made from
Figure 4. Our decoupled approach and the PeerTrust PSM
significantly outperform the conventional and the correlated
trust approaches by reducing the number of malicious trans-
actions and having a low trust computation error. By weigh-
ing service ratings with the credibility of the feedback source,
both these approaches are able to detect strategic behavior.
As the rate of malicious transactions by malicious peers in-
creases beyond 60%, the trust computation error becomes
nearly 0. An increase in the rate of malicious transactions re-
sults in a corresponding increase in the trust computation
error for the conventional approach of averaging ratings. As
this approach does not weigh the credibility of the feedback
provider, it is unable to counter the strategic peers.

In the correlated approach, feedback from those peers
with higher service ratings will weigh more than those with
lower service ratings. By giving bad service but occasional
good feedback, strategic peers are able to take advantage of
the correlated trust assumption and fool the system. We also
note that once the rate of malicious transactions increases
beyond 40%, the trust computation error for the correlated
model decreases. This result occurs because malicious peers
are dishonest in providing service and feedback for more
than 40% of their transactions, and hence confuse the system
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Figure 5: Effectiveness of our decoupled trust model against oscil-
lating peer personalities.

less often. The coupled model, nonetheless, performs poorly
in the presence of strategic peers. On the other hand, our
decoupled model associates two ratings with each peer, one
for its role as a service provider, and the other for its role as a
service recommender. It is able to correctly identify peers as
malicious service providers or sources of malicious feedback.

5.3.4. Effectiveness against oscillating behavior

Once a peer has established a good reputation in the network,
it can abuse it by cheating occasionally. Honest peers can be
subverted at any time and begin to behave badly. In order to
motivate peers to perform honestly at all times, a peer’s repu-
tation must be representative of more recent behavior rather
than an old established reputation. To address this issue, we
calculate two reputation ratings for each peer. The first rep-
utation rating is calculated over all the transactions under-
taken by a peer, while the other is calculated over a subset of
the ratings acquired by that peer in a recent window of trans-
actions. As explained in (3.3), if the latter reputation value is
smaller that the first value by a certain threshold, we assign it
as the peer’s new reputation rating.

The objective of this experiment is to illustrate the effec-
tiveness of our decoupled approach against oscillating peer
personalities. An oscillating peer is a malicious peer that
builds and then abuses its reputation periodically. We simu-
late a community of 100 peers, with one oscillating peer and
the rest completely honest. Each peer performs an average of
500 transactions. For this experiment, the oscillating peer is
simulated to change its behavior every 50 transactions and
we periodically measure the trust value of that peer as com-
puted by an honest peer. Additionally, we vary the window
size in our experiment in order to understand its effect on
the computed trust value.

A number of interesting observations can be made from
Figure 5. First, by employing our approach, a peer’s reputa-

tion rating can drop quickly, but is hard to rebuild afterward.
Second, a smaller window results in a more rapid reputation
decay as compared to a larger window. With a large window,
a peer is still able to take advantage of its available reputa-
tion and conduct malicious transactions. Performing contin-
uous malicious transactions, however, results in an eventual
breakdown of that peer’s reputation. We also observe from
the figure that a peer can never build its reputation on previ-
ous high levels once it cycles through periods of building and
abusing its reputation.

5.3.5. Effectiveness against collusion

Service requesters and/or providers can intentionally “rig the
system,” resulting in biased reputation estimates [19]. In bal-
lot stuffing, a colluding group inflates the reputations of its
members, who can then leverage their good reputations for
attacks. Similarly, in badmouthing, a malicious collective con-
spires against one or more participants in the network by as-
signing unfairly low ratings to them and, thereby, bringing
down their reputation.

We ran experiments to observe the effectiveness of our
model against a ballot stuffing type of collusion. The objec-
tive of the first experiment is to observe the reputation of a
colluding group as computed by an honest peer. A collud-
ing peer is a malicious peer that provides dishonest service
and feedback at all times. When transacting with each other,
however, two colluding peers boost each other’s reputation
rating. For this experiment, we use a network of 100 peers
with 10% colluders and 90% honest peers. We observe sim-
ilar results for a higher percentage of colluding peers. The
experiment proceeds with each peer randomly performing
transactions with other peers. We vary the number of trans-
actions from 100, that is, an average of 1 transaction per peer,
to 10 000, that is, an average of 100 transactions per peer. Col-
luding peers collude with one another at a fixed rate of 10%,
50%, or 80% of their total transactions. We monitor the av-
erage reputation of the colluding group per query cycle.

As seen in Figure 6, the service reputation rating of the
colluding group declines rapidly in the presence of honest
peers. In the decoupled approach, honest peers not only rate
a colluding peer poorly for bad service, but also rate other
colluding peers poorly for their incorrect feedbacks.

The objective of our next experiment is to determine the
effectiveness of our decoupled approach against varying rates
of collusion. We use a network of 100 peers with 10% col-
luders and 90% honest peers. The experiment proceeds as
each peer randomly performs transactions with other peers.
We vary the probability, X , that a colluding peer undertakes
a collusive transaction. A collusive transaction implies that
both the colluding requester and provider boost each other’s
service and feedback reputations, respectively. A colluding
peer will behave dishonestly, in feedback and service, for
any noncollusive transaction. We measure the average ser-
vice reputation of the colluding group at the end of all the
transactions.

As seen in Figure 7, a decoupled approach is more sen-
sitive to peer collusion compared to a coupled approach. A
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Figure 6: Effectiveness of our decoupled trust model against collu-
sion.

Rate of collusion

A
ve

ra
ge

re
pu

ta
ti

on
of

co
llu

di
n

g
gr

ou
p

Coupled model
Decoupled model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

Figure 7: Effectiveness of our decoupled trust model with varying
rates of collusion.

collusive rate of about 90% results in an average rating of less
than 0.1 for the group. With the coupled approach, on the
other hand, the colluding group is able to maintain about
twice that rating for the same collusive rate. The assumption
of static personalities holds true for low collusive rates as col-
luding peers fool the system to a lesser extent. However, as
the collusive rate increases, a colluding peer exhibits a more
dynamic personality, which the coupled approach is unable
to handle. Also, a higher rate of collusion implies that a col-
luding peer spends a greater amount of time colluding and
rebuilding its reputation rating rather than performing mali-
cious transactions with honest peers. Clearly, our decoupled
trust approach results in less productivity for colluding peers
as compared to the coupled approach.
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Figure 8: Architecture of the Maze file-sharing network.

6. TRACE-DRIVEN EXPERIMENTS

The previous section described our results conducted on a
simulated peer community. In this section, we use transac-
tion logs from Maze, a large deployed P2P file-sharing net-
work, to drive our simulated experiments. We give a brief
background on Maze [24] before presenting our results.

Maze is a popular Napster-like peer-to-peer network de-
signed, implemented, and deployed by an academic research
team at Peking University, Beijing, China. Maze is currently
deployed across a large number of hosts inside China’s inter-
nal network. Maze currently includes a user population of 1.4
million users and supports searches on 140 million files, 20
million of which are unique, totaling over 226TB of data. At
any given time, there are over 50 000 users online, and over
1.3 million file transfers per day [24].

Maze uses a simple centralized architecture where meta-
data for all user files is stored on a set of central index servers.
As shown in Figure 8, clients forward metadata to a FileU-
ploadServer, which is then forwarded to index servers. Other
clients issue queries to search servers. Because all transactions
go through central servers managed by the team at Peking
University, they monitor and log all users, metadata, and
transaction records.

We perform our experiments using a sequence of trans-
action logs gathered from February 19, 2005 to March 24,
2005. While this log includes more than 32 million file trans-
fers, we limit our analysis to a truncated data set that includes
transactions conducted between the first 5000 users. On av-
erage, each peer performs 15 transactions.

The format of the Maze transaction logs is presented
in Table 2. UIDc and UIDs refer to the file requester and
provider, respectively. The GlobalTime and downloadSize
fields refer to the transfer end time and the transfer size for
a given session. If downloadSize is less than totalSize, it im-
plies an incomplete transfer. End/start is the session time.
Related work has shown that significant amount of collud-
ing behavior can be observed from Maze transactions logs
[24]. While we cannot conclusively determine the full extent
of colluding behavior, we take a pessimistic approach, and
define a file transfer (transaction) as failed (or malicious) if
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Table 2: Maze transaction logs.

UIDc UIDs GlobalTime Download size Totalsize End/start

799 141532 302 1109 606 402 2959 816 2959 816 42

799 141532 302 1109 606 402 9240 638 9240 638 97

572 989318 395 1109 606 402 600 000 222 119 423 1

572 989318 395 1109 606 402 600 000 161 026 413 8

621 848435 436 1109 606 403 600 000 165 177 856 287

841 802538 283 1109 606 403 7491 756 7491 756 105

655 843791 333 1109 606 404 1684 920 1864 920 548

805 000278 815 1109 606 404 1800 000 3514 636 522

295 726634 900 1109 606 404 600 000 13 258 424 259 237

the downloadsize field equals zero or is less than half of the
totalsize field.

We now evaluate the effectiveness of our reputation-
based trust model against malicious and strategic peers in
Maze. We employ the trust computation error metric to eval-
uate our model.

6.1. Effectiveness against malicious behavior

In this experiment, our objective is to evaluate the effec-
tiveness of our decoupled approach against malicious peers
in Maze. A malicious peer always behaves dishonestly when
providing feedback and service. We identify a malicious peer
as one that has failed in more than X% of its total transac-
tions as a service provider. The extreme case is when X is
100%, that is, when a peer is defined as malicious only if it
has failed in every single transaction. The total percentage of
malicious peers, in this worst case scenario, is about 40% of
all the peers.

We vary the percentage of malicious peers in the commu-
nity by varyingX , from 5% to 40%. The experiment proceeds
as each peer randomly performs transactions with another
peer. At the end of about 75 000 transactions covering 5000
peers, an honest peer is chosen to evaluate the trustworthi-
ness of all peers and the trust computation error is measured.

As seen in Figure 9, when a small percentage of network
peers malicious, the correlated trust approach performs as
well as our decoupled ratings approach. In the correlated ap-
proach, ratings assigned to the service provider at the end of
a transaction are weighed by the service rating of the rater.
Hence, when peers exhibit static personalities, the assump-
tion that a dishonest peer will provide dishonest feedback
holds true and reputation models that correlate service and
feedback trust work well. We note that these observations
made from the Maze transaction logs are similar to the re-
sults observed in our simulated community. The trust com-
putation error in Figure 3, however, is lower than in Figure 9
since there are more transactions per peer in the former ex-
periment. This result confirms that the performance of a rep-
utation system increases with an increasing number of trans-
actions in the community. Fewer transactions per peer results
in less accurate trust ratings.

This experiment also shows that when a peer community
like Maze employs a trust management scheme, it observes a
higher transaction success rate and greater productivity.

6.2. Effectiveness against strategic behavior

We now discuss the impact of strategic peers on trust compu-
tation. The objective of this experiment is to evaluate the ef-
fectiveness of our decoupled approach against strategic peers
in Maze. A strategic peer is a malicious peer that tries to fool
the reputation system by behaving honestly in some of its
transactions. We use a network with 40% strategic peers and
60% honest peers. We vary the rate, X , that a strategic peer
will act maliciously, for service and feedback, from 10% to
100%.

The experiment proceeds as each peer performs random
transactions with other peers. At the end of about 75 000
transactions over 5000 peers, an honest peer is chosen to
evaluate the trustworthiness of all peers. We define the trust
computation error as the root mean square of the computed
trust value for all peers and the actual probability of those
peers performing a satisfactory transaction, that is, 1 for
good peers, and 1-X for malicious peers.

Figure 10 clearly indicates that our decoupled approach
outperforms the correlated trust approach by having a lower
trust computation error. Our approach is able to correctly
identify peers as malicious service providers or malicious rec-
ommenders. The trust computation error is nearly 0 in most
cases. On the other hand, strategic peers are able to take ad-
vantage of the correlated trust assumption and fool the cou-
pled model. Once the rate of malicious transactions increases
beyond 50%, however, the trust computation error for the
correlated model decreases. This result occurs because mali-
cious peers become more predictable when they are dishon-
est in more transactions than honest.

The last two experiments evaluated the effectiveness of
our decoupled trust model against malicious and strate-
gic peers in Maze. The goal of our next set of experiments
is to employ the complete Maze dataset to compare the
PeerTrust decoupled algorithm with our globally decoupled
trust model and highlight some of the vulnerabilities inher-
ent in PeerTrust.
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Figure 9: Trust computation error with respect to percentage of
malicious peers.
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Figure 10: Trust computation error in a network with a varying
malicious rate of strategic peers.

6.3. Comparison with PeerTrust’s personalized
similarity metric

An alternate mechanism proposed for decoupled reputations
is that of PeerTrust. PeerTrust proposes the use of a person-
alized similarity measure (PeerTrust PSM) to more heavily
weigh opinions of peers who have provided similar ratings
for a common set of past partners. To measure the feedback
credibility of any peer, x, a peer, y, computes the feedback
similarity between y and x over the common set of peers with
which they have interacted in the past.

While this personalized credibility provides PeerTrust
with its flexibility and robustness against maliciousness, it
is limited by the availability of trust data required for com-
puting reputations. In this section, we empirically demon-

strate two vulnerabilities: (a) PeerTrust’s vulnerability to an
overlapping set of past partners, and (b) network churn’s ef-
fect on the availability of data needed for trust computations
and, consequently, impact of the effectiveness and scalabil-
ity of PeerTrust in large distributed P2P systems. The follow-
ing experiments employ transaction logs from Maze, a P2P
file-sharing network deployed in China, to compare the per-
formance of PeerTrust PSM and our decoupled approach in
overcoming the abovementioned vulnerabilities.

6.3.1. Overlapping set of past partners

In large P2P systems, finding a statistically significant set of
overlapping partners can be challenging. In general, a greater
number of common past partners will result in an increas-
ingly accurate personalized feedback similarity measure for
PeerTrust. But an absence of such common past partners can
result in peers making arbitrary decisions among a set of can-
didates for which there is no information.

In the first experiment, we randomly sample 15.5 mil-
lion unique transaction Maze peers. As Figure 11 illustrates,
92% of the pairs do not share even a single common part-
ner. Approximately 4% of the pairs share only one common
past partner and 2% of pairs share two common past part-
ners. Clearly, there is not enough experience with a breadth
of peers for an accurate measure of PeerTrust PSM.

6.3.2. Network churn

The second limitation of PeerTrust PSM, and of reputation
systems in general, is their vulnerability to network churn.
Each peer, x, in the PeerTrust algorithm maintains a lo-
cal copy of all feedback provided by it. This information
is accessed by a peer, y, that wishes to evaluate its feed-
back similarity with peer x. High peer turnover (or churn)
in P2P systems impacts the availability of trust informa-
tion needed to dynamically compute feedback credibilities.
PeerTrust proposes an approximate trust calculation algo-
rithm (PSM/ATC) where cached service trust and feedback
similarity values are stored by each peer for reference in fu-
ture transactions. However, such cached copies cannot be
generated and maintained for every peer in the network.

In the second experiment, we evaluate the accuracy of the
PeerTrust algorithm and our decoupled algorithm in com-
puting trust while experiencing churn as modeled by the
Gnutella churn trace. We conduct 13,517 transactions (one
transaction per Gnutella peer) over a 60-hour interval (the
time interval for the Gnutella trace logs). We map transac-
tion histories of 13,517 random Maze peers to the Gnutella
peers. Each time a Gnutella requester, x, wishes to evaluate a
provider, y, it searches for local feedback data stored by y’s
previous transaction partner set, Z. If z ∈ Z is unavailable at
the transaction time, then x is unable to compute its credi-
bility similarity with z. For this experiment, we assume that
x does not hold a locally cached credibility measure for z.

We define the percentage of successful computations for
a given provider, y, as the ratio of the number of y’s past
transaction partners online at the given time with respect to
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Figure 11: Vulnerability of PeerTrust algorithm to overlapping past
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Figure 12: Performance of PeerTrust and our decoupled approach
in overcoming network churn.

the total number of y’s past transaction partners required
to compute y’s true trust value as observed by requester x.
As Figure 12 illustrates, 30% of transactions employing the
PeerTrust algorithm have 0 successful trust computations.
This implies that requesters in 30% of the cases found no past
partners online for dynamic trust computations. About 9%
of all transactions had around 5% of the transactors online
for trust computations. Only 1% of the transactions had 50%
successful operations, and less than 0.70% had 100% success-
ful operations for computing their PeerTrust PSM values.

The two experiments clearly indicate the vulnerability of
the PeerTrust algorithm to a lack of trust data. On the other
hand, our decoupled approach lends itself reasonably well to
networks experiencing churn. At the end of each transaction,
a requester, x, provides feedback updates to all peers that pre-

viously transacted with provider y. We define buffer time as
the amount of time a requester will hold feedback update val-
ues if the target is not online. We vary the buffer time from
one to two hours. A requester periodically probes targets
for online availability every 60 seconds. Here, the percentage
of successful operations is given by the ratio of total num-
ber of successful feedback updates over the total number of
feedback updates that need to be communicated by our de-
coupled algorithm. As seen in Figure 12, our decoupled ap-
proach is equally vulnerable to network churn as PeerTrust.
However, we overcome the problem of churn by employing
a buffer time window which enables requesters to commu-
nicate their feedback update values to a greater number of
target peers. As expected, the larger the buffer time window,
the greater the number of successful feedback update opera-
tions.

7. DISCUSSION

Reputations are not a guaranteed solution to the problem
of maliciousness in peer-to-peer networks. They only serve
as a risk-management technique, reducing the chances of a
peer deceiving another in an online transaction. A reputa-
tion system assumes that a peer’s past behavior is indicative
of its future behavior. This assumption, however, proves to
be incorrect when a peer is compromised. By ensuring that a
good reputation is difficult to gain and easy to lose, our de-
coupled approach is robust to common attack strategies. We
safeguard our reputation system from malicious, colluding,
and oscillating peers.

We note several implications of using a decoupled repu-
tation system. First, the use of dual service and feedback rep-
utations is likely to impact the way users choose with whom
they transact. In a traditional reputation system, a peer re-
questing a service checks the service reputations of available
peers to select a trustworthy peer with which to transact.
Because feedback reputations are also available in our de-
coupled system, service providers now have an incentive to
choose from whom they accept requests. A provider might
avoid peers that have poor feedback reputations, since those
peers might inaccurately rate the service provider’s perfor-
mance. In an actual system, this behavior will likely lead to
the isolation of both nodes who perform bad service and
nodes who give bad ratings.

The dual reputation approach imposes additional stor-
age and management overhead for the feedback reputation.
However, we note that the feedback reputation can be stored
and managed using the same mechanisms as service reputa-
tions. The additional overhead is clearly justified given the
increase in reputation accuracy and higher transaction suc-
cess rates. Finally, while users generate service ratings, feed-
back ratings are generated automatically without user in-
volvement.

8. CONCLUSIONS

Reputation systems establish peer trustworthiness in P2P
networks. A number of feedback attacks, however, compro-
mise the reliability of reputations generated by a reputation
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system. In this paper, we discuss these attacks and the differ-
ent reputation-based trust approaches that have been pro-
posed to counter these attacks. After a detailed theoreti-
cal and experimental analysis of existing reputation mech-
anisms, we recommend that decoupled trust approaches be
employed as they result in more robust reputations.

In this paper, we propose our own scalable globally de-
coupled trust model and demonstrate, using simulation-
based and trace-based experiments, reputation improvement
by removing the assumption of correlation between service
quality and feedback quality. We demonstrate the effective-
ness and scalability of our decoupled approach as compared
to PeerTrust, an alternative mechanism proposed for de-
coupled reputations. Our decoupled approach incorporates
global reputations of both the service provider and the re-
quester in the computation of trust values and, in this way,
makes our model more robust to peer maliciousness.
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