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ABSTRACT

Dynamic spectrum access networks are designed to allow'toda
bandwidth hungry “secondary devices” to share spectruocaté&d

to legacy devices, or “primary users.” The success of thig-wi
less communication model relies on the availability of wwtispec-
trum, and the ability of secondary devices to utilize speutwith-
out disrupting transmissions of primary users. While réceea-
surement studies have shown that there is sufficient uritisedt
spectrum available, little is known about whether seconata-
vices can efficiently make use of available spectrum whilaimi
mizing disruptions to primary users.

In this paper, we present the first comprehensive study on the

presence of “usable” spectrum in opportunistic spectruoess
systems, and whether sufficient spectrum can be extractsgdy
ondary devices to support traditional networking appiars. We
use for our study fine-grain usage traces of a wide spectragera
(20MHz-6GHz) taken at 4 locations in Germany, the Netheldan
and Santa Barbara, California. Our study shows that on geera
54% of spectrum is never used and 26% is only partially usad. S
prisingly, in this 26% of partially used spectrum, secondiavices
can utilize very little spectrum using conservative acgegdigies to
minimize interference with primary users. Even assumingyatit
mal access scheme and extensive statistical knowledgenadugr
user access patterns, a user can only extract between 2030
total available spectrum. To provide better spectrum abdity,
we proposdrequency bundlingwhere secondary devices build re-
liable channels by combining multiple unreliable frequerdnto
virtual frequency bundles. Analyzing our traces, we find thare

is little correlation of spectrum availability across chats, and
that bundling random channels together can provide sestgie-
riods of reliable transmission with only short interrujpiso
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1. INTRODUCTION

Radio spectrum is perhaps the wireless industry’s mostatédu
asset. The deployment and growth of any wireless networkrt&p
on the amount of spectrum it can access. Despite its recegniz
value, current policies on spectrum distribution are highkffi-
cient. Spectrum frequency ranges are assigned statioalliy¢less
carriers in long-term leases, generally ignoring markehaieds
that vary significantly over time. Over the years, the larggarity
of frequency ranges have been assigned, leaving little foomew
technologies or growth. Meanwhile, demands for previowasy
signed frequencies have dropped significantly, leavingt meosjes
woefully underutilized at an average of 5% of capacity [16].

Opportunistic and dynamic spectrum access is a new accetsd mo

designed to “extract” unused spectrum from allocated bdietn
utilized frequencies, supporting newcomer traffic withaffi¢cting
existing owners. In this model, wireless devices that needtsum
locate and “opportunistically (re)use” unused frequencanges.
These “secondary” devices take great precaution to aveidjoli-
ing original or “primary” users, and immediately exit theduency
whenever they detect traffic from primary users. Through ¢hie-
fully planned access model, secondary devices can inceggse
trum utilization with zero or bounded disruptions to exigtiown-
ers. Note that compared to more liberal spectrum access[tilg

this “conservative” access model is easier to implementranch
more likely to gain acceptance with regulators and primaers.

The success of the dynamic spectrum access model depends hea

ily on both the availability of unused spectrum, and whetbet-
ondary devices can efficiently extract and utilize them. M/li

number of measurement studies have measured and modeled the

availability of unused spectrum [1, 5, 7, 13, 23, 24], the eom
munity has generally overlooked the second factor, androgti
cally assumed that secondary devices can always efficietilize
available spectrum. Despite its importance, little is knoabout



whether secondary devices can efficiently make use of d@laila
spectrum, given the hard constraints of avoiding disrunstitw pri-
mary users. This is understandable, since such a studyrescqg-
cess to a fine-grained measurement trace of spectrum ushigh, w
has not been available until recently.

In this paper, we present the first comprehensive study of per
formance in opportunistic spectrum access systems thétdiss
ruptions to unpredictable primary users. Our goal is to ustdad
whether dynamic spectrum access can provide reliablersjpe¢o
secondary users, while respecting hard disruption lirh@sprotect
primary user transmissions. Our study can address key omice
about the feasibility of supporting traditional networkpéipations
in this new model. We answer questions in three key areas:

(1) How much usable spectrum is available at different freqyenc
ranges? How does this availability change across time aret-sp
trum frequency?

to find that, even with accurate statistical knowledge ofnairy
user accesses, secondary devices can only extract 20—-3@% of
available spectrum under a reasonable disruption limit&bland
less than 10% of spectrum if the disruption limit drops to 1f@d-
dition, spectrum extracted from each channel is heavilyrfranted
and scattered across time. As a result, the equivalent efaavail-
able to secondary devices are highly unreliable — specteoass
on each channel is frequently interrupted, and often take40d0
seconds before being restored.

But there is hope. We propose and evaldetquency bundling
where secondary devices build reliable transmission alarioy
combining together multiple unreliable frequencies, etaby uti-
lizing frequency diversity to compensate for the lack ofaieil-
ity on individual channels. To evaluate different bundlistgate-
gies, we analyze correlation between availability pagerfdiffer-
ent 200kHz channels, and find little or no correlation (SeTbH).
This availability independence means that we can signitfigan-

(2) How much spectrum is accessible by conservative secondaryprove overall reliability by simply bundling random chahpairs

users who must avoid disrupting spectrum owners at all @osts

together. Experimental results from our datasets are giomiUs-

(3) Can we design novel spectrum access methods that allow us toing a random bundling strategy, the improvement in chareie-r

build a reliable wireless channel using unreliable dynarspec-
trum channels?

bility scales exponentially with the size of the bundle. Example,
bundling 5-10 randomly selected channels together wilicedhe

We answer these questions by performing a deep analysis of asecondary device’s blocking time by two orders of magnitudes

large collection of spectrum usage measurements. Thessumnea
ments are taken from four locations across the globe: twoen G
many, one in the Netherlands, and one in Santa Barbara, USA. E

resulting new channel enjoys average transmission peoiot20—
1300s while being occasionally interrupted by 2-4s.
Finally, we wish to understand the impact of the sweeping fre

measurement uses a spectrum analyzer to sweep a rangemf radiquency parameter in our conclusions. Are our datasets iguitig

frequencies between 20MHz and 6GHz for a period of 2—7 days,

capturing the raw energy level observed on each of the 20@ia-z
guency channels at a periodic interval of 0.65 or 1.8 secofusse
results capture, at a very fine granularity, when specifigorae-
quencies are occupied by primary users in the measurememt ar
This dataset is unique in its combination of wide frequenmyet-

age (20MHz to 6GHz), measurement length (one week for 3 of the

locations), and measurement frequency (one sweep per 0.8Br
seconds compared to 75 seconds of prior studies [7]). Waaxtr
from them spectrum occupancy traces (occupied or freesa@o
large set of frequencies, covering 5922 wireless chanmnels total
of more than 5 billion data points for analysis. While foucdtions
are in no way representative of spectrum usage in generseth
measurements do provide initial insights into whether oppuostic
spectrum access has the potential to support traditiomabnieing
applications.

Our analysis of spectrum availability (Section 3) confiratt
most assigned frequencies are heavily underutilized. ©®5922
channels analyzed, an average of 26% (or 1267 channelspaere
tially occupied (5%—-95% occupancy). We are primarily ietted
in evaluating dynamic spectrum access on these channetz si
other channels are either fully occupied (20% of our dataset
1317 channels ), or can be statically allocated as free @ann
(54%) of our dataset, or 3338 channels. We also observepbat s
trum availability varies significantly based on the frequerange
and measurement location. More importantly, short ternil atvi&
ity varies significantly across time, and both idle duratml busy
periods show high variance. This highly variable spectruaila
ability poses significant challenges to secondary devivegjng it
harder to access and utilize a channel while respecting é fiixit
of disruptions to primary users.

fine grain to capture the variability in primary user accestsgons?
If so, then secondary devices can improve their spectrulizasti
tion simply by sensing and utilizing the channel at a finemgra
larity. We use the 2nd component of our dataset (collectedllp
by us for this project) to test this theory. We find that theiarar
tions in channel availability continue at finer time scaleganing
secondary devices cannot simply improve performance biingr
at finer time scales (Section 6). Using this dataset, we adame
ine potential artifacts of using coarse time scale for oppastic
access.

In summary, our study provides a first look into the feasibil-
ity of accessing spectrum opportunistically while resperhard
limits to disruptions to primary users. We show that givea th
unpredictable nature of primary user access, current BpRGcC-
cess methods cannot provide usable channels to secondicgsie
Only by bundling multiple unreliable channels together aapro-
vide reasonable levels of reliability to network appliocat on these
devices. We also make several other observations:

e The performance of opportunistic spectrum access cannot
be determined solely from average spectrum availabilgy,
higher availability does not necessarily mean more usable
spectrum.

e Statistical knowledge of spectrum occupancy can improve
the performance of opportunistic access by a factor of 2-3.

e Frequency channels (200kHz) are mostly uncorrelated, un-
less they are frequency-adjacent. This conflicts with arprio
measurement study [7]. The difference could be attribuded t
the use of different energy detection methods, measurement
location and time granularity.

In Section 4, we use these spectrum traces to compare the per-

formance of two “optimal” opportunistic access mechanisorse
scheme where secondary devices have zero knowledge ofrgrima
user patterns, and one where secondary devices have @&cstaat
tistical knowledge of the primary user accesses [14]. Weslaoeked

2. OVERVIEW

In this section, we first provide background information qn o
portunistic spectrum access. We then describe the obgsatifzour
investigation and the datasets we use.



2.1 Opportunistic Spectrum Access

Opportunistic spectrum access involves two entities: anm
users or original owners of allocated but underutilizedfiencies,
and secondary users who seek to make use of unused speatrum, u
der the hard constraints of avoiding disruptions to primesgrs at
all costs [3, 27, 14].

Figure 1 shows a representative example of opportuniséc-sp
trum access on a partially used primary user channel. A skecgn

userx accesses the channel using a slotted sensing-then-access

mechanism. At the start of each slotsenses the channel to detect
whether any primary user is present, often using a RF enezgy d
tection [10]. If the channel is occupied,does nothing and waits
till the next slot. If the channel appears to be unugedill decide
whether to access the channel in the current slot. In ordsattsfy
hard primary user disruption limits,must carefully access the risk
of using the channel because the primary user can potgmealirn

in the middle of its transmission slot. When necessanmyill give

up using an idle channel to avoid disrupting the original ewn

2.2 Goals

By analyzing real world measurements on primary user spec-
trum usage patterns, we have three key goals. First, we wish-t
derstand the feasibility and effectiveness of opportimggiectrum
access. More specifically, we seek to examine the avaialufi
both completely unused and intermittently used spectruon.if=
termittently used channels, we also seek to examine the ranobu
spectrum actually accessible to secondary devices, ghehard
constraints of avoiding disruptions to primary users.

Second, we seek to examine the role of various design dasisio
and network factors in opportunistic spectrum accessydet the
disruption limit set by the original owners, the time graaritly of
spectrum access, and the type of information availablecorskary
devices about the original owners.

Finally, we are interested to examine practical issuesiliziag
extracted spectrum to support today’s wireless serviceaBse
the extracted spectrum is fragmented across time and fneguee
seek to identify ways to build reliable wireless transnaasirom
scattered spectrum pieces.

2.3 Datasets

We use two datasets in our analysis. They are unique in their
combination of wide frequency coverage, extensive measeme
length, and fine-grained measurement frequency.

The first dataset, used for most of the analysis, recordsethe r
ceived signal strength across 20MHz to 6GHz at three logstio
over a period of one week. Table 1 lists some of the originai-ow
ers and their frequency ranges. The measurement was perform
by the Mobnets group of RWTH Aachen University, Germany [2].
The three measurement sites were i) on a balcony of a regtent
building in Germany (GERL), ii) inside an office building irets
many (GER2) and iii) on a roof top in Netherlands (NED). Atleac
location, a spectrum analyzer repeatedly swept the 20MBEiz6
frequency range, measuring signal energy on each of thetH200k
frequency channels. The measurement uses a 1.8 seconds swe
time. That is, any two subsequent measurements on a singte ch
nel were 1.8 seconds apart. Using this dataset, we analyg2l 5
channels corresponding to the service bands listed in Table

TSUSensing [ |SU Access
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Figure 1: An illustrative example of opportunistic spectrum ac-
cess. The bold line shows the primary user (PU)’s channel oc-
cupancy. A secondary user (SU) periodically senses chanrtel
detect primary user and determine whether to access the chan
nel. A disruption occurs if the primary user returns in the mi d-
dle of secondary user transmissions.

We configured a GSM1900 digital receiver (Agilent E6454Caas
spectrum analyzer which swept the GSM frequency with a vesol
tion of 200kHz. Unlike a wide-band spectrum analyzer, ogitél
analyzer only tunes to GSM frequencies. But since it covensieh
smaller frequency range, we can increase the sweep fregienc
once every 0.65 seconds. This dataset covers 300 chanrts, w
we use in Section 6 to study the impact of time granularity pn o
portunistic spectrum access.

Preprocessing.  We preprocess our datasets to convert the re-
ceived signal strength traces to spectrum occupancy patfbusy

or idle) on each measurement channel. To do so, we use thgyener
detection method [7, 23] and select (for each 200kHz meeawme
channel) an energy threshold of -107dBm that is specifiechby t
IEEE 802.22 standard for TV bands [20]. We declare a frequenc
channel as occupied (or busy) at a given time if its measued s
nal strength is above the threshold. While service bandklame
different thresholds to protect their transmissions,efae no rea-
sonable guides on what those individual thresholds shald@bus

we apply this known threshold uniformly across differentvise
bands. For the NED location in the RWTH measurement as well as
our own UCSB measurement, we use a slightly higher thregifold
-100dBm. This is to compensate for the presence of strormjeen
floor, due to the proximity to a railway station in the case &DN
(also recommended by [23]), and the presence of metal wadls a
obstacles in the case of UCSB measurements.

In addition to using a fixed threshold, we also consider uding
namic thresholds as suggested by [7]. This is to set thehbles
for a frequency channel to be 3dBm higher than the minimum en-
ergy recorded on this channel. We found that this methodekieny
is highly sensitive to the variance in the noise floor. It aisarks
the majority of frequency channels as heavily occupied ré&foee,
we choose to use the fixed threshold for our analysis, busatje

éhreshold based on local noise characteristics, as disdussthe

above.

2.4 Assumptions

The second dataset came from our own measurements at UC We make a few assumptions in order to perform analysis on the

Santa Barbara, California, USA over a period of two weekdays
April 2010 when school was in session. The goal of these nmeasu
ments is to sample primary user access patterns at a finewtgray
than the first dataset. It contains the received energygttren the
1925-1995MHz GSM frequency band, observed in an officeetrail

measurement datasets.

First, because both measurements sweep the frequency édand s
quentially to measure a wide frequency range, they do ndticap
usage activities at time granularity smaller than the siregfime.

Thus we set secondary user’s access slot size to be the same as



Original owner TV1 Aviation Marine TV2 TV3 GSM900 UL GSM900 DL DAB
Freq. Range (MHz 41-67 109-136 157-173 175-229 471-861 890-915 935-960 -1453
Original owner Meteo GSM1800 UL GSM1800 DL DECT UMTSUL UMTSDL ISM
Freq. Range (MHz) 1675-1710 1710-1785 1805-1880 1882-1897 1920-1980 2170-2 2400-2500

Table 1: The 15 original spectrum owners and their frequencyranges (MHz) measured by the RWTH dataset.
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Figure 2: Spectrum availability of the 5622 frequency chanels measured at the NED location, averaged over a period of erweek.
The channels are ordered in the ascending order of their opetting frequencies. Each vertical line corresponds to the strum
availability of a 200 KHz channel within each of the 15 servie bands.

the sweeping time. Note that the sweeping times of our datase
(1.8 seconds for the RWTH dataset and 0.65 seconds for th&8UCS
dataset) are two orders of magnitude smaller than previces m
surements of 75 seconds [7]. We show in Section 6 that such fine
grained measurement is required to capture useful statistspec-
trum availability and usability.

Second, we capture the effect where a primary user retuthg to
channel in the middle of a slot in our calculations of the fuiyn
user disruption rate. Specifically, if an idle slot is follegvby an
occupied slot, then the primary user is likely to arrive ia thiddle
of the first slot. If the secondary user decides to transnthérfirst
slot, we flag this slot as creating a disruption to the primasgr.
We compute the primary user disruption rate as the ratioinfgmy
user busy blocks that suffer any disruption [14].

Finally, we assume that secondary users’ sensing is aecairad
that multiple secondary users coordinate their accessid &ans-
mission collision. Since our focus is on studying the impafct
spectrum usage patterns of original owners, we abstradipieul
coexisting secondary users into a single secondary linke déx
sign and overhead of optimal spectrum sensing and coorolinat
protocols, although important, are out of the scope of thisep.
We refer the reader to [3, 6, 18, 26, 27] for more details orpeoo
ative spectrum sensing and sharing.

3. SPECTRUM AVAILABILITY ANALYSIS

The performance of opportunistic spectrum access dep@ads h
ily on the sustained availability of unused spectrum. Irs théc-
tion, using the RWTH data set, we examine in detail the abgila
ity of spectrum, its dependency on frequencies and locstias
well as its temporal dynamics. In total, we analyzed a onekwe
spectrum usage patterns (busy or idle) on each of the 5622 fre
qguency channels. In the following, we first describe our figdion
overall spectrum availability across frequencies andtlona, and
then present observed temporal dynamics on instantangegs s
trum availability.

3.1 Overall Spectrum Availability

We defineSpectrum AvailabilitfSA) as the percentage of mea-
sured intervals where a channel is not occupied by existinteos
in a given time frame. While each service has its own opeagatin
channel width, in this study we treat each 200kHz measuremen
band as a single spectrum channel.

Figure 2 plots the spectrum availability measured at the NM=D
cation, for each of 5622 spectrum channels corresponditigetds
selected service bands listed in Table 1, averaged overi@dpar
one week. It shows that many spectrum channels are either com
pletely free or partially-used. Interestingly, for sometoé services
(e.g.TV3, GSM1800DL and UMTSDL), the spectrum availability
varies significantly across channels within the same servifo
further examine the impact of measurement location, Fig(ag
shows the spectrum availability measured at the three itowat
(NED, GER1, and GER?2), averaged over a period of one week and
across channels within each service band.

We make two key observations from these results. First,Ifor a
three locations, a significant portion of allocated speutisiavail-
able for secondary devices. Second, the availability sasignif-
icantly across frequencies. Very low frequencies (TV1,atan,
Marine, TV2) are heavily occupied, while others experiennty
light and moderate usage. The cellular uplink bands (GSNM200
GSM1800UL, UMTSUL) are mostly idle because their sighas ar
significantly weaker than those of downlink transmissi@mg] are
thus harder to detect even using high-end spectrum analyldew-
ertheless, we use these uplink measurements to examine&- oppo
tunistic access, assuming that secondary users take ertaup
tions on these bands to avoid disrupting primary usegspy low-
ering their transmit power.

After examining each channel in detail, we found that out of
5622 channels analyzed, 1176 channelsparéially occupiedli.e.
whose average spectrum availability is witfir5, 0.95], and 3181
channels are idlg,e. whose availability is greater than95. In
Figure 3(b), we plot the cumulative distribution of the Spem
availability across these partially occupied channelsl see that
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Figure 3: (a) The average spectrum availability of various ervice bands over the entire measurement period. The senés are ordered
in the ascending order of their operating frequencies. Amp¢ unused spectrum exists at all three locations but the avaibility varies
across locations and frequencies. (b) Cumulative distribtion of spectrum availability of all partially used spectrum channels, which

is evenly distributed between [0.05, 0.95].

their availability is evenly distributed between 0.05 an@B0 In the
rest of the paper, we will focus on these partially occupieahmels
for which we must rely on opportunistic spectrum access t@aek
unused spectrum.

3.2 Dynamics of Available Spectrum

In this section, we investigate the temporal dynamics otspe
trum availability. To understand both long- and short-téremds,
we analyze the dynamics at two different granularity levétsun-
derstand day-to-day trends, we start from dividing tranes half-
hour segments and compute for each segment the averageispect
availability. Figure 4(a) plots the resulting spectrum ikkality
observed over 6 days on three selected GSM1800DL chanribls wi
intermediate spectrum availability, one for each locatidm this
case, spectrum availability varies significantly over timed dis-
plays a weak 1-day periodicity.

Next we investigate the availability dynamics at the granty
of the measurement interval (1.8s). Figure 4(b) shows a Lt@in
snapshot of the spectrum occupancy on all the partiallylaai
GSM1800DL channels. A white strip in the figure indicateg tha
corresponding channel during this time period is idle. Teisult
clearly demonstrates that the available spectrum is fraggdeand
scattered across time. A more precise view of the chanregbiasy
durations is shown in Figure 5, for NED and GERL1. It represent
randomly selected GSM1800DL channel for a period of 1 hour be
tween 11AM and noon. In this example, the channel busy durati
varies between 1.8 seconds and 20 seconds, while the idi&atur
varies significantly between 1.8 seconds to 100 secondslafge
variance in idle durations, however, poses significantlehges to
secondary devices, making it harder to access and utilizea-c
nel while respecting a fixed limit of disruption to originaloers.
We examine this challenge and its impact in greater detadl ine
Section 4.

4. PERFORMANCE OF OPPORTUNISTIC
SPECTRUM ACCESS

Our analysis of real world measurements has demonstraged th
ample scope for opportunistic spectrum access. In thisosgct
we investigate its performance in terms of “extracting” timeised
spectrum without disrupting original owners. As illusadtin Fig-

ure 1, secondary devices sense and access spectrum ineal slott

manner. Without knowing exactly when the primary user waH r
turn, secondary devices must take great precaution andiooea
ally give up using an idle channel. As a result, they canntriaek

all the available spectrum. Using the RWTH dataset, we seek t
understand how much spectrum a secondary device can gctuall
obtain.

Specifically, our analysis answers three key questions:

e Whatis the rate of spectrum extraction? Can statisticaikno
edge on primary user spectrum usage patterns improve the
performance, and if so, by how much?

e Isthe average spectrum availability a reliable predicfehe
amount of spectrum extracted?

e What is the usability of the extracted spectrum? How long

must a secondary user wait to access a channel and how long

does the access last?

In the following, we first describe the access strategies use
our analysis, and then address these questions.

4.1 Access Strategies

Given the primary user disruption limif and the probability
density function of primary user idle duration, prior wor&shde-
veloped optimal access strategies for opportunistic spectc-
cess [14]. A secondary usersenses the channel at the start of
an access slat If the channel is busyy does nothing and waits
till the next slot. If the channel is idle; estimates the risk of ac-
cessing the current slot, using its past channel obsenstithe
primary user idle duration statistigg-) and the primary user dis-
ruption limit . Based on this risk factor; computesg*(¢), the
probability of accessing the channel at timd~ormally,¢*(¢) can
be derived as follows:

1 ifgt) >~ & @(t) =Idle
p*, ifg(t)=~" & ®(t) =Idle
0, otherwise

qt)= 1)

In this formula,®(t) is the sensing result at the beginning of time
slott (idle/busy),1/g(t) is the conditional probability that the pri-
mary user will return during time slatgiven that®(¢)=Idle. v* is
the risk threshold derived from the primary user idle timgtritbu-
tion f(-) and the primary user disruption limjt[14]. If the risk is
small (¢(t) > v*), z uses the channel. If the risk is close to the col-
lision probability (¢) = v*), = uses the channel with probability
p* derived fromf(-) andn [14], otherwise: does not access the
channel. It has been proved that using small access sletabtive
strategy is optimal and satisfies the primary user disrapiit.
The detailed derivations and proof can be found from [14].
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GSM1800DL channels (one per location). (b) The per 1.8s avability of a 1-minute snap-  portunistic access. The GER?2 result is
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white strips, is scattered randomly across time. ted.

We apply this optimal strategy to create two practical oppus- 4.2 Spectrum Extraction Rate

tic access schemes: For each partially-used channel, we measure the spectrum ex
) ) traction rate as the ratio between the amount of spectrunakct
* No knowledge-based Access (NKAJhis scheme requires  gptained by secondary devices and the amount of availaele sp

no knowledge about primary user usage patterns. Secondaryym. By default, the primary user disruption limjt0.1.
devices will access a channel with a probabilitythe pri-

mary user disruption limit) when sensing itidle, leadinguo SKA vs. NKA. Figure 6 plots, for each of the 15 services,

extraction rate aroung. This is the optimal result if the pri- the one-week average of the spectrum extraction rate. Witho

mary user idle time follows the exponential distributiod].1 any knowledge on primary user idle time, NKA's extractioterss
roughly 10% (due t@) = 0.1). SKA, on the other hand, improves

o Statistical knowledge-based Access (SKA).assumes that  the extraction rate by 2-3 times. This demonstrates thefiteoe
secondary devices have the exact statistical distribusion ~ having statistical knowledge of the primary user accestepat.

primary user idle timej(-). Such knowledge is either pro- A disappointing opservation is that even with accuratesiiat
vided by original owners or 3rd party or built by secondary ~cal knowledge on primary user access patterns, the avexage-e
devices via online/offline learning. tion rate is only 15-35%. To further explore this problem,aiso

plotin Figure 7 the cumulative distribution of SKA's exttem rate
among all the segments of partially occupied channels. Zscedl
locations, the median extraction rate is 19%, and 80% of ¢glge s
ments can produce no more than 37% extraction rate.

The low effectiveness can be attributed to two factors. 18 Th
spectrum usage patterns are highly random and hard to predic
without a reliable estimation on channel idle duration,oseary
devices are forced to be overly conservative; or 2) the acskes
used by secondary devices is too large, forcing them to lmiedy
conservative. The first reason has been confirmed by theytriam
dom distribution of primary user idle time, shown in Figure/&
related study has also confirmed the difficulty in predicpnignary
user access patterns [23]. The second reason, howeverpasim
sible to verify without the ground truth on primary user spao
usage patterns — the RWTH dataset is measured at the same 1.8s
intervals, preventing us from pinpointing the exact priynaser

We note that secondary users can schedule channel accéiss to u
lize all available spectrum if and only if they can complgtpte-
dict each primary user’s spectrum usage events. This idbahse,
however, is only feasible when the primary user displaystarele
ministic access pattern, which we did not find in our measergm
datasets. Thus we did not consider it in our analysis.

The SKA scheme requires an accurate statistical distdbudf
primary user idle time. Results in Section 3 show that theidis
tion varies significantly over time, especially within trense day.
To make a fair evaluation, we apply time-series analysiggorent
traces of each frequency channel into multiple time segsmeaich
displaying stable availability [15]. The results show thaist seg-
ments are roughly 1-2 hours in length. We then extract théststa
cal distributionf(-) of primary user idle time in each segment and
use it to implement and evaluate SKA in the same segment.
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ments only get up to 37% extraction rate disruption limit. (b) The
despite accurate statistical knowledge. user disruption limit.

arrival and departure time that are required to evaluatgénfor-
mance of systems using smaller slot sizes.

We revisit this issue in Section 6 using our own UCSB dataset
with a 0.65s sweeping time. We show that because originaémsvn
display highly random access patterns, reducing slot sieks but
does not eliminate the need for conservative spectrum sctésis
the problem of low extraction rate still remains.

Impact of Primary User Disruption Limit. The design of ac-
cess strategies implies that the primary user disruptioit has a
significant impact on the extraction rate. For example, ttieae-
tion rate of NKA scales linearly with the disruption limitoTinder-
stand this dependency for SKA, we plot in Figure 8(a) the ayer
extraction rate as a function of the primary user disruptinonit.
As expected, relaxing the disruption limit improves thecipen
extraction rate. On the other hand, the relationship beivike
two is non-linear. In fact, it can be proved that when the phib
ity of primary user returning to a channel increases moriosdiy
with existing channel idle time, SKA's spectrum extractiake is a
monotonically increasing and concave function of the primeser

For all locations, 80% of seg- SKA scheme for GSM1800 DL (a) The extraction rate increasesan-linearly with the

gain of SKA over NKA decreases as werelax the primary

disruption limit. We omit the proof due to the space limibati Be-
cause of such non-linearity, we can show that the gain of S¥& o
NKA shrinks as the primary user disruption limit increasghijch
is also confirmed by Figure 8(b).

4.3 Available vs. Extracted Spectrum

Our second question is whether the average spectrum aligilab
is areliable predictor of the amount of spectrum extractetwer-
ing this question is particularly important because marngtizyg
studies have been using the average spectrum availabiléyaiu-
ate opportunistic access. Using the RWTH dataset, we leatea
this claim by examining the relationship between the amaiint
spectrum extracted and the amount of spectrum available.

WEe first plot the extraction rate as a function of the average-s
trum availability. Using the segments discussed in Seclidh
Figure 9(a) and (b) show the spectrum extraction rate fothall
GSM1800DL segments at NED, as a function of the average spec-
trum availability of each segment. As expected, NKA exsact
about 10% available spectrum due to the 0.1 primary useuhsr
tion limit. The results display some small variations, esaiéy at
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segment of randomly selected channels (same as the channeted
We see that the median blocking time is an order of magnitudeighe
service time is an order of magnitude smaller than the primay user

low availability values. This is because some segments feaver
idle periods where the performance of a random access sdit@me
NKA does not converge to its expected value of 10%. Neveztil
the extraction rate remains stable for all the availabildjues.
SKA's extraction rate, however, shows significant variaespe-
cially at high spectrum availability regions. This is nagitrered by
the lack of idle instances, but the large variations in tis¢ridtiution
of primary user idle time. While many segments display samil
average availability, their primary user idle time distions and
access strategies are significantly different, leadingtalsly large
difference in their extraction rates. Overall, we observeeak re-
lationship between the extraction rate and the averag&ailéy.
Next, we compare the amount of spectrum extracted to the mimou
of spectrum available. Intuitively, a channel with largeaiéabil-
ity will produce more usable spectrum using opportunisticess,
which has been widely used to evaluate opportunistic a¢8e5$.
Our results in Figure 9(c) show that such claim can be proatem
Again we observe significant variance in terms of the actomdunt
of spectrum extracted, particularly at high availabilislues. For
example, for GSM1800DL at NED, the uncertainty (standard-de
ation/mean) of using the availability to predict the extegicspec-
trum is 36%. Therefore, an important conclusion from ourysia
is that spectrum availability is no longer a sole metric talev
ate opportunistic spectrum access. One must also examérecth

in Figure 5), using SKA and 0.1 primary user disruption Imit.
r than the primary user busy time in Figure 5, while the median
idle time.

cess strategy as well as the primary user idle time distabwthen
comparing two frequency channels.

4.4 Usability of Extracted Spectrum

We also wish to understand the feasibility of using extrdcte
spectrum channels to serve traditional wireless apptinati To
do so, we examine the statistical patterns of the channeicser
and blocking time experienced by secondary devices. Fdrfeac
qguency channel, the service time defines the time a secondary
can continuously access the channel while the blocking time
fines the amount of time a secondary user must wait beforesscce
ing the channel.

Figure 10 shows the cumulative distribution of both mettiss
ing the same set of channels in Figure 5 and the SKA scheme: Com
paring this result to that of Figure 5 (the raw idle and bussatan
of the channel), we see that the service time is one order gf ma
nitude smaller than the primary user idle time, while thecking
time is one order of magnitude larger than the primary ussy bu
time! While disappointing, this result is somewhat expédgctgven
that the extraction rate of SKA ig30%.

The absolute values are not promising. Secondary users expe
rience prolonged blocking (2-200 seconds) and short sertuice
(2-10 seconds). This means that secondary users have amery |
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ited window for transmissions and face frequent interami This segments. We do not use our segmentation mechanism from Sec-
type of access is unable to serve many of today’s application tion 3 and 4 here, because it produces variable-length sggme
among channels that cannot be used to calculate time-daugin
relation. We study correlation between channels withinghme
S. FREQU ENCY BUNDLING service as well as across adjacent services, consideahfyeélquency-
The results in Section 4 demonstrate that despite the abtinda agile radios are likely to combine channels in close protimi
availability of partially used spectrum, the amount of gpgm ac- We use two metrics to quantify correlatioRearson’s correla-
tually accessible is much smaller than expected. More itapdy, tion coefficien{17] andmutual informatior{12].
the extracted spectrum is heavily fragmented and scattexss ) ) o ]
time. Thus the equivalent channels available to secondavices Metric 1: Correlation Coefficient.  For any two binary se-
are highly unreliable. quences, X and Y, the correlation coefficient is defined as:
In this section, we examine the feasibility of building adlie E[(X — pux)(Y — py)]
transmission channels by combining together multiple liatrke zy = X0y
frequencies, utilizing frequency diversity to compengatéhe lack )
of reliability on individual channels. We refer to this methasfre- wherey.x andyy are the meanyx andoy are the standard devi-
quency bundling ation of X andY’, respectively. The value of. , ranges from -1 to
Frequency bundling is both feasible in practice and aftra¢o 1, where -1 indicates strong negative correlation, 1 irtdicatrong
primary and secondary users. Recent advances in radio asedw Positive correlation, and 0 indicates independency whem& &
design make frequency bundling practical for secondansuséew ~ are jointly normal [17]. While capturing both positive anetative
frequency-agile radios can combine non-contiguous freguehan-  correlation, this metric can only detect linear dependency
nels to form a single transmission [25]. This bundling carpee Metric 2: Mutual Information. Itis an entropy-based quantity

formed either before allocation by a primary user or spectreg-
ulator, or after allocation by the secondary users themaselin
the second case, care must be taken to avoid bundling cmmtent o p(z,y)
between secondary users. I(X;Y) = Z Z p(z,y) - logp(x)p(y)

for measuring the mutual dependency between any two seggstenc

zeX yey

Challenges. Frequency bundling faces two key challenges. First, where p(z, y) is the joint probability distribution function of

how should secondary users choose and group channels? To reanqy “andp(x) andp(y) are the marginal probability distribution
duce blocking time, one should group channels that compieme  f,nctions of X and Y, respectively. I(X;Y) ranges from 0 to
each other in timei.e. negatively correlated in their spectrum us- 1 \where it is 0 if and only ifX andY are independent. Unlike

age patterns. This motivates us to examine the correlatorss correlation coefficient, this metric detects general depeny.
channels using our measurement dataset. Second, giverdkebun

of frequency channels, how should we design multi-chaneel s Results. Our analysis on the RWTH dataset shows that channels

ondary access mechanisms that effectively utilize theaarals? display little dependency unless they are adjacent in rqy As
We address these questions in Section 5.1 and 5.2, resggcind an illustrative example, Figures 11(a) and (b) plot bottrelation
examine the bundling performance in Section 5.3. metrics over a day using all the GSM1800DL channels at NED.

. We segment the 24-hour duration into 24 1-hour segmentsfoand
5.1 Correlation among Frequency Channels each hour calculate the pair-wise correlation among alttzanel

In searching for bundling strategies, we start by examinirey pairs. We show our results by the median, 5% and 95% values
correlation among frequency channels in terms of their arim of the channel pairs. We see that all these values are clo8g to
user spectrum usage patterns. For this task, we again uRg\tihel indicating minimum correlation between channels.
dataset because of its extensive coverage of frequencynelsan Figure 11(c) shows a detailed trace of the correlation anefft

We divide each channel trace into multiple 1-hour segments a as a function of frequency separation. Again it shows that un
compute pair-wise correlation among the channels by iddai less the two channels are adjacent to each other, there igmo s
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Figure 12: Percentage of pairs with correlation coefficienbetween [-0.1,0.1] and mutual information between [0,0.13t NED. A high
percentage of channel pairs have very low correlation both vthin a service and across services.

of strong correlation. The strong correlation among cloa&sp
(those separated by less than 400KHz) can be explained by two
reasons. First, while the RWTH measurement channels afeeof t
same width as the GSM1800 service channels (200kHz), tlegy ar
however, not perfectly aligned with the GSM1800 serviceneha
nels. Thus, adjacent measurement channels may map to tlee sam
service channel and hence appear heavily correlated. &eadn
jacent channels can produce cross-band interference hootlaer,
which makes them inherently correlated. The same was fawnd f

our UCSB GSM measurement results.

We have examined other services over different time peaods
the results show very similar trends. To illustrate the gaeinteend
across all the services, in Figure 12 we show the portion ahch
nel pairs with correlation coefficient between [-0.1,0.4¢lanutual
information between [0.0.1]. In addition to consideringanhel
pairs within each service, we also include the result of okapairs
across adjacent services. We see that the majority of chpaits,
either within the same or adjacent services, display vétig lcor-
relation. The correlation result is service-dependentbse each
service has different transmission properties and sewheanel
width.

Summary of Findings.  Our analysis on pair-wise channel cor-
relation leads to two key findings:

e Most of the channel pairs, either within a service or between
adjacent services, display little correlation.

e Frequency channel pairs that are adjacent in frequency dis-
play relatively high correlation.

These results imply that opportunistic spectrum accessaer fre-
quency range will produce multiple channels with little redation
in their available spectrum patterns.

5.2 Bundling Frequency Channels

The availability independency across channels means that w
can significantly improve overall reliability by simply bding ran-
dom channel pairs together. In the following, we first ddsethree
candidate methods to access channels in a bundle, and #ssmpr
our method for forming channel bundles.

Using Frequency Bundles. We propose three usage models,
each mapping to a specific radio configuration and applicdayipe.

e Channel Switchingfor simplified hardware) — We consider
secondary users with WiFi-like radios that can only access a
single channel, but can switch between channels on the fly. In
this model, each user switches to another channel in the bun-
dle when the current channel becomes busy or too risky to

access. One artifact of this model is that because secondary
users cannot monitor each channel continuously, they ¢anno
use SKA which requires the channel usage history. Instead,
they can only use NKA and extract less spectrum.

Channel Redundandjor maximum reliability) — In this model,
secondary users can sense and communicate on multiple chan-
nels simultaneously. To maximize transmission reliapilit

and minimize blocking time, this model sends the same data
stream on all the idle channels in the bundle. When a chan-
nel becomes blocked, it skips the data stream. Because sec-
ondary users can sense and monitor each channel, they use
SKA to access each channel independently. This model fo-
cuses on maximizing reliability — unless all the channets ar
inaccessible, secondary users can communicate contiguous

Channel Multiplexingfor maximum bandwidth) — This model
also accesses multiple channels simultaneously using indi
vidual SKA, but multiplexes the data stream across current
idle channels without any redundancy. Different from the
Redundancy model, the effective transmission bandwidilesa
over time.

Forming Frequency Bundles. We choose a random bundling
method. It takes as input, the bundle size, and randomly selects
k channels from the channel pool to form a bundle. We choose
this method because of two reasons. First, the best stredegin-
imize blocking time for all three models is to combine chdane
that complement each othére. negatively correlated. Yet be-
cause the majority of channel pairs show no sign of cor@iati
random bundling wins due to its simplicity. Second, we use ra
dom bundling to understand the performance trend of oppisrtu
tic access with different bundle sizes, and to evaluatetiseit-
uations where secondary users have a small pool of charorels f
bundling. We only consider partially used channels for timgg
since adding idle channels simply increases the bundlecitsyiny

a fixed amount.

5.3 Bundling Performance

Using the RWTH data set, we evaluate the effectiveness of fre
quency bundling by combining channels from the same sesvice
We divide an one-day trace into one-hour segments, randoumly
dle channels together, and simulate the three usage mateksch
segment. As usual, we only consider channels with dailyaaeer
availability within [0.05,0.95], and assume a primary ugisrup-
tion limit of n=0.1.

We evaluate frequency bundling by the resulting channé&siks
ing time and extracted spectrum. In this case, the blocking of
a frequency bundle is the duration where all the channelbzsy
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those in effective spectrum availability.

or too risky to access. The extracted spectrum defines theramo
of spectrum used to send unique information. For Multipigxi
this is the sum of those from each channel in the bundle, Vibile
Redundancy, it must discount periods where both channelsl-si
taneously extract their spectrum (but use them to send time sa
information).

2-Channel Bundling. Figures 13(a)-(b) plot the cumulative dis-
tribution of secondary user’s blocking time and extracteecsrum
using 2-channel bundles. We compare the performance ofeSing
channel, Switching, Redundancy and Multiplexing. The qerf
mance of Single-channel is the mean of the two channels edndl
together. Figure 13(a) shows that Redundancy has the liegst b
ing time by utilizing every available channel to avoid blagke. On
the other hand, Switching experiences 16+ seconds blotkirey
This is because Switching uses NKA due to lack of continuous
channel monitoring. With a 0.1 primary user disruption tinin
average its users will be blocked by 90% of time, or a blockimg
of 9 x 1.8 = 16.2s. On the other hand, if we extend Switching to
monitor each channel continuously, its performance wifirapch
that of Redundancy for the 2-channel case.

Figure 13(b) examines the actual spectrum extracted freseth
bundles. As expected, Multiplexing extracts the largesbam
of spectrum by avoiding redundancy across channels. Yet sur
prisingly, Redundancy performs similar to Multiplexingr f60%
of the bundles. This is due to the non-linear mapping between
spectrum available and spectrum extracted (discussectiioSéd,
Figure 9(c)). While Multiplexing improves the effectiveesgirum
availability, its improvement in the spectrum extractedinisited.
We confirm this hypothesis in Figure 13(c), plotting the io@-
ment in extracted spectrum as a function of the improvement i
the effective spectrum availability. Even after adding @Ba raw
160KHz) to the effective availability, the actual extractimprove-
ment is only 20-30KHz.

Impact of Bundle Size.  Next we investigate how the perfor-
mance of frequency bundling scales with the size of the lmindl
Using the same pool of channels, we vary the bundle kibe-
tween 2 and 10, and measure the resulting secondary uséirtgoc
time, service time as well as extracted spectrum. Resultthéo
Redundancy model in Figure 14 (a)-(c) show that bundlingefan
fectively reduce blocking time and increase service timdatt, a
linear increase in the bundling sizeleads to one order of magni-

tude reduction in blocking time and improvement in servioget
As k increases beyond 5, the performance quickly converges be-
cause additional channels do not offer any new availabilityese
results clearly demonstrate the effectiveness of frequbandling.
The absolute values of average blocking and service tinws lo
very promising. For the 6 services shown in this result, tingd
k=10 channels randomly creates a pseudo single channelrthat e
joys in average a prolonged service time of 120-1300 secamdls
occasionally 2—4 seconds interruptions. These numbea st
two orders of magnitude better than the single channel peence.
Figure 14(d) plots extracted spectrum for various bundiessi
using the Multiplexing model. Like the Redundancy modeg th
spectrum extracted increases exponentially with bundie. sThe
improvement is much higher than that of the redundancy noetel
cause multiplexing transmits different data on each chianmaax-
imize spectrum utilization. Unlike the Redundancy modeiwvh
ever, the amount of usable spectrum varies across time dijen
on the availability of each channel in the bundle.

5.4 Summary of Findings

Our analysis in this section leads to two key findings:

e In terms of their spectrum availability patterns, the migjor
of frequency channel pairs in our dataset (200kHz in size)
display little correlation, unless they are adjacent igdrency.

Frequency bundling can effectively build reliable and high
performance frequency channels from multiple unreliahbne
nels. Even with random bundling, the improvement in sec-
ondary user’s service and blocking time scales exponégntial
with the bundle size.

IMPACT OF TIME GRANULARITY

Finally, we wish to understand the impact of the sweepingrint
val in our conclusions. In particular, are the measuremsuffs-
ciently fine grain to capture the variability in primary usarcess
patterns? If so, then secondary devices can improve thei-sp
trum usage by simply sensing and accessing channels at &ifiiger
granularity. If not, then what are the potential artifactsenw sec-
ondary devices sense and access channels at a coarseagtanul
than the variability in primary user access patterns?

We use the 2nd dataset (collected locally by us for this ptpje
to answer these questions. It only covers the GSM1900 dolwnli
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Figure 14: (a-c) Impact of bundle size on average blocking me, service time and extracted spectrum, using random bundig and
the Redundancy model, for 6 services over a period of one dayl'he improvement in both blocking time and service time scalg
exponentially with the bundle sizek. (d) Impact of bundle size on extracted spectrum, using randm bundling and the Multiplexing

model, for 6 services over a period of one day.

frequency band (1925MHz-1995MHz), but uses a sweep irlterva
of 0.65s. Out of 300 channels we measured, 91 were partisdgl u
and thus considered in our analysis.

The Need for Fine Grained Measurements. Figure 15 com-
pares the distribution of the spectrum availability androcted idle
time on each of the 91 channels. We segment traces into ame-ho
segments. To examine the impact of sweep time, we compare th
results by using 0.65, 1.3 and 1.95 seconds sweep time. Tae me
surement results of the latter two were obtained by downgagp
the original measurement traces. We see that while thenagee
availabilities appear similar, the measurement resultgudiffer-

ent sweep times display different idle duration distribng. This
means that the variations in channel availability contintiéiner
time scales, and secondary devices cannot simply impraerpe
mance by working at finer time scales.

Artifacts of Using Coarse Granularity.  The above results show
that the current measurement granularity (1.8 seconds e e
0.65 seconds) is unable to capture variations in primary sfsec-
trum access. With this in mind, we wish to understand thentiate
artifacts when secondary devices use coarse access gigrihlan
that of channel availability variations.

We use the measured traces (with slot size)d approximate
true primary user access patterns. To implement coarsesscce
granularity, we consider opportunistic access with slpé if k7
by subsampling the traces by a factorkof This means that sec-
ondary users sense the channel at the start of kadhterval, and
make access decision for the entire interval. For a fair com-
parison, we evaluate all the access systems using the samaryr
user access patterns and the same, exact statistical ldymvém
primary user access patterns.

We examine the artifacts of usirkg=2 and 3 (1.3s and 1.95s ac-
cess slots) and the SKA scheme. Figure 16(a)-(b) show the-cum
lative distribution of the normalized change in extractrate and
the actual primary user disruption rate, across all chasegghents.
Using coarser access granularity leads to both overly coathee
and aggressive access decisions — the normalized changeaaf-e
tion rate is between 0.6 and 1.4. These suboptimal decistas

€to 0-0.4 primary user disruptions. On 45+% of channel segsnen
they violate the primary user disruption limit (0.1). Thisosvs that
only if secondary user’s access granularity is no coarsar that
of variations in primary user access patterns, can SKA defime
(1) fully satisfy the primary user disruption limit. Whening a
coarser access granularity, secondary users must modifySKA
scheme in order to avoid disrupting primary users.

These improper access decisions occur because secondesy us
must round the optimal fine-grained access decision by theseo
time granularity, either stop transmission too earlieroar late. In-
tuitively, the impact of such rounding effect is most seveteen
primary user access patterns display small idle duratidiss is
further confirmed by the results in Figure 16(c), which pleg tor-
malized difference in extraction rate vs. the average prmaer
idle duration.

7. RELATED WORK

We classify the related work into spectrum measurementestud
and opportunistic spectrum access.

Spectrum Measurements.  Several measurement campaigns
have studied spectrum occupancy across the globe [1, 5, 2313
24]. All of them have discovered significant opportunities ép-
portunistic spectrum access. An extensive measuremertti\dn 3-
3GHz frequency bands at six US locations [1] identified a maxi
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Figure 16: Artifacts of using coarser access granularity. ) The cumulative distribution of the normalized difference in extraction
rate (the extraction rate of systems using:r slots divided by that of systems using-). The value ranges between 0.6 and 1.4, implying
both overly conservative and aggressive access decisioifs) Using the original SKA scheme under coarser access grafarity can
violate the primary user disruption limit. It must be modifie d to include additional conservativeness. (c) The artifact amplify on

channels with small average primary user idle duration.

mum 13% spectrum occupancy. Measurements on 2006 FootballOpportunistic Spectrum Access.

World Cup at two Germany locations shows significant vaiai
in spectrum usage before, during and after the match. Signifi
variance was also found on cellular network’s spectrum eisag-
ing call logs over three weeks [24]. Recent measuremeny sttid
four Chinese locations detects strong dependency acexpsency
channels and applies a pattern matching algorithm to dredan-
nel state from past observations [7]. Finally, the Mobnetsug

from RWTH performed extensive measurements at three Earope

locations [23].

Our work differs from existing works by examining the actual

spectrum accessible to secondary users without violatingpti-

mary user disruption limit. Even with accurate knowledgeof

mary user access statistics, we show that the accessilueispeas
significantly less than the available spectrum. We thengse@and
evaluate frequency bundling that builds high-quality srarssions
out of many scattered spectrum fragments. Different fromdir

analysis shows that channels are mostly independent inshec-
trum occupancy patterns. These differences might be atitabto
two factors: 1) differences in usage at different measurgrsiées
and 2) inclusion of completely busy and idle channels in [ifjgy

correlation calculation.

Research efforts in this area
have developed both analytical access strategies and snddkl
21, 19, 28] as well as practical algorithms and systems [229,
They have motivated us to consider practical opportunetitess
systems and to quantify the actual accessible spectrume\Wioist
of these works either assume analytical models on primayars
cess patterns or focus on realizing sensing and accessiegl isys-
tems, our work offers a complementary study that uses redtiwo
measurement traces to understand the feasibility andtisffeess
of opportunistic spectrum access.

8. CONCLUSION

Little is known about how well secondary devices in dynamic
spectrum networks can make use of the partially utilizedhokbs
occupied by primary users. We present in this paper the first ¢
prehensive study on the level of “usable” spectrum avasl&bkec-
ondary devices while respecting hard limits on disruptitmgri-
mary users. Our analysis of extensive fine-grain spectrumgeus
traces shows that even with extensive statistical knovdextgpri-
mary user access patterns, and while running optimal akgosi,
secondary devices can only extract 20-30% of availabletspac
in a channel. While this means current access schemes ganwrot
vide usable channels to support traditional applicatiamscan re-
gain reasonable levels of reliability by bundling multiplareli-



able channels together. Our analysis shows very little taare
relation in spectrum usage patterns across channels, Wduacls
us to choose a simple random frequency bundling scheme.
also show that performing fine-grain extensive spectrumsonea
ment is critical to understanding the performance and #tiuhs
of opportunistic spectrum access, and that the granulafigur-
rent measurements is not enough to fully capture originalens
spectrum usage variations.
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