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1. Introduction

Network link simulation is perhaps the most common
method for evaluating application and network protocol de-
signs. Simulation enables researchers to quickly and repeat-
ably explore the behavior of a protocol under a variety of
network conditions (e.g., varying loss, delay, and error).
However, accurate results are highly dependent on realistic
network conditions being simulated. Previous work [4] ar-
gues that the use of inaccurate models leads to flaws in net-
working research. We also demonstrated the importance of
model accuracy by observing that a naive error model used
in simulation during protocol design led to a poor choice
of a protocol parameter [7]. For example, a detailed under-
standing of the packet loss process and burstiness of errors
is necessary for the proper design of error control protocols
such as Automatic Repeat reQuest (ARQ) protocols.

In modeling realistic networks, researchers face
measurements whose characteristics experience non-
stationarity (time variability) and complex patterns due to
a number of factors, including both internal network ele-
ments and external events. While classical models such as
Bernoulli, Gilbert, high-order Discrete Time Markov Chain
(DTMC), or Hidden Markov Models (HMM) have worked
surprisingly well in modeling events in traditional net-
works, they are ill-suited for handling traces from some of
today’s networks (e.g., lossy wireless channels). For exam-
ple, the Bernoulli model is a memory-less process, where
each value is generated statistically independent of pre-
vious outputs. Thus it is unlikely to produce accurate
models of networks exhibiting bursty losses such as wire-
less links. To address this, we introduce a data precon-
ditioning technique that extracts and models the station-
ary components of non-stationary datasets. We describe the
original data preconditioning model the MTA [8], and in-
troduce the Multiple states MTA (MMTA) model.

Given many traditional and new models, researchers face
the challenge of choosing the most accurate model for their
datasets. We show that datasets corresponding to different
networks experience different statistical characteristics, un-
derscoring the need to develop a tool that identifies the best
model for a given set of network characteristics. In this pa-
per we introduce a methodology we call domain analysis to

quantify the accuracy of different models, and show how to
use it to choose the best model for a given set of network
characteristics.

The paper is structured as follows. We begin with related
work in Section 2. In Section 3, we define and classify net-
work traces. We present our data preconditioning technique
in Section 4. Next in Section 5, we present domain analysis,
apply it to several real and synthetic traces, and introduce
Domain of Applicability Plots (DAP) as a tool to rapidly vi-
sualize model accuracy. We conclude with Section 6.

2. Related Work

Researchers have applied traditional models to charac-
terize the loss process of various network channels from
network traces. Bolot et al. [3] use a two-state Markov
model to characterize the loss process of audio packets to
determine the appropriate error control scheme for stream-
ing audio. Yajnik et al. [12] characterize packet loss in a
multicast network

There is also related work in wireless traffic modeling.
Nguyen et al. [10] present a two-state Markov wireless error
model and develop an improved model based on collected
Lucent 900MHz WaveLAN error traces. Balakrishnan and
Katz [1] collected similar error traces and developed a two-
state Markov chain error model. Willig et al. [11] present
a special class of Markov models, called bipartite models.
Zorzi et al. [13] also investigate the error characteristics of
a wireless channel and compare an Independent and Iden-
tically Distributed (IID) model to the Gilbert model. Our
work [7] provided a more accurate modeling technique for
datasets with regions exhibiting non-stationary behavior.

3. Defining and Classifying Network Traces

We define network traces as binary sequences, where a 1
denotes the occurrence of a specific event in the trace, and a
0 denotes its absence. In this paper, we analyze and model
network traces that capture several types of events including
IP packet losses, wireless frame errors, and packet delays.
A 1 signifies a lost packet in a loss trace and a corrupted
frame in an error trace. In a delay trace, it means that the



Trace Frames FER Lexp, EFexp, Lden

IP 1 360,385 0.027 0.034, 0.099, 0.82
WLAN E 288,804 0.063 0.044, 0.099, 0.34
WLAN D 188,436 0.293 0.046, 0.005, 0.414
GSM E 616,404 0.055 0.005, 0.056, 0.41

Table 1. Collected traces and their character-
istics: number of frames, Frame Error Rate
(FER) and the variables (Lexp, EFexp, Lden).
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Figure 1. Error trace with lossy and error-free
states.

packet or frame arrived with a delay greater than some max-
imum threshold 1. We define the Frame Error Rate (FER) as
the percentage of all frames (or packets) that have errors (or
losses, or delays).

We create models for traces collected from various net-
works and at different protocol layers (see Table 1). IP 1 is
a loss trace collected by Yajnik [12] on an uncongested IP
link from Massachusetts to Sweden. WLAN E was collected
under good signal quality conditions from an IEEE 802.11b
wireless LAN testbed at T. U. Berlin by Willig [11]. We col-
lected GSM E under poor signal quality conditions at the
Circuit-Switched Data (CSD) radio link layer of a GSM
wireless cellular network at UC Berkeley. We also collected
WLAN D at the transport layer using UDP over a good sig-
nal quality 802.11b network at UC Berkeley. This trace was
analyzes application delays introduced by a wireless net-
work, with delay threshold threshold set to 20 ms.

We analyze the traces in Table 1 and observe that they
can be decomposed into clusters of 1’s and 0’s, and long
clusters of just 0’s. We associate these clusters with lossy
states and error-free states, as shown in Figure 1. Lossy
states begin with an element of 1 and contains bursts of 1’s
and 0’s, and ends with a burst of 0’s of length equal to or
greater than a change-of-state variable C. The next 0 ele-
ment following the burst of C 0’s marks the beginning of an
error-free state, which is terminated by the 0 preceding the
next 1 element in the trace. The value of C is a design pa-
rameter that determines the maximum number of consecu-
tive 0’s in a lossy state. The optimal value of C is calcu-
lated in Section 4, such that the regions of lossy states expe-
rience stationary behavior (i.e., the statistics do not change

1 The threshold value is application-specific and it indicates the delay
value for which the packets will be dropped by the application.

over time for a given window size). See [7] for a formal dis-
cussion on stationarity of network traces.

In [7], we observed that the length distributions of lossy
and error-free states can be approximated with an exponen-
tial distribution function, where the smaller the exponential
parameter, the larger the average cluster length. Based on
this observation, we characterize collected traces using a tu-
ple of three variables (Lexp, EFexp, Lden), where Lexp and
EFexp are the parameters of the lossy and error-free state
length exponential distribution, and Lden is the error den-
sity in the lossy state (i.e., the probability of getting a 1 in-
side a lossy state).

4. Modeling through Data Preconditioning

In this section, we begin by describing two classical
stochastic models. We then present our data precondition-
ing methodology for accurately modeling networks exhibit-
ing non-stationary behavior. Data preconditioning prepro-
cesses trace data into stationary subsets, then models them
and their relationships with other subsets.

4.1. Classical Models

We describe two classical stochastic models that we use
as our basis for comparison. One is the popular Gilbert
model, which is a Markov process of memory size one. The
other is the Hidden Markov Model (HMM) [9].

The Gilbert model is a popular model for network sim-
ulation. It is a DTMC of order one and has two states. In
a network trace, the Gilbert model states correspond to the
status of each data frame {0,1}, as previously defined. It
predicts the state of the next frame by only considering the
previously received frame. As a result, the Gilbert model
can only model relatively short bursts of an event.

Popular opinion holds that a HMM model is appropri-
ate to model the non-stationary characteristics of empirical
traces. In a HMM, each data pattern is associated with a hid-
den state, giving the HMM its main advantage: the ability to
model non-stationary processes. The model parameters in a
HMM are the transition probabilities between hidden states,
the memory of the process, and the conditional probabilities
of the observations given the current state. In a HMM, the
current observation is statistically independent of the previ-
ous observations and only depends on the current state. This
is known as the output independence assumption.

To model our network traces, we choose a two-hidden-
state 4th order hidden Markov model. The states correspond
to the lossy and error-free states defined in Section 3, while
the observation symbols correspond to the status of the data
frame {0, 1}. By using a high order of 4 in HMM to account
for correlations between consecutive states, we are compar-
ing our models against the most accurate results of a HMM
at the cost of higher computational complexity.
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Figure 2. Data preconditioning: a trace de-
composed into three subtraces, each is a
concatenation of a specific data pattern.

4.2. Data Preconditioning and the MTA Model

Data preconditioning is a way to more accurately model
networks with non-stationarity behavior, by analyzing and
preconditioning data before it is fed into traditional mod-
els. Intuitively, we use pattern recognition to break down
datasets that experience non-stationarity into subsets that
exhibit stationary behavior, and model the resulting sub-
sets. We illustrate the process in Figure 2. First, we iden-
tify data patterns that exhibit stationarity and suggest an un-
derlying process consisting of some number of states. Each
state is associated with a specific data pattern correspond-
ing to a particular network behavior 2. Second, we concate-
nate trace regions with same states to form stationary sub-
traces of the original trace, which are then modeled using a
high-order DTMC. Finally, we use Markov models (or sim-
ilar techniques) to calculate the transition probabilities be-
tween states.

This methodology was first used in the Markov-based
Trace Analysis (MTA) model [7]. As an application of data
preconditioning, the MTA model identified only two states,
the lossy and error-free states described in Section 3.

In decomposing a trace into a subtraces, an important de-
sign decision is the choice of the change-of-state variable C
introduced in Section 3. To determine the optimal C, we
generate and test a set of candidate values. For each possi-
ble value, we generate lossy subtraces and test their station-
arity, finally choosing the largest C value that still generates
stationary subtraces.

To test for stationarity in a trace, we used the Runs Test
developed by Bendat and Piersol [2]. The Runs Test com-
putes the median run (i.e., error bursts) value of a lossy sub-
trace, divides this subtrace into equal size segments, and
plots a histogram of runs not equal to the median value in
each segment. Too few or too many runs is a sign of non-
stationarity. If a subtrace is stationary, 90% of runs fall be-
tween the range of 0.05 and 0.95. We demonstrate the al-
gorithm using the GSM E trace (see Table 1). We use sim-
ple estimation to narrow down the value of C to a small
range [7], in this case, between 21 and 25. We generate sub-
traces for each value in the range, and perform the Runs Test

2 Each network behavior has certain statistical properties.

on them. The resulting runs distributions for 21, 22, 23, 24
and 25 are 91.4, 91.5, 90.5, 90.7 and 89.3. Therefore, we
choose C to be 24.

Given C, we identify lossy and error-free states and con-
struct the lossy and error-free subtraces. The MTA then
models the lossy subtrace as a DTMC and computes the
memory and transitions probabilities. The MTA models the
length of both states by fitting the states lengths distribu-
tions to an exponential distribution function and computes
the closest fit parameters. It plots the Cumulative Distribu-
tion Function (CDF) of the empirical trace with exponen-
tial distributions using parameter values ranging from 0 to
1 in steps of 0.001. MTA then chooses the exponential pa-
rameter that yields the CDF closest to the empirical CDF,
by calculating the correlation coefficient (cc) [2] between
the CDFs. A cc of 1 signifies a perfect match between two
CDFs, while 0 indicates no statistical correlation.

4.3. The Multiple States MTA Model

We now introduce our new data preconditioning algo-
rithm, the Multiple states MTA (MMTA). Unlike the MTA,
the MMTA is capable of modeling traces with two or more
states. The MMTA views each stationary region as a state,
and models the transition among states with a higher order
DTMC. Using data preconditioning, the MMTA algorithm
concatenates subtraces from each of the same states encoun-
tered in the original trace to form subtraces, and then mod-
els each subtrace with a higher order DTMC.

We summarize the steps of the MMTA algorithm:

• Similar to the MTA, MMTA first identifies the states
in the original trace and creates subtraces by concate-
nating similar states together. The MMTA models the
lossy subtrace as a DTMC, and calculates its order and
transition probabilities. It then models the error-free
state as a deterministic process.

• MMTA determines the transitions between error-free
and lossy states. It first creates a state trace corre-
sponding to the collected dataset (e.g., GSM E trace),
with lossy states replaced by all 1’s and error-tree
states remaining replaced by all 0’s. It then models
the state trace as a DTMC, and calculates its order and
transition probabilities.

5. Domain Analysis

While data preconditioning models are designed for non-
stationary traces such as those from wireless networks, they
might not perform as well on traditional network traces,
such as those from wired IP. With many available mod-
els (Bernoulli, Gilbert, Higher-order Markov, HMM, MTA,
MMTA), protocol designers face the challenge of choosing
the most accurate model for each trace.



Trace Gilbert HMM MTA MMTA
IP 1 0.99, 0.98 0.99, 0.66 0.72, 0.95 0.99, 0.98
WLAN E 0.92, 0.74 0.73, 0.51 0.99, 0.87 0.99, 0.73
WLAN D 0.93, 0.80 0.29, 0.37 0.99, 0.54 0.98, 0.95
GSM E 0.74, 0.92 0.89, 0.92 0.99, 0.96 0.99, 0.94

Table 2. Artificial traces and their cc’s (error
burst CDF, error-free burst CDF).

We now describe domain analysis, a way to choose the
most accurate model for a given trace by quantifying the ac-
curacy of each model applied to it. To choose the best model
for trace T , we apply each model to extract a set of defin-
ing model parameters, generate artificial traces based on
those parameters, and compare the artificial traces against
T . To measure their accuracy, we plot the error and error-
free burst CDFs for each artificial trace. We then calculate
the correlation coefficient (cc) (see Section 4) between the
CDF of T and the CDF of the artificially trace. We use the
cc as a measure of how closely the distribution of each arti-
ficial trace approximates the original trace distribution. We
list the cc values for the error and error-free bursts CDF of
the traces in Table 2. While we have verified the useful-
ness of cc as a measure of modeling accuracy, we refer the
reader to [6] for more detailed analysis.

5.1. Application to Real Traces

To validate our domain analysis approach, we apply it to
our real traces shown in Table 1 to determine the best model
for each trace. For our experiment, we choose two classi-
cal models (Gilbert and 4th order HMM) and two data pre-
conditioning algorithms (MTA and MMTA). For each real
trace, we generate a set of artificial traces, each generated
from model parameters for a single model. We then quan-
tify the correlation coefficient (cc) between the CDFs of the
original traces and the CDFs of the artificial traces. We show
the results in Table 2.

The results show that different models have varying de-
grees of success in capturing the statistical properties of
different metrics for different networks. The Gilbert, the
HMM, and the MMTA models perform well when mod-
eling wired IP networks. Classical models accurately cap-
ture error bursts in wired networks, but are fairly inaccurate
at modeling wireless networks. Data preconditioning mod-
els perform well at modeling many of the networks, espe-
cially the error burst portions.

5.2. Domain of Applicability Plots

In addition to applying domain analysis on real traces,
we want to see how it can be used to choose models for
a wide variety of traces. To this end, we generate a large
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Figure 3. Optimal model for Lden=0.2.
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Figure 4. Optimal model for Lden=0.7.

number of synthetic traces by varying the three parameters
(Lexp, EFexp, Lden), defined in Section 3. We then use do-
main analysis to determine the best model for each trace.

We want to generate Domain Applicability Plots (DAP)
that show the most accurate model for each combination of
Lexp, EFexp, and Lden, where the best model is defined as
the model with a corresponding maximum average cc value
for the error and error-free bursts. Since we cannot show
three-dimensional plots, we choose two representative val-
ues for Lden (0.2 and 0.7), and perform experiments that
vary across the Lexp and EFexp parameters, both varying
from 0.001 to 0.1 in steps of 0.001.

We use the fixed Lden values to generate Bernoulli
process-based random errors inside the lossy state. This
means that inside a lossy state the occurrence of errors are
memoryless (i.e., the next frame’s value does not depend
on the previous frame). Using a Bernoulli process to gener-
ate errors, for small values of Lden, biases the domain anal-
ysis results towards the simpler Gilbert model and against
complex higher order models. However, as the value L den



Optimal Model Region
Lden = 0.2 Lden = 0.7

Model Gilbert MMTA MTA MMTA
Gilbert 0.99 0.96 0.90 0.92
HMM 0.90 0.92 0.64 0.77
MTA 0.89 0.82 0.99 0.97
MMTA 0.98 0.97 0.99 0.98

Table 3. Correlation coefficient for each Lden

value (0.2,0.7) and each optimal region.

increases, so does the likelihood of occurrence of multi-
ple consecutive errors. Since most real network traces ex-
perience some degree of memory, their domain analysis
would yield results that were strongly biased towards mem-
ory process-based models. Thus we generate a wide range
of traces to explore the full capacityof domain analysis.

We determine the lossy and error-free bursts lengths by
using the inverse transformation method [5]. Given a ran-
dom variable X with a CDF F (x), the variable u is uni-
formly distributed between 0 and 1. We can generate a
sample value of X by generating u and calculating x =
F−1(u). For an exponential function with parameter α,
u = F (x) = 1 − e−αx. Thus, we can determine x from
x = −ln(u)/α.

Figures 3 and 4 show the DAPs for Lden values of 0.2
and 0.7, respectively. Note that for Lden = 0.2, the Gilbert
model is best for a large portion of the graph. The result
is as expected, because of the use of a Bernoulli process
to generate losses in the lossy state. The error burst length
is relatively small and the Gilbert model is the best choice
for many points. However, as the probability of error in the
lossy state Lden increases, the error burst length increases
and the MMTA and MTA become better choices.

Further examination shows that the mean cc value in this
area for the Gilbert model is 0.99 and 0.98 for the MMTA
model (see Table 3). Thus, even where the Gilbert yields
the best results, the M 3 also performs very well. For the re-
gion where the MMTA is optimal, the mean cc value for
the M 3 model is 0.97, while the mean cc for the Gilbert is
0.96. We have showed that cc values smaller than or equal
to 0.96 yield inaccurate models [6]. Therefore, for this net-
work with Lden = 0.2, using the M 3 model always yields
highly accurate models, while the Gilbert model only per-
forms best for a subset of the network parameter space.

Next, we examine the model choices for a high value of
Lden, 0.7. For this value, almost the entire DAP diagram
is dominated by MMTA, with a mean cc value in this re-
gion of 0.98. While the MTA’s mean cc was a high 0.97,
both the Gilbert and HMM perform very poorly. We be-
lieve that this result demonstrates the inability of traditional
models to capture the long error bursts inside lossy states.
In contrast, data preconditioning models can accurately cap-

ture both low and high error densities inside lossy states.

6. Conclusion

Our work seeks to aid network and application protocol
developers in developing and choosing appropriate models
for network simulation. We introduce our data precondition-
ing methodology for modeling non-stationary datasets, and
present the new Multiple states MTA model (MMTA). We
show that it is better in capturing error burst statistics than
classical models and more consistently accurate across dif-
ferent networks than our previous MTA model.

In addition, we propose a domain analysis methodology
to evaluate the accuracy of models and to choose the best
models for a given network. The primary conclusion from
our analyses is that classic modeling techniques work well
for some, but not all wired networks. However, when mod-
eling delay and losses in wireless networks, the data pre-
conditioning approaches are more accurate.
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