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ABSTRACT
Continuing success of research on social and computer networks
requires open access to realistic measurement datasets. While these
datasets can be shared, generally in the form of social or Internet
graphs, doing so often risks exposing sensitive user data tothe pub-
lic. Unfortunately, current techniques to improve privacyon graphs
only target specific attacks, and have been proven to be vulnerable
against powerful de-anonymization attacks.

Our work seeks a solution to share meaningful graph datasets
while preserving privacy. We observe a clear tension between strength
of privacy protection and maintaining structural similarity to the
original graph. To navigate the tradeoff, we develop adifferentially-
private graph modelwe call Pygmalion. Given a graphG and
a desired level ofǫ-differential privacy guarantee, Pygmalion ex-
tracts a graph’s detailed structure into degree correlation statistics,
introduces noise into the resulting dataset, and generatesa syn-
thetic graphG′. G′ maintains as much structural similarity toG
as possible, while introducing enough differences to provide the
desired privacy guarantee. We show that simply applying differen-
tial privacy to graphs results in the addition of significantnoise that
may disrupt graph structure, making it unsuitable for experimen-
tal study. Instead, we introduce a partitioning approach that pro-
vides identical privacy guarantees using much less noise. Applied
to real graphs, this technique requires an order of magnitude less
noise for the same privacy guarantees. Finally, we apply ourgraph
model to Internet, web, and Facebook social graphs, and showthat
it produces synthetic graphs that closely match the originals in both
graph structure metrics and behavior in application-leveltests.
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1. INTRODUCTION
Studying structure of real social and computer networks through

graph analysis can produce insights on fundamental processes such
as information dissemination, viral spread and epidemics,network
dynamics and resilience to attacks [4, 26, 27, 38]. The use ofreal
graphs generated from measurement data is invaluable, and can be
used to validate theoretical models or realistically predict the effec-
tiveness of applications and protocols [2,12,41,43].

Unfortunately, there is often a direct tension between the need
to distribute real network graphs to the research community, and
the privacy concerns of users or entities described by the dataset.
For example, social graphs from real measurements are used to
capture a variety of artifacts in online social networks, including
strength of social ties, number and frequency of social interactions,
and flow of information. Similarly, detailed topology graphs of
enterprise networks or major ISPs contain confidential information
about the performance and robustness of these networks. Releasing
such sensitive datasets for research has been challenging.Despite
the best of intentions, researchers often inadvertently release more
data than they originally intended [35, 36, 47]. Past experience has
taught us that traditional anonymization techniques provide limited
protection, and often can be overcome by privacy attacks that “de-
anonymize” datasets using external or public datasets [5,35,36].

Thus we are left asking the question,how can researchers safely
share realistic graph datasets from measurements without compro-
mising privacy? One option is to develop and apply stronger
anonymization techniques [24,30], many of which modify thegraph
structure in subtle ways that improve privacy but retain much of
the original graph structure. However, these approaches generally
only provide resistance against a specific type of attack, and can-
not provide protection against newly developed deanonymization
techniques. Techniques exist in the context of databases and data
mining which provide provable levels of protection [18,19], but are
not easily applied to graphs. Still other techniques can protect pri-
vacy on graphs, but must significantly change the graph structure
in the process [24,39].



Our approach to provide graph privacy and preserve graph
structure. We seek a solution to address the above question, by
starting with observation that any system for sharing graphs must
deal with the tension between two goals:protecting privacyand
achieving structural similarity to the original, unmodified graph.
At one extreme, we can distribute graphs that are isomorphicto the
original, but vulnerable to basic deanonymization attacks. At the
other extreme, we can distribute random graphs that share nostruc-
tural similarities to the original. These graphs will not yield any
meaningful information to privacy attacks, but they are also not
useful to researchers, because they share none of the real structures
of the original graph.

Ideally, we want a system that can produce graphs that span the
entire privacy versus similarity spectrum. In such a system, users
can specify a desired level of privacy guarantee, and get back a set
of graphs that are similar to the real graph in structure, buthave
enough differences to provide the requested level of privacy.

The main premise of our work is that we can build such a sys-
tem, by distilling an original graphG into a statistical represen-
tation of graph structure, adding controlled levels of “noise,” and
then generating a new graphG′ using the result statistics. This
requires two key components. First, we need a way to accurately
capture a graph’s structure as a set of structural statistics, along
with a generator that converts it back into a graph. For this,we
use thedK-series, a graph model that is capable of capturing suf-
ficient graph structure at multiple granularities to uniquely iden-
tify a graph [13, 31]. We can achieve the desired level of privacy
by introducing a specific level of noise intoG’s degree correla-
tion statistics. Second, we need a way to determine the appropriate
noise necessary to guarantee a desired level of privacy. Forthis, we
develop new techniques rooted in the concept ofǫ-differential pri-
vacy, a technique previously used to quantify privacy in the context
of statistical databases.

In this paper, we developPygmalion, a differentially private graph
model for generating synthetic graphs. Pygmalion preserves as
much of the original graph structure as possible, while injecting
enough structural noise to guarantee a chosen level of privacy against
privacy attacks. Initially, we formulate a basic differentially pri-
vate graph model, which integrates controlled noise into the dK
degree distributions of an original graph. We use thedK-2 series,
which captures the frequency of adjacent node pairs with differ-
ent degree combinations as a sequence of frequency values. How-
ever, when we derive the necessary conditions required to achieve
ǫ-differential privacy, they show that an asymptotical bound for the
required noise grows polynomially with the maximum degree in
the graph. Given the impact ofdK values on graph structure, these
large noise values result in synthetic graphs that bear little resem-
blance to the original graph.

To solve this challenge, we seek a more accurate graph model
by significantly reducing the noise required to obtainǫ-differential
privacy. We develop an algorithm to partition the statistical rep-
resentation of the graph into clusters, and prove that by achieving
ǫ-differential privacy in each cluster, we achieve the same property
over the entire dataset. Using a degree-based clustering algorithm,
we reduce the variance of degree values in each cluster, thereby
dramatically reducing the noise necessary forǫ-differential privacy.
Finally, we apply isotonic regression [6] as a final optimization to
further reduce the effective error by more evenly distributing the
added noise.

We apply our models to a number of Internet and Facebook
graphs ranging from 14K nodes to 1.7 million nodes. The results
show that for a given level of privacy, our degree-based clustering
algorithm reduces the necessary noise level byone order of mag-

nitude. Isotonic regression further reduces the observed error in
dK values on our graphs by 50%. Finally, we experimentally show
that for moderate privacy guarantees, synthetic graphs generated by
Pygmalion closely match the original graph in both standardgraph
metrics and application-level experiments.

Access to realistic graph datasets is critical to continuing re-
search in both social and computer networks. Our work shows that
differentially-private graph models are feasible, and Pygmalion is a
first step towards graph sharing systems that provide strongprivacy
protection while preserving graph structures.

2. GRAPHS AND DIFFERENTIAL PRIVACY
In this section, we provide background on graph anonymization

techniques, and motivate the basic design of our approach tograph
anonymization. First, we discuss prior work, the inherent chal-
lenges in performing graph anonymization, and our desired privacy
goals. Second, we introduce the main concepts ofǫ-Differential
Privacy, and lay out the preconditions and challenges in leveraging
this technique to anonymize graphs. Finally, we motivate the selec-
tion of thedK-series as the appropriate graph model on which to
build our system.

2.1 Data Privacy: Background and Goals
A significant amount of prior work has been done on protect-

ing privacy of datasets. We summarize them here, and clarifyour
privacy goals in this project.

Private Datasets. Many research efforts have developed pri-
vacy mechanisms to secure large datasets. Most of these tech-
niques, including cryptographic approaches [7] and statistical per-
turbations [19, 37], are designed to protect structured data such as
relational databases, and are not applicable to graph datasets. An
alternative, probabilistic approach to privacy isk-anonymity [42].
It is designed to secure sensitive entries in a table by modifying
the table such that each row has at leastk − 1 other rows that
are identical [18]. Several public datasets have been successfully
anonymized withk-anonymity [1, 33] or through clustering-based
anonymization strategies [8].

Graph Anonymization. Several graph anonymization tech-
niques have been proposed to enable public release of graphswith-
out compromising user privacy. Generally, these techniques only
protect against specific, known attacks. The primary goal ofthese
anonymization techniques is to prevent attackers from identifying
a user or a link between users based on the graph structure. Sev-
eral anonymization techniques [24, 30, 39, 46, 48] leveragethe k-
anonymity model to create eitherk identical neighborhoods, ork
identical-degree nodes in a target graph. These types of “attack-
specific” defenses have two significant limitations. First,recent
results have repeatedly demonstrated that researchers or attackers
can invent novel, unanticipated de-anonymization attacksthat de-
stroy previously established privacy guarantees [5,35,36,45]. Sec-
ond, many of these defenses require modifications to the protected
graph that significantly alter its structure in detectable and mean-
ingful ways [24,39].

Our Goals: Edge vs. Node Privacy. In the context of privacy
for graphs, we can choose to focus on protecting the privacy of
either node or edges. As will become clear later in this paper, our
approach of using degree correlations (i.e. thedK-series), captures
graph structure in terms of different subgraph sizes, ranging from
2 nodes connected by a single edge (dK-2) to larger subgraphsof
size K.

Our general approach is to produce synthetic graphs by adding
controlled perturbations to the graph structure of the original graph.



This approach can provide protection for both node privacy and
edge privacy. This choice directly impacts the sensitivityof the
graph privacy function, and as a result, how much structuralnoise
must be introduced to obtain a given level of privacy guarantees.

In this paper, we choose to focus on edge privacy as our goal,
and apply this assumption in our analysis of our differential pri-
vacy system in Section 3. We chose to target edge privacy because
our work was originally motivated by privacy concerns in sharing
social graphs, where providing edge privacy would address anum-
ber of practical privacy attacks.

2.2 Differential Privacy
Our goal is to create a novel system for the generation of anonymized

graphs that support two key properties:

1. Provides quantifiable privacy guarantees for graph data that
are “future-proof” against novel attacks.

2. Preserves as much original graph structure as possible, to en-
sure that anonymized data is still useful to researchers.

Differential privacy[14] is a recently developed technique de-
signed to provide and quantify privacy guarantees in the context of
statistical databases [15,25]. Others have demonstrated the versatil-
ity of this technique by applying differential privacy to distributed
systems [40], network trace anonymization [32], data compression
techniques [44], and discrete optimization algorithms [22]. Other
work focused specifically on applying differential privacyto simple
graph structures such as degree distributions [23, 25]. In contrast,
our work has the potential to inject changes at different granular-
ities of substructures in the graph, instead of focusing on asingle
graph metric.

One piece of prior work tried to guarantee graph privacy by
adding differential privacy to Kronecker graphs [34]. Whereas this
approach tries to guarantee privacy by perturbing the Kronecker
model parameters, our strategy acts directly on graph structures,
which provides tighter control over the perturbation process. Un-
fortunately, the author asserts there are incorrect results in the pa-
per1.

Basic Differential Privacy. The core privacy properties in dif-
ferential privacy are derived from the ability to produce a query
outputQ from a databaseD, which could also have been produced
from a slightly different databaseD′, referred to asD’s neigh-
bor [14].

DEFINITION 1. Given a databaseD, its neighbor databaseD′

differs fromD in only one element.

We obtain differential privacy guarantees by injecting a con-
trolled level of statistical noise intoD [16]. The injected noise
is calibrated based on the sensitivity of the query that is being exe-
cuted, as well as the statistical properties of the Laplace stochastic
process [17]. Thesensitivityof a query is quantified as the max-
imum amount of change to the query’s output when one database
element is modified, added, or removed. Together, query sensitivity
and theǫ value determine the amount of noise that must be injected
into the query output in order to provideǫ-differential privacy.

Differential privacy works best withinsensitive queries, since
higher sensitivity means more noise must be introduced to attain a
given desired level of privacy. Thus insensitive queries introduce
lower levels of errors, and provide more accurate query results.

1See the author’s homepage.
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Figure 1: An illustrative example of the dK-series. ThedK-
2 series captures the number of 2-node subgraphs with a spe-
cific combination of node-degrees, and thedK-3 captures the
number of 3-node subgraphs with distinct node-degree combi-
nations.

2.3 Differential Privacy on Graphs
We face two key challenges in applying differential privacycon-

cepts to privacy protection on graphs. First, we must determine a
“query” function in our context which we can use to apply differen-
tial privacy concepts. Second, the sensitivity of this query function
must be low enough, so that we can attain privacy guarantees by
introducing only low levels of noise, thus allowing us to preserve
the accuracy of the results. In our context, this means that we want
to generate graphs that retain the structure and salient properties of
the original graph. We address the former question in this section
by proposing the use of thedK-series as our graph query opera-
tion. We address the accuracy question in Sections 3 and 4, after
fully explaining the details of our system.

Recall that the problem we seek to address is to anonymize graph
datasets so that they can be safely distributed amongst the research
community. We leverage anon-interactivequery model [14], such
that the original graph structure is queried only once and the en-
tire budget to enforce privacy is used at this time.dK is used to
query the graph and the resultingdK-series is perturbed under the
differential privacy framework. Note that only the differentially
privatedK-series is publicized. Unlike applications of differential
privacy in other contexts, we can now generate multiple graphs us-
ing this differentially privatedK-series without disrupting the level
of privacy of the original graph. Therefore, we use a non-interactive
query model to safely distributed graph datasets without being con-
strained to a single dataset.

The dK-Graph Model. We observe that the requirements of
this query function can be met by a descriptive graph model that
can transform a graph into a set of structural statistics, which are
then used to generate a graph with structure similar to the original.
Specifically, we propose to use thedK-graph model [31] and its
statistical series as our query function.dK captures the structure of
a graph at different levels of detail into statistics calleddK-series.
dK can analyze an original graph to produce a correspondingdK-
series, then use a matching generator to output a synthetic graph
using thedK-series values as input. ThedK-series is the degree
distribution of connected components of some sizeK within a tar-
get graph. For example,dK-1 captures the number of nodes with
each degree value,i.e. the node degree distribution.dK-2 cap-
tures the number of 2-node subgraphs with different combinations
of node degrees,i.e. the joint degree distribution.dK-3 captures
the number of 3-node subgraphs with different node degree com-
binations,i.e. an alternative representation of the clustering coef-
ficient distribution.dK-n (wheren is the number of nodes in the
graph) captures the complete graph structure. We show a detailed



example in Figure 1, where we listdK-2 anddK-3 distributions
for a graph.

dK is ideal for us because thedK-series is a set of data tuples
that provides a natural fit for injecting statistical noise to attain dif-
ferential privacy. In addition, together with their matching gener-
ators, higher levels ofdK-series,i.e. n > 3, could potentially
provide us with a bidirectional transformation from a graphto its
statistical representation and back.

While larger values ofK will capture more structural informa-
tion and produce higher fidelity synthetic graphs, it comes at the
expense of higher computation and storage overheads. Our work
focuses on thedK-2 series, because generator algorithms have not
yet been discovered fordK-series whereK≥3. While this may
limit the accuracy of our current model, our methodology is gen-
eral, and can be used with higher orderdK-series when their gen-
erators are discovered.

ǫ-Differential Privacy in Graphs. Given the above, we can
now outline how to integrate differential privacy in the context of
graphs. Anǫ-differentially private graph system would output a
graph that given a statistical description of an input graph, the prob-
ability of seeing two similar graphs as the real input graph is close,
where closeness between the two probabilities is quantifiedby ǫ.
A larger value ofǫ means it is easier to identify the source of the
graph structure, which means a lower level of graph privacy.

Prior work has demonstrated that in many cases, accuracy of
query results on differentially private databases can be improved by
decomposing complex queries into sequences of “simple counting
queries” that happen to have extremely low sensitivity [9, 10, 15].
Unfortunately, this approach will not work in our context, since our
goal is to achieve privacy guarantees on whole graph datasets, and
not just privacy for simple graph queries such as node degreedis-
tributions. In the next section, we start with a basic formulation
of a differentially private graph model, and then provide anopti-
mized version. We illustrate the final process, shown asPygmalion
in Figure 2.

3. FIRST STEPS
In this section, we perform the analytical steps necessary to inte-

grateǫ-differential privacy into thedK graph model. Our goal is to
derive the amount of noise necessary to achieve a givenǫ-privacy
level. The amount of Laplacian noise necessary is a functionof
both ǫ, the user-specified privacy parameter, andS, the sensitiv-
ity of the dK function. First, we formally define thedK-2 se-
ries, and derive its sensitivitySdK−2. Next, we describe thedK-
perturbation algorithm (dK-PA) for injecting noise into the original
dK-2 series, and prove that it provides the desiredǫ-differential pri-
vacy. Our analysis shows that the asymptotic bound on noise used
in dK-PA grows polynomially with maximum node degree, which
means we need to inject relatively large levels of noise to guarantee
ǫ-privacy. Finally, as expected, our experiments on real graphs con-
firm thatdK-PA generates synthetic graphs with significant loss in
accuracy. This poor result motivates our search for improved tech-
niques in Section 4.

3.1 Sensitivity of dK-2
dK-function. We formally definedK-2 as a function over a
graphG = (V, E), whereV is the set of nodes andE is the set of
edges connecting pair of nodes inV :

dK(G) : Gn → ℑ
whereGn is the set of graphs withn = |V | nodes andℑ is the set
of unique degree tuples in the dK-2-series with the corresponding

count of instances in G. Formally,ℑ is a collection of{dx, dy; k}
where each entry represents that the number of connected compo-
nents of size 2 with degree(dx, dy) is k. Let m be the cardinality
of ℑ. Because the maximum number of entries indK-2 is bounded
by the number of possible degree pairs,

Pdmax

i=1 i, wheredmax be
the maximum node degree inG, thusm = O(d2

max). Prior stud-
ies have demonstrated that in large network graphsdmax is upper
bounded byO(

√
n) [29, 43], and thus, in those cases,m is upper

bounded byO(n).

Sensitivity Analysis. In the context of differential privacy, the
sensitivity of a function is defined as the maximum difference in
function output when one single element in the function domain
is modified. The domain ofdK-2 is a graphG. Neighbor graphs
of G are all the graphsG′ which differ fromG by at most a single
edge. Changing a single edge inG will result in one or more entries
changing in the correspondingdK-2-series. Thus, the sensitivity of
dK-2 is computed as the maximum number of changes in thedK-
2-series among all ofG’s neighbor graphs.

LEMMA 1. The sensitivity ofdK-2 on a graphG, SdK−2, is
upper bounded by4 · dmax + 1.

PROOF. Let e be a new edge added to a graphG = (V, E)
between any two nodesu, v ∈ V . Once the edgee is added to
G the degrees ofu and v increase fromd to (d + 1) and from
d′ to (d′ + 1) respectively. This graph transformation produces
the following changes in thedK-2 onG: the frequencyk of tuple
{d + 1, d′ + 1; k} gets incremented by1 because of the new edge
(u, v). For example, a new edge betweenA and C in Figure 1
produces an increment of the frequencyk of the tuple{2, 3; k}
from k = 1 to k = 2. Furthermore, a total ofd + d′ already
present tuples need to be updated with the new degree ofu andv,
and so the tuples with the old degrees get decremented by a total of
d + d′ and the tuples reflecting the new degree get incremented for
a total ofd + d′. To summarize, the overall number of changes in
thedK-2 -series is2(d + d′) + 1. In the worst case, whenu andv
are nodes of maximum degreedmax, the total number of changes
in the originaldK-2-series by adding an edge betweenu andv is
upper bounded by4 · dmax + 1.

Lemma 1 derives only the upper bound of the sensitivity because,
as in Definition 3 [14], it is the sufficient condition to derive the nec-
essary amount of noise to achieve a givenǫ-privacy level. Lemma 1
shows that the sensitivity ofdK-2 is high, sincedmax has been
shown to beO(

√
n) in measured graphs [29, 43]. Note that prior

work on differential privacy [9,10,15,23] generally involved func-
tions with a much lower sensitivity,i.e. 1. In these cases, the low
sensitivity means that the amount of noise required to generate dif-
ferentially private results is very small. In contrast, thesensitivity
of our function indicates that the amount of noise needed to guar-
anteeǫ-differential privacy indK-2 will be high. Therefore, the
accuracy of synthetic graphs generated using this method will be
low. Note that if we use a higher orderdK-series,i.e. K ≥ 3,
we would have found an even higher sensitivity value, which may
further degrade the accuracy of the resulting synthetic graphs.

3.2 ThedK-Perturbation Algorithm
We now introduce thedK-perturbation algorithm (dK-PA) that

computes the noise to be injected intodK-2 to obtainǫ-differential
privacy [14]. In dK-PA, each element of thedK-2-series is al-
tered based on a stochastic variable drawn from the Laplace distri-
bution,Lap(λ). This distribution has density function proportional

to e−
|x|
λ , with mean0 and variance2λ2. The following theorem
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Figure 2: Overview of Pygmalion.ǫ-differential privacy is added to measured graphs after sorting and clustering thedK-2-series.

proves the conditions under whichǫ-differential privacy is guaran-
teed [17].

THEOREM 1. Let gDK be the privacy mechanism performed on

dK such thatD̃K(G) = dK(G) + Lap(
SdK−2

ǫ
)m. For anyG

and G′ differing by at most one edge,gDK providesǫ-differential
privacy if:

˛

˛

˛ ln
Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

˛

˛

˛ ≤ ǫ

PROOF. Let s =< s1, s2, ..., sm > be a possible output of

D̃K(G) andm the number of its entries, and letG′ be the graph
with at most one different edge fromG. Using the conditional prob-
abilities, we have:

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]
=

m
Y

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
,

since each item of the product has the firsti − 1 values ofdK-2
fixed. Eachsi is the result of applying Laplacian noise calibrated
by SdK−2. Note that Lemma 1 has studied the sensitivity ofdK-2,
SdK−2, under the condition that two graphs differ by at most one
edge. Thus, the conditional probability is Laplacian, allowing us to
derive the following inequalities:

m
Y

i=1

Pr[D̃K(G)i = si|s1, ...si−1]

Pr[ ˜DK(G′)i = si|s1, ...si−1]
≤

m
Y

i=1

e
| ˜DK(G)i−

˜DK(G′)i|
σ

whereσ is the scale parameter of the Laplace distribution that is
4dmax+1

ǫ
. Thus,

m
Y

i=1

e
| ˜DK(G)i−

˜DK(G′)i|
σ = e

||D̃K(G)− ˜DK(G′)||1
σ

where, by definitionD̃K(G) = dK(G)+Lap(
SdK−2

ǫ
), and||DK(G)−

DK(G′)||1 ≤ SdK−2 with SdK−2 ≤ 4dmax + 1 as proved in
Lemma 1. Thus, we have:

e
||D̃K(G)− ˜DK(G′)||1

σ =

= e
||dK(G)+Lap(

SdK−2
ǫ

)−dK(G′)−Lap(
SdK−2

ǫ
)||1

σ ≤ e

4dmax+1
4dmax+1

ǫ = eǫ

and so, by applying the logarithmic function, we have that

˛

˛

˛
ln

Pr[D̃K(G) = s]

Pr[D̃K(G′) = s]

˛

˛

˛
≤ ǫ

which concludes the proof.

Type Graph Nodes Edges

Internet
WWW 325,729 1,090,108

AS 16,573 40,927

Facebook

Monterey Bay 14,260 93,291
Russia 97,134 289,324
Mexico 598,140 4,552,493

LA 603,834 7,676,486

Table 1: Different measurement graphs used for experimental
evaluation.

Theorem 1 shows that by adding noise to thedK-2-series using
independent Laplace random variables calibrated bySdK−2 from
Lemma 1, we achieve the desiredǫ-privacy.

Quantifying Accuracy. We apply theerror analysisproposed
by [25] ondK-PA to quantify the accuracy of the synthetic graphs
it produces, compared to the original graphs.

DEFINITION 2. For a perturbeddK-2-series that is generated
by the privacy mechanismgDK on a graphG, as defined in Theo-
rem 1, the estimated error ongDK can be computed as the expected
randomization in generatinggDK.

We now quantify the expected randomization ingDK:

m
X

i=1

E[(D̃K(G)i − dK(G)i)
2] = mE[Lap(

SdK−2

ǫ
)2]

Using Lemma 1 and thatm = O(d2
max)we have:

mE[Lap(
SdK−2

ǫ
)2] = mV ar(Lap(

dmax

ǫ
)) =

2m · d2
max

ǫ2
= O(

d4
max

ǫ2
).

This asymptotical bound shows that the noise injected bydK-PA
into dK-2 scales with the fourth-degree polynomial ofdmax. This
result implies that synthetic graphs generated bydK-PA will have
relatively low accuracy because of the large error introduced by the
perturbation process. Furthermore, it implies that even for rela-
tively weak privacy guarantees,dK-PA will introduce large errors
that may significantly change the structure of the resultingsynthetic
graphs from the original.

3.3 Validation on Real Graphs
At this point, we have demonstrated analytically that the impact

of adding noise to thedK-2-series usingdK-PA will result in syn-
thetic graphs that deviate significantly from the originals. In this
section, we empirically evaluate the impact of adding noiseto the
dK-2-series by executingdK-PA on real graphs.

Methodology. To illustrate that our system is applicable to
different types of graphs, we select a group of graphs that include
social graphs from Facebook [41, 43], a WWW graph [3] and an
AS topology graph [38] crawled on Jan 1st, 2004, which have
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Figure 3: The noise required for different privacy levels quantified as the Euclidean distance between a graph’s original and per-
turbed dK-2 series.

been used in prior graph mining studies [28]. The social graphs
were gathered using a snowball crawl of the Facebook regional net-
works [43], and show graph metrics highly consistent with Face-
book graphs generated using unbiased sampling techniques [21].
Table 1 lists the graphs used in our evaluation, which range from
14K nodes to 650K nodes.

We extract thedK-2-series for each graph, introduce noise using
thedK-PA strategy, then compute the Euclidean distance between
the perturbeddK-2-series and the original as a measure of the level
of graph structural error introduced. We computed results for all
graphs in Table 1, and they are consistent. For brevity, we limit
ourselves to report results only for the AS graph, the WWW graph,
and the Russia Facebook graph. We choose Russia to represent
our social graphs because its results are representative ofthe other
graphs, and its size does not result in extremely long run time for
our experiments.

Results. Figure 3 shows that thedK-PA strategy produces a
large error for small values ofǫ (i.e. strong privacy guarantees). We
compute the error as the Euclidean distance between the original
dK-2-series and the perturbeddK-2-series withdK-PA strategy.
As we mentioned, the low level of accuracy is due to the large noise
dK-PA injects intodK-2, resulting in a perturbeddK-2 that is
significantly different from the original. The bright side is that the
dK-PA strategy is robust across different datasets, and the error
decreases exponentially asǫ grows, which is shown by the linear
correlation in the log-log scale plot of Figure 3.

The high error is largely due to the high sensitivity of our func-
tion dK-2. To understand the potential lower-bound on the error,
we imagine a scenario where if we had a function with sensitivity
of 1, then we could achieve much lower error, plotted in Figure 3
as theIdeal line. Note that this line is a hypothetical lower bound
that is only meant to demonstrate the impact of thedK function’s
sensitivity on the final result. Indeed, Figure 3 shows that the loss
in accuracy of our model can largely be attributed to the sensitivity
of thedK-2 series.

4. PRIVACY VIA PARTITIONING
The results in the previous section demonstrate the loss of accu-

racy in the perturbeddK-2-series after adding noise to guarantee
ǫ-differential privacy. In this section we propose a novel algorithm
called Divide Randomize and Conquer (DRC) that enables more
granular control over the noise injected into thedK-2-series. This
qualifies DRC to supportǫ-differential privacy while also allowing
for more accurate results. First, we discuss the design of DRC and
prove that it does guaranteeǫ-differential privacy. Next, we inves-

tigate the amount of error introduced with this approach, and show
that DRC requires significantly less noise thandK-PA to achieve
an equal level of privacy. Finally, we propose an optimized ver-
sion of DRC, called LDRC, and empirically verify the improved
accuracy of our algorithms using measured graphs.

4.1 Divide Randomize and Conquer Algorithm
Our goal is to develop an improved privacy mechanism that sig-

nificantly reduces the amount of noise that must be added to achieve
a given level ofǫ-privacy. While we cannot change the fact that
the sensitivity ofdK-2 scales withdmax, our insight is to parti-
tion data in thedK-2-series into a set of small sub-series, then ap-
ply the perturbation independently to achieveǫ-privacy within each
sub-series.

If we carefully perform the partitioning to group together tuples
with similar degree, we effectively reduce the value ofdmax for
each of the vast majority of sub-series. This means we can achieve
ǫ-privacy on each sub-series for a fraction of the noise required
to achieveǫ-privacy across the entire series. We will then prove
that ǫ-differential privacy holds across the entiredK-2-series if it
holds for each of the partitioned sub-series. Thus, we produce an
alternative algorithm that achieves the same level of privacy asdK-
PA, while introducing significantly less noise.

We instantiate our ideas as the Divide Randomize and Conquer
algorithm (DRC). The core steps of DRC are:

1. Partition (Divide) thedK-2-series into sub-series with spe-
cific properties;

2. Inject noise into each sub-series (Randomize);
3. Conquerthe perturbed sub-series into a singledK-2-series.

In the remainder of this section we discuss the partitioningstep
of DRC. We first define an ordering function ondK-2 to sort tu-
ples with similar sensitivity. The ordereddK-2 is then partitioned
into contiguous and mutually disjoint sub-series. We provethat the
properties of these sub-series lead to the definition of a novel sen-
sitivity function and consequently to a novel methodology to add
noise. Noise injection, conquering, and the resulting error analysis
are discussed in Section 4.2.

∂ ordering on dK-2. The dK-2-series is sorted by group-
ing dK-tuples with numerically close pairs of degrees. In partic-
ular, thedK-tuples are sorted in the newdK-2 series, namedβ-
series, by iteratively selecting from the original series all the tuples
{dx, dy ; k} with degrees(dx & dy) ≤ i, ∀ i ∈ [1, dmax]. Thus,
the β-series is simply the sorted list ofdK-tuples that adhere to
the above inequality ordering. For example, the tuple{1, 2; k} is



closer to{5, 5; k′} than to{1, 8; k′′}. We can formally describe
this transformation with the following function:

DEFINITION 3. Let∂ be the sorting function ondK-2 which is
formally expressed as:

∂(i) = min
dx,dy∈dK

{max(dx, dy) ≥ max(dx′ , dy′) = ∂(i − 1) }

Note that{dx, dy; k} 6= the firsti−1 tuples. Thus, the∂ function is
a transformation ofdK-2 such that∂ : ℑ → β whereβ identifies
the ordereddK-2.

Partitioning the β-Series. Theβ-series is partitioned intoem
sub-series, with the ith namedβi for i ∈ [1, em]. The partition ofβ
is based on two properties. First, the∂ ordering has to be obeyed
and thus each partition can only acquirecontiguoustuples in the
β-series. Second, each tuple can appear inone and only onesub-
series. Given the∂ ordering and the above two rules we can guar-
anteemutually disjointandcontiguoussub-seriesβi. These two
constraints are fundamental to satisfying the sensitivityproperties
we prove in the following Lemma 2 and Lemma 3.

Sensitivity of βi sub-series. The sensitivity of eachβi-series
can be studied following the same logic used to find the sensitivity
of dK-2, by quantifying the maximum number of changes that may
occur in theβi-series due to an edge change in the graphG. Due
to the∂ ordering imposed in each sub-series, we can show that the
maximum degree in eachβi plays a fundamental role in bounding
its sensitivity.

LEMMA 2. The sensitivitySβi
of a sub-seriesβi with tuple de-

grees almost equal todk + 1 is upper bounded by4 · dk + 1.

The proof of this lemma is sketched because it follows the logic
of Lemma 1. Due to the proposed∂ ordering, each sub-seriesi is
composed only of tuples where both degrees are less than or equal
to a particular integerd. The worst-case (i.e. the maximum number
of changes to the tuples in the sameβi) occurs when the tuple with
degreesd − 1 are in the same sub-series. Therefore, the maximum
number of changes occur when a new edge is added between two
nodes(u, v) both with degreed − 1, after which both nodesu
andv have degreed. Adding a new edge betweenu andv causes
dk = d − 1 entries inβi to become invalid. Each invalid entry is
replaced with new entry of degreed. Thus, the upper bound on the
total number of changes is2 ·dk deletions,2 ·dk additions, and one
new edge, with the total being4 · dk + 1.

Given the partitioning approach and the imposed∂ ordering across
sub-series, we are able to exploit further properties on theβis-
series. In particular, the sensitivity of anyβi is independent from
the location where the change occurs in the graph. Conversely, the
sensitivity of a particular partition is dependent on the tuple with
the highest degree values, as proved in Lemma 2. Therefore:

LEMMA 3. The sensitivity of anyβi is independent by the sen-
sitivity of any otherβj with i 6= j.

PROOF. The proof proceeds by contradiction from the follow-
ing assumption:the sensitivity of aβi is impacted by a change
occurring in aβj with i 6= j. Without loss of generality, assume
i < j, and∂(i′) is a tuple inβi and∂(j′) is a tuple inβj , as from
Definition 3. Assume that an edge is formed between a nodex with
corresponding tuples< ∂(i′), ∂(i′ + 1), .. > ∈ βi and a nodey
with corresponding tuples< ∂(j′), ∂(j′+1)... > ∈ βj . The maxi-
mum number of changes that can occur due to this event is bounded
by the degree values ofx andy. Let d be the new degree ofx. The
maximum number of tuples that can change inβi ared − 1 tuples

that get deleted andd that get added, which is< 2 · d. Symmet-
rically, let b be the new degree ofy so the maximum number of
tuples that can change inβj is < 2 · b. Even ifd andb are equal to
the maximum degree valuedk within their sub-series, as demanded
in Lemma 2, the number of changes involved in each sub-seriesis
2 · dk < 4 · dk + 1 which means that the sensitivity of bothβi and
βj are not mutually effected, which contradicts the hypothesis.

4.2 Theoretical Analysis
This section is devoted to the theoretical analysis of the privacy

and accuracy properties the DRC approach achieves. First, we
prove thatǫ-differential privacy can be applied to each sub-series
created during the partitioning phase of DRC. Next, we buildon
this result to prove that the individual differentially private sub-
series’ can be reunified into a completedK-2-series that is also
ǫ-differentially private. Lastly, we perform error analysis on DRC
and compare the results todK-PA.

Analyzing ǫ-Privacy in βis. We now quantify the privacy of
eachβi and prove that they satisfyǫ-differential privacy.

THEOREM 2. For each clusterβi with i = 1, .., em, let bβi be a

novel privacy mechanism onβi such thatbβi = βi +Lap(
Sβi

ǫ
)|βi|.

Then, for all sub-seriesβi andβ′
i derived from graphsG andG′

that differ by at most one edge,bβi satisfiesǫ-differential privacy if:

˛

˛

˛ ln
Pr[ bβi = s]

Pr[ bβ′
i = s]

˛

˛

˛ ≤ ǫ

PROOF. Let m∗ be the the cardinality of clusterβi. Let G′ be
a graph with at most one edge different fromG. Let sj be thejth

item of the bβi-series, that isbβi[j] = sj . Using the conditional
probability onsj we can write:

Pr[ bβi = s]

Pr[ bβ′
i = s]

=
m∗
Y

j=1

Pr[ bβi[j] = sj |s1, ...sj−1]

Pr[ bβ′
i[j] = sj |s1, ...sj−1]

Each item of the product has the firstj − 1 tuples of thebβi-
series fixed. Eachsj is the result of the Laplace noise that has
been calibrated forβi based on its sensitivity, as calculated using
in Lemma 2. The sensitivity of this function is derived underthe
assumption that the two graphs have, at most, one edge difference.
Thus, the conditional probabilities are Laplacians, whichallows us
to derive the following inequalities:

m∗
Y

j=1

Pr[ bβi[j] = sj |s1, ...sj−1]

Pr[ bβ′
i[j] = sj |s1, ...sj−1]

≤
m∗
Y

j=1

e
|cβi[j]−

c
β′

i
[j]|

σ

By definition bβi = βi + Lap(
Sβi

ǫ
)|βi| and by Lemma 2||βi −

β′
i||1 ≤ Sβi

with Sβi
≤ 4dki

+ 1. Let σi be the scale parameter
of the Laplacian noise applied in each clusteri, thus:

m∗
Y

j=1

e
|cβi[j]−

c
β′

i
[j]|

σ = e
||cβi−

c
β′

i
||1

σ

= e
||cβi+Lap(

Sβi
ǫ

)−c
β′

i
−Lap(

Sβi
ǫ

)||1
σ = e

||βi−β′
i
||1

σ ≤ e

4dmi
+1

4dmi
+1

ǫ

Finally, by applying the logarithmic function the theorem state-
ment is proved.

Theorem 2 shows that adding noise does achieve provableǫ-
differential privacy on each cluster. In particular, we prove that by
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Figure 4: Euclidean distances of thedK-2-series of differentǫ-Differential Privacy strategies on three real graphs.

only leveragingm∗ independent Laplace random variables, with

parameterλ = (
Sβi

ǫ
), it is possible to generate sufficient noise per

cluster to satisfy the privacy requirement.

Conquering ǫ-privacy into ∪i
bβi. Our next task is to leverage

the provedǫ-differential privacy of each independentbβi to guar-
antee privacy on the entire perturbedbβ-series= ∪i

bβi. In order to
achieve this goal a further step is required, shown in the following
corollary.

COROLLARY 1. The amount of information an attacker can learn
on bβi by observing anybβj with i 6= j is null.

This proof considers only two sub-series for simplicity. Given
Lemma 3, this proof can be extended to any number of clusters.

PROOF. LetA andB be two sub-series built out of our partition
strategy and letbA and bB be theirǫ-differentially private projection
as proved in Theorem 2. Finally, leta andb be events onbA and
bB, respectively. Through the Shannon Entropy Theory we quantify
the information a sub-series could exploit on another sub-series. In
particular, the Mutual Information

I( bA; bB) =
X

a,b

p(a, b) log
p(a, b)

p(a)p(b)

is the amount of information an attacker can infer onbA by ob-
serving bB. By construction the sensitivity of the sub-seriesA is
independent from the sensitivity of the sub-seriesB, as proved
in Lemma 3. This means that the sub-seriesA is perturbed by
a Laplace random process with parameterλA that is independent
from the Laplace random process acting onB, as consequence of
Lemma 2. Thus, this independence property directly impliesthat
the Mutual InformationI( bA, bB) = 0, that is, an attacker gains no
information on bA by observingbB, which concludes the proof.

The properties derived on the differentβis are sufficient to begin
the conquer phaseof our DRC approach. The goal of the con-
quer phase is to unify thebβis such that the union set inherits the
ǫ-privacy guarantees from the individual sub-series.

THEOREM 3. Given em different sub-seriesbβi with i = 1, ..., em,
the result of the DRC conquer strategy∪iβi satisfies theǫ-differential
privacy property.

PROOF. The DRC strategy producesem ǫ-differentially private
sub-seriesbβi, as proved in Theorem 2. Eachβi satisfies Lemma 2

and Lemma 3, and any combination ofbβis satisfies Corollary 1.
The privacy independence property, from Corollary 1, implies that
∪i

bβi satisfies theǫ-Differential Privacy property.

Thus, we have proven that our perturbeddK-2, ∪i
bβi, satisfies

theǫ-differential privacy requirement. DRC achieves a tighterbound
on noise thandk-PA due to the properties from Lemmas 2 and 3.

Error Analysis. We now quantify the error introduced todK-
2 via our DRC strategy. Error analysis on DRC is complicated
because our algorithm does not specify the number of clusters to
generate during partitioning. Instead, our clustering approach is
general, and covers any possible set of cuts on theβ-series such
that the resulting sub-series differ in cardinality and sensitivity from
each other, so long as they respect Lemmas 2 and 3. Therefore,in
order to provide an error analysis that covers any possible cluster-
ing of theβ-series we have to study both the lower and the upper
bound of the error injected into those series.

DEFINITION 4. The error estimation of the union of thebβis un-
der the∂ ordering ondK-2 of a graphG can be computed as the
expected randomization in generatingbβ = ∪i

bβi.

The expected randomization inbβ is quantified as

em
X

i=1

E

0

@

X

j

( bβi[j] − βi[j])
2

1

A =
em

X

i=1

|βi|E[Lap(
Sβi

ǫ
)2]

The lower bound is found when eachSβi
have the same mini-

mum value, which is1, and thus

em
X

i=1

|βi|E[Lap(
Sβi

ǫ
)2] ≥ d2

maxV ar(Lap(
1

ǫ
)) = Ω(

d2
max

ǫ2
)

Note that the considered minimum,i.e. 1, happens only when a
graph of nodes with zero degree is considered, and after adding an
edgeSβ is 1. The upper bound is found when eachSβi

have the
maximum value that, as proved in Lemma 2, isO(dmax), and thus

em
X

i=1

|βi|E[Lap(
Sβi

ǫ
)2] ≤ d2

maxV ar(Lap(
dmax

ǫ
)) = O(

d4
max

ǫ2
)

The worst-case error level of DRC is equal to that ofdK-PA.
However, depending on graph structure, the error level can decrease

down toΩ(
d2

max

ǫ2
). As we demonstrate in the next section, real

graphs exhibit error rates towards the lower bound. Thus, inprac-
tice, DRC performs much better thandK-PA.
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Figure 5: Degree distribution of three real measured graphs, i.e. Russia, WWW and AS, each compared to thedK-synthetic graph
without noise and Pygmalion synthetic graphs with different ǫ values.
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Figure 6: Assortativity of three real measured graphs,i.e. Russia, WWW and AS, each compared to thedK-synthetic graph without
noise and Pygmalion synthetic graphs with differentǫ values.

4.3 Evaluating and Optimizing DRC
To quantify the improvement DRC achieves over thedK-PA

strategy, we compare the results of applying each algorithmon our
graphs. As before in Section 3.3, we quantify error using theEu-
clidean distances between each of theirdK-2-series and thedK-2-
series of the original graph. As seen in Figure 4, DRC reducesthe
Euclidean distance by one order of magnitude for different graphs
and a range ofǫ values. As is the case fordK-PA, error introduced
by DRC decreases exponentially as the value ofǫ increases, which
is clear from the linear correlation in the log-log scale plot of Fig-
ure 4.

Further Optimization with LDRC. Despite its improvement
over dK-PA, DRC is still quite far from the idealized function in
terms of error (see Figure 4). We apply a prior result from [25]
that proves how to use isotonic regression [6],i.e. evenly “smooth”
out the introduced noise across tuples, without breaking differential
privacy properties. This technique enables a reduction of the error
introduced in thedK-2-series by another constant factor.

Formally, given a vectorp of lengthp∗, the goal is to determine
a new vectorp′ of the same length which minimizes theL2 norm,
i.e. ||p − p′||2. The minimization problem has the following con-
straints:p′[i] ≤ p′[i+1] for 1 ≤ i < p∗. Letp[i, j] be a sub-vector
of lengthj − i + 1, that is:< p[i], ..., p[j] >. Let defineM [i, j] as
the mean of this sub-vector,i.e. M [i, j] =

Pj

k=i p[k]/(j − i + 1).

THEOREM 4. [6] The minimumL2 vector,p′, is unique and is
equal top′[k] = gMk, with:

gMk = minj∈[k,p∗]maxi∈[1,j]M [i, j]

We apply this technique on the set of all tuples produced by
DRC. We refer to it as theL2 minimization Divide Randomize and
Conquer algorithm, or LDRC. We include LDRC in our compari-
son of algorithms in Figure 4, and see that LDRC provides roughly
another 50% reduction in error over the DRC algorithm. Sinceit
consistently outperforms our other algorithms, we use LDRCas the
algorithm inside the Pygmalion graph model.

Implications. Finally, we note that our DRC partition tech-
nique is general, and has potential implications in other contexts
where it is desirable to achieve differential privacy with lower lev-
els of injected noise. More specifically, it can serve to reduce the
amount of perturbation necessary when the required perturbation is
a function of a parameter that varies significantly across values in
the dataset.

5. END-TO-END GRAPH SIMILARITY
We have already quantified the level of similarity between real

and synthetic graphs by computing the Euclidean distances be-
tween their respectivedK-series datasets. These values represent
the distortion in the statistical representation of a graph, i.e. the
dK-series, but do not capture the ultimate impact of the added
noise on graph structure. In this section, we evaluate how well
Pygmalion preserves a graph’s structural properties by comparing
Pygmalion’s differentially private synthetic graphs against the orig-
inals in terms of both graph metrics and outcomes in application-
level tests. Strong structural similarity in these resultswould es-
tablish the feasibility of using these differentially private synthetic
graphs in real research analysis and experiments.
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Figure 7: Average path length of three real measured graphs,i.e. Russia, WWW and AS, each compared to thedK-synthetic graph
without noise and Pygmalion synthetic graphs with different ǫ values.
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Figure 8: Reliable Email (RE) experiment run on three real measured graphs,i.e. Russia, WWW and AS, each compared with the
dK-synthetic graph without noise and Pygmalion synthetic graphs with different ǫ values.

5.1 Graph Metrics
Our evaluation includes two classes of graph metrics. One group

includesdegree-based metricssuch as: Average Node Degree, De-
gree Distribution, Joint Degree Distribution and Assortativity. These
are basic topological metrics that characterize how degrees are dis-
tributed among nodes and how nodes with particular degree con-
nect with each other. The second group includesnode separation
metricsthat quantify the interconnectivity and density of the over-
all graph. This group includes metrics such as Graph Diameter,
Radius and Average Path Length.

For our evaluation purposes, we always use our most advanced
algorithm, i.e. Pygmalion LDRC. We only focus on Pygmalion
LDRC, because there are practical problems in generating large
graphs fromdK values after significant noise has been added. As
shown earlier, thedK-PA model introduces the highest noise. In
fact, errors introduced bydK-PA are so large that the generator
fails when trying to generate large graphs with the resulting noisy
dK distributions.

We generateǫ-private graphs forǫ ∈ [5, 100], and compare the
graph metrics of the resulting synthetic graphs against those of the
original graph, and a synthetic graph generated by thedK model
with no additional noise added. We limit ourselves toǫ-private
graphs withǫ ∈ [5, 100] because of two reasons. First, we aim
to find theǫ value that contributes to a smallest noise such that it
is statistically similar to the synthetic dK-2 graph with noprivacy
enforced. This way, we can indirectly quantify the level of privacy
introduced by a pure synthetic graph with no additional steps taken
to improve privacy. This by itself is a potentially interesting result.

In particular, we obtain this property only whenǫ is equal to100.
Second, thedK-2 distribution is a very sensitive function and it
naturally requires a high level of noise to provide strong levels of
privacy guarantees. Unfortunately, very small values ofǫ require
larger noise values, thus producing synthetic graphs that are ex-
tremely different in structure from the original. Finally,for ǫ < 1,
the required noise level is so high for larger graphs, that the dK
graph generator fails to produce synthetic graphs that match the re-
sultingdK distributions. This is clearly a limitation of the current
system, one that we hope will be removed with the discovery of
less sensitive models and optimization techniques to further reduce
noise required forǫ-differential privacy.

As we mentioned, our results are highly consistent across our
pool of graphs (Table 1), and we only report experimental results
on three graphs: the Russia Facebook graph, the AS graph and the
WWW graph.

Degree-based Metrics. These metrics are fundamental in un-
derstanding the statistical properties of node degrees andhow nodes
connect to each other to form specific topological structures. Out
of the four metrics mentioned above, we report results for Degree-
Distribution (which supersedes average node degree) and Assorta-
tivity (which is related to joint degree distribution).

Degree Distributions. Figure 5 compares the node degree CDFs.
For each of the Russia, WWW, and AS graphs, the degree distribu-
tions of both the Pygmalion (ǫ=100) graph and thedK-synthetic
graph very closely match the degree distribution of the original
graphs. When we increase the strength of the privacy guarantees,
i.e. smallerǫ values of5 and10, the accuracy of the synthetic de-



gree distribution progressively decreases. For example, both the
Russia and WWW graphs show a small deviation from the original
distribution even forǫ = 5. Across all models for these two graphs,
the worst-case degree distribution deviation is still within 10% of
the original.

The AS graph, on the other hand, shows a slightly different be-
havior. For smallǫ values,i.e. ǫ = 5 and ǫ = 10, the largest
error is within35% from the original graph values. The AS graph
shows a different behavior because a small number of high degree
nodes connect the majority of other nodes. Thus, when the privacy
perturbation hits those high-degree nodes, it can produce structural
changes that send ripples through the rest of the graph.

Assortativity. Figure 6 reports the results of the assortative met-
ric computed on both real and synthetic graphs for each of thethree
graphs (Russia, WWW and AS). The assortativity metric describes
the degree with which nodes with similar degree are connected to
each other. Positive assortativity value denotes a positive correla-
tion between the degrees of connected nodes, and negative values
indicate anti-correlation. Note that both the WWW and AS graphs
show negative assortativity (Figure 6(b) and Figure 6(c)).

As with the degree distribution results, for each of our graphs
(Russia, WWW, and AS), assortativity results from synthetic graphs
for ǫ = 100 and those from thedK-series closely match results
from the original graphs. As we increase the level of privacypro-
tection, the results get slightly further from the originalvalues. For
example, usingǫ = 5 on Russia produces an error less than0.05
on the assortativity value. The sameǫ value for the WWW graph
produces negligible error on assortativity. Assortativity results on
the AS graph are also consistent with degree distribution results.
Under high privacy requirements,i.e. ǫ = 5, error on assortativity
reaches0.12.

Node Separation Metrics. For brevity, we report only the
Average Path Length as a representative of the node separation
metrics. Figure 7 shows the Average Path Length (APL) values
computed on Russia, WWW and AS compared to the APL values
on their synthetic graphs. On Russia and WWW, APL results de-
note a moderate level of error (higher when compared to results
for the earlier graph metrics). We can see that the error is mainly
introduced by the impreciseness of thedK-model, since the syn-
thetic graph from thedK-series with no noise shows the same er-
ror. In comparison, the error introduced by strengthening privacy
(and hence decreasingǫ) is relatively small. This is encouraging,
because we can eliminate the bulk of the error by moving from
dK-2 to a more accurate model,e.g.dK-3.

As with previous experiments, the AS graph shows a slightly
different behavior. In this case, all of our synthetic graphs do a
good job of reproducing the average path length value of the AS
graph.

Summary. Our experimental analysis shows that synthetic
graphs generated by Pygmalion exhibit structural featuresthat pro-
vide a good match to those of the original graphs. As expected,
increasing the strength of privacy guarantees introduces more noise
into the structure of the synthetic graphs, producing graphmetrics
with higher deviation from the original graphs. These observations
are consistent across social, web, and Internet topology graphs.

Overall, these results are very encouraging. They show thatwe
are able to effectively navigate the tradeoff between accuracy and
privacy by carefully calibrating theǫ values. The fact that signifi-
cant changes inǫ values do not dramatically change the graph struc-
ture means owners of datasets can guarantee reasonable levels of
privacy protection and still distribute meaningful graphsthat match
the original graphs in structure.

5.2 Application Results
For a synthetic graph to be usable in research, ultimately itmust

produce the same results in application-level experimentsas the
original graph it is replacing. To quantify the end-to-end impact
of trading graph similarity for privacy protection, we compare the
results of running two real world applications on both differentially
private synthetic graphs and the original graphs. We implement two
applications that are highly dependent on graph structure:Reliable
Email (RE) [20] and Influence Maximization [11].

Reliable Email. RE [20] is an email spam filter that relies on a
user’s social network to filter and block spam. One way to evaluate
the security of RE is to compute the number of users in a network
who can be spammed by a fixed number of compromised friends
in the social network. This experiment depends on the structure of
the network, and is a useful way to evaluate whether Pygmalion
graphs can be true substitutes for measurement graphs in research
experiments.

Figure 8 shows the portion of the nodes flooded with spam as we
increase the number of malicious spammers, using differentgraphs
as the underlying social network topology. We show results on the
usual three graphs, Russia, WWW and AS. On the Russia Facebook
graph, all synthetic graphs closely follow the original graph. Even
in the case of the strongest privacy setting,i.e. ǫ = 5, the difference
between the synthetic graph result and those of the originalis at
most10%. For both the WWW and AS graphs, all synthetic graphs
with and without noise produce results within20% of the original
graphs.

Influence Maximization. The influence maximization problem
tries to locate users in the network who can most quickly spread
information through the network. This problem is most commonly
associated with advertisements and public relations campaigns. Eval-
uating a solution to this problem includes two steps. First,the so-
lution must identify the nodes who can maximize influence in the
network. Second, it must model the spread of influence through the
network to quantify how many users the influence has ultimately
reached.

For our purposes, we use a recently proposed heuristic for in-
fluence maximization that minimizes computation. The heuristic
is called the Degree Discount method [11], and is able to find the
most influential nodes, called “seeds,” on a given graph. Starting
from those seed nodes, we run three different influence dissemina-
tion models: Linear threshold (LT), Independent Cascade (IC) and
Weighted Cascade (WC), to determine the total number of users in
the network influenced by the campaign. We use source code we
obtained from the authors. However, significant memory overhead
in the code meant that we had to limit our experiments to smaller
graphs. Therefore, we use the MontereyBay Facebook graph and
the AS network topology graph in this experiment.

For both AS and MontereyBay graphs and each of the three influ-
ence dissemination models, Figure 9 shows the expected number of
influenced nodes when increasing the number of initial seed nodes.
While the actual percentage of users influenced varies across dis-
semination models, there are clear and visible trends. Results on
the AS graph in Figures 9(a), 9(b), 9(c) all show that Pygmalion
with ǫ = 100 and thedK-synthetic graph without noise are al-
most identical to the original AS graph under all three dissemina-
tion models. Graphs with stronger protection, Pygmalionǫ = 10
andǫ = 5, progressively diverge from the results of the AS graph.
Results on the MontereyBay graph are shown in Figures 9(d), 9(e),
9(f), and are quite similar to those on the AS graph. They confirm
that Pygmalionǫ = 100 produces near perfect results, but higher
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(c) Weighted Cascade on AS
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(d) Linear Threshold on MontereyBay
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Figure 9: Results of the Degree Discount Influence Maximization algorithm on the AS and MontereyBay graphs, compared todK
graphs without added noise, and Pygmalion synthetic graphswith different ǫ values.

privacy protection increases the deviations from results on the orig-
inal MontereyBay graph.

5.3 Summary
We have used both popular graph metrics and application-level

tests to evaluate the feasibility of using differentially private syn-
thetic graphs in research. Our tests are not comprehensive,and
cannot capture all graph metrics or application-level experiments.
However, they are instructive because they show the observable im-
pact on graph structure and research results when we replacereal
graphs with differentially private Pygmalion graphs.

Our results consistently show that Pygmalion introduces limited
impact as a result of adding noise to guarantee privacy. In fact,
many of the largest errors can be attributed to limitations of the
dK-2 series. Given the significant demand for realistic graphsin
the research community, we expect that generator algorithms for
more complexdK models will be discovered soon. Moving to
those models,e.g.dK-3, will eliminate a significant source of error
in these results.

6. CONCLUSION
We study the problem of developing a flexible graph privacy

mechanism that preserves graph structures while providinguser-
specified levels of privacy guarantees. We introducePygmalion,
a differentially-private graph model that aims these goalsusing
the dK-series as a graph transformation function. First, we use
analysis to show that this function has a high sensitivity,i.e. ap-
plied naively, it requires addition of high levels of noise to obtain
privacy guarantees. We confirm this on both social and Internet
graphs. Second, we develop and prove a partitioned privacy tech-
nique where differential privacy is achieved as a whole whenit is

achieved in each data cluster. This effectively reduces thelevel of
noise necessary to attain a given level of privacy.

We evaluate our model on numerous graphs that range in size
from 14K nodes to 1.7 million nodes. Our partitioned privacytech-
nique reduces the required noise by an order of magnitude. For
moderate to weak levels of privacy guarantees, the resulting syn-
thetic graphs closely match the original graphs in both graph struc-
ture and behavior under application-level experiments.

We believe our results represent a promising first step towards
enabling open access to realistic graphs with privacy guarantees.
The accuracy of our current model is fundamentally limited by
both the degree of descriptiveness ofdK-2 series, and the high
noise necessary to inject privacy properties. There are twoways to
improve our results. One way is to use a more descriptive, higher-
orderdK model, under the assumption that its sensitivity is rea-
sonable low. While generators for higher orderdK-models are still
unknown, our techniques are general, and can be applied to obtain
more accurate models as higher-orderdK generators are discov-
ered. Another way to improve is to discover a function (or model)
of graph structure with much lower sensitivity. If such a function
exists, it can potentially lower the noise required for a given privacy
level by orders of magnitude.
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