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ABSTRACT
Dynamic spectrum access networks are designed to allow today’s
bandwidth hungry “secondary devices” to share spectrum allocated
to legacy devices, or “primary users.” The success of this wire-
less communication model relies on the availability of unused spec-
trum, and the ability of secondary devices to utilize spectrum with-
out disrupting transmissions of primary users. While recent mea-
surement studies have shown that there is sufficient underutilized
spectrum available, little is known about whether secondary de-
vices can efficiently make use of available spectrum while mini-
mizing disruptions to primary users.

In this paper, we present the first comprehensive study on the
presence of “usable” spectrum in opportunistic spectrum access
systems, and whether sufficient spectrum can be extracted bysec-
ondary devices to support traditional networking applications. We
use for our study fine-grain usage traces of a wide spectrum range
(20MHz–6GHz) taken at 4 locations in Germany, the Netherlands,
and Santa Barbara, California. Our study shows that on average,
54% of spectrum is never used and 26% is only partially used. Sur-
prisingly, in this 26% of partially used spectrum, secondary devices
can utilize very little spectrum using conservative accesspolicies to
minimize interference with primary users. Even assuming anopti-
mal access scheme and extensive statistical knowledge of primary
user access patterns, a user can only extract between 20-30%of the
total available spectrum. To provide better spectrum availability,
we proposefrequency bundling, where secondary devices build re-
liable channels by combining multiple unreliable frequencies into
virtual frequency bundles. Analyzing our traces, we find that there
is little correlation of spectrum availability across channels, and
that bundling random channels together can provide sustained pe-
riods of reliable transmission with only short interruptions.
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1. INTRODUCTION
Radio spectrum is perhaps the wireless industry’s most valuable

asset. The deployment and growth of any wireless network depend
on the amount of spectrum it can access. Despite its recognized
value, current policies on spectrum distribution are highly ineffi-
cient. Spectrum frequency ranges are assigned statically to wireless
carriers in long-term leases, generally ignoring market demands
that vary significantly over time. Over the years, the large majority
of frequency ranges have been assigned, leaving little roomfor new
technologies or growth. Meanwhile, demands for previouslyas-
signed frequencies have dropped significantly, leaving most ranges
woefully underutilized at an average of 5% of capacity [16].

Opportunistic and dynamic spectrum access is a new access model
designed to “extract” unused spectrum from allocated but under-
utilized frequencies, supporting newcomer traffic withoutaffecting
existing owners. In this model, wireless devices that need spectrum
locate and “opportunistically (re)use” unused frequencies ranges.
These “secondary” devices take great precaution to avoid disrupt-
ing original or “primary” users, and immediately exit the frequency
whenever they detect traffic from primary users. Through this care-
fully planned access model, secondary devices can increasespec-
trum utilization with zero or bounded disruptions to existing own-
ers. Note that compared to more liberal spectrum access rules [11],
this “conservative” access model is easier to implement andmuch
more likely to gain acceptance with regulators and primary users.

The success of the dynamic spectrum access model depends heav-
ily on both the availability of unused spectrum, and whethersec-
ondary devices can efficiently extract and utilize them. While a
number of measurement studies have measured and modeled the
availability of unused spectrum [1, 5, 7, 13, 23, 24], the com-
munity has generally overlooked the second factor, and optimisti-
cally assumed that secondary devices can always efficientlyutilize
available spectrum. Despite its importance, little is known about



whether secondary devices can efficiently make use of available
spectrum, given the hard constraints of avoiding disruptions to pri-
mary users. This is understandable, since such a study requires ac-
cess to a fine-grained measurement trace of spectrum usage, which
has not been available until recently.

In this paper, we present the first comprehensive study of per-
formance in opportunistic spectrum access systems that limit dis-
ruptions to unpredictable primary users. Our goal is to understand
whether dynamic spectrum access can provide reliable spectrum to
secondary users, while respecting hard disruption limits that protect
primary user transmissions. Our study can address key concerns
about the feasibility of supporting traditional network applications
in this new model. We answer questions in three key areas:

(1) How much usable spectrum is available at different frequency
ranges? How does this availability change across time and spec-
trum frequency?

(2) How much spectrum is accessible by conservative secondary
users who must avoid disrupting spectrum owners at all costs?

(3) Can we design novel spectrum access methods that allow us to
build a reliable wireless channel using unreliable dynamicspec-
trum channels?

We answer these questions by performing a deep analysis of a
large collection of spectrum usage measurements. These measure-
ments are taken from four locations across the globe: two in Ger-
many, one in the Netherlands, and one in Santa Barbara, USA. Each
measurement uses a spectrum analyzer to sweep a range of radio
frequencies between 20MHz and 6GHz for a period of 2–7 days,
capturing the raw energy level observed on each of the 200kHzfre-
quency channels at a periodic interval of 0.65 or 1.8 seconds. These
results capture, at a very fine granularity, when specific radio fre-
quencies are occupied by primary users in the measurement area.
This dataset is unique in its combination of wide frequency cover-
age (20MHz to 6GHz), measurement length (one week for 3 of the
locations), and measurement frequency (one sweep per 1.8 or0.65
seconds compared to 75 seconds of prior studies [7]). We extract
from them spectrum occupancy traces (occupied or free) across a
large set of frequencies, covering 5922 wireless channels and a total
of more than 5 billion data points for analysis. While four locations
are in no way representative of spectrum usage in general, these
measurements do provide initial insights into whether opportunistic
spectrum access has the potential to support traditional networking
applications.

Our analysis of spectrum availability (Section 3) confirms that
most assigned frequencies are heavily underutilized. Out of 5922
channels analyzed, an average of 26% (or 1267 channels) werepar-
tially occupied (5%–95% occupancy). We are primarily interested
in evaluating dynamic spectrum access on these channels, since
other channels are either fully occupied (20% of our dataset, or
1317 channels ), or can be statically allocated as free channels
(54%) of our dataset, or 3338 channels. We also observe that spec-
trum availability varies significantly based on the frequency range
and measurement location. More importantly, short term availabil-
ity varies significantly across time, and both idle durationand busy
periods show high variance. This highly variable spectrum avail-
ability poses significant challenges to secondary devices,making it
harder to access and utilize a channel while respecting a fixed limit
of disruptions to primary users.

In Section 4, we use these spectrum traces to compare the per-
formance of two “optimal” opportunistic access mechanisms: one
scheme where secondary devices have zero knowledge of primary
user patterns, and one where secondary devices have accurate sta-
tistical knowledge of the primary user accesses [14]. We areshocked

to find that, even with accurate statistical knowledge of primary
user accesses, secondary devices can only extract 20–30% ofthe
available spectrum under a reasonable disruption limit of 10%, and
less than 10% of spectrum if the disruption limit drops to 1%.In ad-
dition, spectrum extracted from each channel is heavily fragmented
and scattered across time. As a result, the equivalent channels avail-
able to secondary devices are highly unreliable – spectrum access
on each channel is frequently interrupted, and often takes 10–100
seconds before being restored.

But there is hope. We propose and evaluatefrequency bundling,
where secondary devices build reliable transmission channels by
combining together multiple unreliable frequencies, essentially uti-
lizing frequency diversity to compensate for the lack of reliabil-
ity on individual channels. To evaluate different bundlingstrate-
gies, we analyze correlation between availability patterns of differ-
ent 200kHz channels, and find little or no correlation (Section 5).
This availability independence means that we can significantly im-
prove overall reliability by simply bundling random channel pairs
together. Experimental results from our datasets are promising. Us-
ing a random bundling strategy, the improvement in channel relia-
bility scales exponentially with the size of the bundle. Forexample,
bundling 5–10 randomly selected channels together will reduce the
secondary device’s blocking time by two orders of magnitude. The
resulting new channel enjoys average transmission periodsof 120–
1300s while being occasionally interrupted by 2-4s.

Finally, we wish to understand the impact of the sweeping fre-
quency parameter in our conclusions. Are our datasets sufficiently
fine grain to capture the variability in primary user access patterns?
If so, then secondary devices can improve their spectrum utiliza-
tion simply by sensing and utilizing the channel at a finer granu-
larity. We use the 2nd component of our dataset (collected locally
by us for this project) to test this theory. We find that the varia-
tions in channel availability continue at finer time scales,meaning
secondary devices cannot simply improve performance by working
at finer time scales (Section 6). Using this dataset, we also exam-
ine potential artifacts of using coarse time scale for opportunistic
access.

In summary, our study provides a first look into the feasibil-
ity of accessing spectrum opportunistically while respecting hard
limits to disruptions to primary users. We show that given the
unpredictable nature of primary user access, current spectrum ac-
cess methods cannot provide usable channels to secondary devices.
Only by bundling multiple unreliable channels together canwe pro-
vide reasonable levels of reliability to network applications on these
devices. We also make several other observations:

• The performance of opportunistic spectrum access cannot
be determined solely from average spectrum availability,i.e.
higher availability does not necessarily mean more usable
spectrum.

• Statistical knowledge of spectrum occupancy can improve
the performance of opportunistic access by a factor of 2–3.

• Frequency channels (200kHz) are mostly uncorrelated, un-
less they are frequency-adjacent. This conflicts with a prior
measurement study [7]. The difference could be attributed to
the use of different energy detection methods, measurement
location and time granularity.

2. OVERVIEW
In this section, we first provide background information on op-

portunistic spectrum access. We then describe the objectives of our
investigation and the datasets we use.



2.1 Opportunistic Spectrum Access
Opportunistic spectrum access involves two entities: primary

users or original owners of allocated but underutilized frequencies,
and secondary users who seek to make use of unused spectrum, un-
der the hard constraints of avoiding disruptions to primaryusers at
all costs [3, 27, 14].

Figure 1 shows a representative example of opportunistic spec-
trum access on a partially used primary user channel. A secondary
user x accesses the channel using a slotted sensing-then-access
mechanism. At the start of each slot,x senses the channel to detect
whether any primary user is present, often using a RF energy de-
tection [10]. If the channel is occupied,x does nothing and waits
till the next slot. If the channel appears to be unused,x will decide
whether to access the channel in the current slot. In order tosatisfy
hard primary user disruption limits,x must carefully access the risk
of using the channel because the primary user can potentially return
in the middle of its transmission slot. When necessary,x will give
up using an idle channel to avoid disrupting the original owner.

2.2 Goals
By analyzing real world measurements on primary user spec-

trum usage patterns, we have three key goals. First, we wish to un-
derstand the feasibility and effectiveness of opportunistic spectrum
access. More specifically, we seek to examine the availability of
both completely unused and intermittently used spectrum. For in-
termittently used channels, we also seek to examine the amount of
spectrum actually accessible to secondary devices, given the hard
constraints of avoiding disruptions to primary users.

Second, we seek to examine the role of various design decisions
and network factors in opportunistic spectrum access, including the
disruption limit set by the original owners, the time granularity of
spectrum access, and the type of information available to secondary
devices about the original owners.

Finally, we are interested to examine practical issues in utilizing
extracted spectrum to support today’s wireless services. Because
the extracted spectrum is fragmented across time and frequency, we
seek to identify ways to build reliable wireless transmission from
scattered spectrum pieces.

2.3 Datasets
We use two datasets in our analysis. They are unique in their

combination of wide frequency coverage, extensive measurement
length, and fine-grained measurement frequency.

The first dataset, used for most of the analysis, records the re-
ceived signal strength across 20MHz to 6GHz at three locations
over a period of one week. Table 1 lists some of the original own-
ers and their frequency ranges. The measurement was performed
by the Mobnets group of RWTH Aachen University, Germany [2].
The three measurement sites were i) on a balcony of a residential
building in Germany (GER1), ii) inside an office building in Ger-
many (GER2) and iii) on a roof top in Netherlands (NED). At each
location, a spectrum analyzer repeatedly swept the 20MHz–6GHz
frequency range, measuring signal energy on each of the 200kHz
frequency channels. The measurement uses a 1.8 seconds sweep
time. That is, any two subsequent measurements on a single chan-
nel were 1.8 seconds apart. Using this dataset, we analyzed 5622
channels corresponding to the service bands listed in Table1.

The second dataset came from our own measurements at UC
Santa Barbara, California, USA over a period of two weekdaysin
April 2010 when school was in session. The goal of these measure-
ments is to sample primary user access patterns at a finer-granularity
than the first dataset. It contains the received energy strength in the
1925-1995MHz GSM frequency band, observed in an office trailer.

SU Sensing

Disruption

SU AccessPU Busy

SU Slot

Time
t1 t2

SU Disrupting PU

Figure 1: An illustrative example of opportunistic spectrum ac-
cess. The bold line shows the primary user (PU)’s channel oc-
cupancy. A secondary user (SU) periodically senses channelto
detect primary user and determine whether to access the chan-
nel. A disruption occurs if the primary user returns in the mi d-
dle of secondary user transmissions.

We configured a GSM1900 digital receiver (Agilent E6454C) asa
spectrum analyzer which swept the GSM frequency with a resolu-
tion of 200kHz. Unlike a wide-band spectrum analyzer, our digital
analyzer only tunes to GSM frequencies. But since it covers amuch
smaller frequency range, we can increase the sweep frequency to
once every 0.65 seconds. This dataset covers 300 channels, which
we use in Section 6 to study the impact of time granularity on op-
portunistic spectrum access.

Preprocessing. We preprocess our datasets to convert the re-
ceived signal strength traces to spectrum occupancy patterns (busy
or idle) on each measurement channel. To do so, we use the energy-
detection method [7, 23] and select (for each 200kHz measurement
channel) an energy threshold of -107dBm that is specified by the
IEEE 802.22 standard for TV bands [20]. We declare a frequency
channel as occupied (or busy) at a given time if its measured sig-
nal strength is above the threshold. While service bands could use
different thresholds to protect their transmissions, there are no rea-
sonable guides on what those individual thresholds should be. Thus
we apply this known threshold uniformly across different service
bands. For the NED location in the RWTH measurement as well as
our own UCSB measurement, we use a slightly higher thresholdof
-100dBm. This is to compensate for the presence of stronger noise
floor, due to the proximity to a railway station in the case of NED
(also recommended by [23]), and the presence of metal walls and
obstacles in the case of UCSB measurements.

In addition to using a fixed threshold, we also consider usingdy-
namic thresholds as suggested by [7]. This is to set the threshold
for a frequency channel to be 3dBm higher than the minimum en-
ergy recorded on this channel. We found that this method, however,
is highly sensitive to the variance in the noise floor. It alsomarks
the majority of frequency channels as heavily occupied. Therefore,
we choose to use the fixed threshold for our analysis, but adjust the
threshold based on local noise characteristics, as discussed in the
above.

2.4 Assumptions
We make a few assumptions in order to perform analysis on the

measurement datasets.
First, because both measurements sweep the frequency band se-

quentially to measure a wide frequency range, they do not capture
usage activities at time granularity smaller than the sweeping time.
Thus we set secondary user’s access slot size to be the same as



Original owner TV1 Aviation Marine TV2 TV3 GSM900 UL GSM900 DL DAB
Freq. Range (MHz) 41-67 109-136 157-173 175-229 471-861 890-915 935-960 1453-1491

Original owner Meteo GSM1800 UL GSM1800 DL DECT UMTS UL UMTS DL ISM
Freq. Range (MHz) 1675-1710 1710-1785 1805-1880 1882-1897 1920-1980 2110-2170 2400-2500

Table 1: The 15 original spectrum owners and their frequencyranges (MHz) measured by the RWTH dataset.
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Figure 2: Spectrum availability of the 5622 frequency channels measured at the NED location, averaged over a period of one week.
The channels are ordered in the ascending order of their operating frequencies. Each vertical line corresponds to the spectrum
availability of a 200 KHz channel within each of the 15 service bands.

the sweeping time. Note that the sweeping times of our datasets
(1.8 seconds for the RWTH dataset and 0.65 seconds for the UCSB
dataset) are two orders of magnitude smaller than previous mea-
surements of 75 seconds [7]. We show in Section 6 that such fine-
grained measurement is required to capture useful statistics of spec-
trum availability and usability.

Second, we capture the effect where a primary user returns tothe
channel in the middle of a slot in our calculations of the primary
user disruption rate. Specifically, if an idle slot is followed by an
occupied slot, then the primary user is likely to arrive in the middle
of the first slot. If the secondary user decides to transmit inthe first
slot, we flag this slot as creating a disruption to the primaryuser.
We compute the primary user disruption rate as the ratio of primary
user busy blocks that suffer any disruption [14].

Finally, we assume that secondary users’ sensing is accurate, and
that multiple secondary users coordinate their access to avoid trans-
mission collision. Since our focus is on studying the impactof
spectrum usage patterns of original owners, we abstract multiple
coexisting secondary users into a single secondary link. The de-
sign and overhead of optimal spectrum sensing and coordination
protocols, although important, are out of the scope of this paper.
We refer the reader to [3, 6, 18, 26, 27] for more details on cooper-
ative spectrum sensing and sharing.

3. SPECTRUM AVAILABILITY ANALYSIS
The performance of opportunistic spectrum access depends heav-

ily on the sustained availability of unused spectrum. In this sec-
tion, using the RWTH data set, we examine in detail the availabil-
ity of spectrum, its dependency on frequencies and locations, as
well as its temporal dynamics. In total, we analyzed a one-week
spectrum usage patterns (busy or idle) on each of the 5622 fre-
quency channels. In the following, we first describe our findings on
overall spectrum availability across frequencies and locations, and
then present observed temporal dynamics on instantaneous spec-
trum availability.

3.1 Overall Spectrum Availability
We defineSpectrum Availability(SA) as the percentage of mea-

sured intervals where a channel is not occupied by existing owners
in a given time frame. While each service has its own operating
channel width, in this study we treat each 200kHz measurement
band as a single spectrum channel.

Figure 2 plots the spectrum availability measured at the NEDlo-
cation, for each of 5622 spectrum channels corresponding tothe 15
selected service bands listed in Table 1, averaged over a period of
one week. It shows that many spectrum channels are either com-
pletely free or partially-used. Interestingly, for some ofthe services
(e.g.TV3, GSM1800DL and UMTSDL), the spectrum availability
varies significantly across channels within the same service. To
further examine the impact of measurement location, Figure3(a)
shows the spectrum availability measured at the three locations
(NED, GER1, and GER2), averaged over a period of one week and
across channels within each service band.

We make two key observations from these results. First, for all
three locations, a significant portion of allocated spectrum is avail-
able for secondary devices. Second, the availability varies signif-
icantly across frequencies. Very low frequencies (TV1, Aviation,
Marine, TV2) are heavily occupied, while others experienceonly
light and moderate usage. The cellular uplink bands (GSM900UL,
GSM1800UL, UMTSUL) are mostly idle because their signals are
significantly weaker than those of downlink transmissions,and are
thus harder to detect even using high-end spectrum analyzers. Nev-
ertheless, we use these uplink measurements to examine oppor-
tunistic access, assuming that secondary users take extra precau-
tions on these bands to avoid disrupting primary users,e.g.by low-
ering their transmit power.

After examining each channel in detail, we found that out of
5622 channels analyzed, 1176 channels arepartially occupied, i.e.
whose average spectrum availability is within[0.05, 0.95], and 3181
channels are idle,i.e. whose availability is greater than0.95. In
Figure 3(b), we plot the cumulative distribution of the spectrum
availability across these partially occupied channels, and see that



 0

 0.5

 1

TV1 Avi Mar TV2 TV3 G9ul G9dl DAB Met G18ul G18dl DECT UMul UMdl

S
p

e
ct

ru
m

 A
va

ila
b

ili
ty NED

GER1
GER2

(a) Average Spectrum Availability of Each Service

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
D

F 
(%

C
ha

nn
el

s)

Spectrum Availability

NED
GER1
GER2

(b) Distribution of Spectrum Availability of
Partially-used Channels

Figure 3: (a) The average spectrum availability of various service bands over the entire measurement period. The services are ordered
in the ascending order of their operating frequencies. Ample unused spectrum exists at all three locations but the availability varies
across locations and frequencies. (b) Cumulative distribution of spectrum availability of all partially used spectrum channels, which
is evenly distributed between [0.05, 0.95].

their availability is evenly distributed between 0.05 and 0.95. In the
rest of the paper, we will focus on these partially occupied channels
for which we must rely on opportunistic spectrum access to extract
unused spectrum.

3.2 Dynamics of Available Spectrum
In this section, we investigate the temporal dynamics of spec-

trum availability. To understand both long- and short-termtrends,
we analyze the dynamics at two different granularity levels. To un-
derstand day-to-day trends, we start from dividing traces into half-
hour segments and compute for each segment the average spectrum
availability. Figure 4(a) plots the resulting spectrum availability
observed over 6 days on three selected GSM1800DL channels with
intermediate spectrum availability, one for each location. In this
case, spectrum availability varies significantly over time, and dis-
plays a weak 1-day periodicity.

Next we investigate the availability dynamics at the granularity
of the measurement interval (1.8s). Figure 4(b) shows a 1 minute
snapshot of the spectrum occupancy on all the partially available
GSM1800DL channels. A white strip in the figure indicates that the
corresponding channel during this time period is idle. Thisresult
clearly demonstrates that the available spectrum is fragmented and
scattered across time. A more precise view of the channel idle/busy
durations is shown in Figure 5, for NED and GER1. It represents a
randomly selected GSM1800DL channel for a period of 1 hour be-
tween 11AM and noon. In this example, the channel busy duration
varies between 1.8 seconds and 20 seconds, while the idle duration
varies significantly between 1.8 seconds to 100 seconds. Thelarge
variance in idle durations, however, poses significant challenges to
secondary devices, making it harder to access and utilize a chan-
nel while respecting a fixed limit of disruption to original owners.
We examine this challenge and its impact in greater detail next in
Section 4.

4. PERFORMANCE OF OPPORTUNISTIC
SPECTRUM ACCESS

Our analysis of real world measurements has demonstrated the
ample scope for opportunistic spectrum access. In this section,
we investigate its performance in terms of “extracting” theunused
spectrum without disrupting original owners. As illustrated in Fig-
ure 1, secondary devices sense and access spectrum in a slotted
manner. Without knowing exactly when the primary user will re-
turn, secondary devices must take great precaution and occasion-
ally give up using an idle channel. As a result, they cannot extract

all the available spectrum. Using the RWTH dataset, we seek to
understand how much spectrum a secondary device can actually
obtain.

Specifically, our analysis answers three key questions:

• What is the rate of spectrum extraction? Can statistical knowl-
edge on primary user spectrum usage patterns improve the
performance, and if so, by how much?

• Is the average spectrum availability a reliable predictor of the
amount of spectrum extracted?

• What is the usability of the extracted spectrum? How long
must a secondary user wait to access a channel and how long
does the access last?

In the following, we first describe the access strategies used in
our analysis, and then address these questions.

4.1 Access Strategies
Given the primary user disruption limitη and the probability

density function of primary user idle duration, prior work has de-
veloped optimal access strategies for opportunistic spectrum ac-
cess [14]. A secondary userx senses the channel at the start of
an access slott. If the channel is busy,x does nothing and waits
till the next slot. If the channel is idle,x estimates the risk of ac-
cessing the current slot, using its past channel observations, the
primary user idle duration statisticsf(·) and the primary user dis-
ruption limit η. Based on this risk factor,x computesq∗(t), the
probability of accessing the channel at timet. Formally,q∗(t) can
be derived as follows:

q∗(t) =

8

<

:

1 if g(t) > γ∗ & Φ(t) = Idle
p∗, if g(t) = γ∗ & Φ(t) = Idle
0, otherwise

(1)

In this formula,Φ(t) is the sensing result at the beginning of time
slot t (idle/busy),1/g(t) is the conditional probability that the pri-
mary user will return during time slott given thatΦ(t)=Idle. γ∗ is
the risk threshold derived from the primary user idle time distribu-
tion f(·) and the primary user disruption limitη [14]. If the risk is
small (g(t) > γ∗), x uses the channel. If the risk is close to the col-
lision probability (g(t) = γ∗), x uses the channel with probability
p∗ derived fromf(·) andη [14], otherwise,x does not access the
channel. It has been proved that using small access slots, the above
strategy is optimal and satisfies the primary user disruption limit.
The detailed derivations and proof can be found from [14].
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We apply this optimal strategy to create two practical opportunis-
tic access schemes:

• No knowledge-based Access (NKA).This scheme requires
no knowledge about primary user usage patterns. Secondary
devices will access a channel with a probabilityη (the pri-
mary user disruption limit) when sensing it idle, leading toan
extraction rate aroundη. This is the optimal result if the pri-
mary user idle time follows the exponential distribution [14].

• Statistical knowledge-based Access (SKA).It assumes that
secondary devices have the exact statistical distributionof
primary user idle time,f(·). Such knowledge is either pro-
vided by original owners or 3rd party or built by secondary
devices via online/offline learning.

We note that secondary users can schedule channel access to uti-
lize all available spectrum if and only if they can completely pre-
dict each primary user’s spectrum usage events. This ideal scheme,
however, is only feasible when the primary user displays a deter-
ministic access pattern, which we did not find in our measurement
datasets. Thus we did not consider it in our analysis.

The SKA scheme requires an accurate statistical distribution of
primary user idle time. Results in Section 3 show that the distribu-
tion varies significantly over time, especially within the same day.
To make a fair evaluation, we apply time-series analysis to segment
traces of each frequency channel into multiple time segments, each
displaying stable availability [15]. The results show thatmost seg-
ments are roughly 1-2 hours in length. We then extract the statisti-
cal distributionf(·) of primary user idle time in each segment and
use it to implement and evaluate SKA in the same segment.

4.2 Spectrum Extraction Rate
For each partially-used channel, we measure the spectrum ex-

traction rate as the ratio between the amount of spectrum actually
obtained by secondary devices and the amount of available spec-
trum. By default, the primary user disruption limitη=0.1.

SKA vs. NKA. Figure 6 plots, for each of the 15 services,
the one-week average of the spectrum extraction rate. Without
any knowledge on primary user idle time, NKA’s extraction rate is
roughly 10% (due toη = 0.1). SKA, on the other hand, improves
the extraction rate by 2–3 times. This demonstrates the benefits of
having statistical knowledge of the primary user access patterns.

A disappointing observation is that even with accurate statisti-
cal knowledge on primary user access patterns, the average extrac-
tion rate is only 15–35%. To further explore this problem, wealso
plot in Figure 7 the cumulative distribution of SKA’s extraction rate
among all the segments of partially occupied channels. Across all
locations, the median extraction rate is 19%, and 80% of the seg-
ments can produce no more than 37% extraction rate.

The low effectiveness can be attributed to two factors. 1) The
spectrum usage patterns are highly random and hard to predict, so
without a reliable estimation on channel idle duration, secondary
devices are forced to be overly conservative; or 2) the access slot
used by secondary devices is too large, forcing them to beingoverly
conservative. The first reason has been confirmed by the highly ran-
dom distribution of primary user idle time, shown in Figure 5. A
related study has also confirmed the difficulty in predictingprimary
user access patterns [23]. The second reason, however, is impos-
sible to verify without the ground truth on primary user spectrum
usage patterns – the RWTH dataset is measured at the same 1.8s
intervals, preventing us from pinpointing the exact primary user
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Figure 8: Impact of primary user disruption limit on spectru m extraction rate of the
SKA scheme for GSM1800 DL (a) The extraction rate increases non-linearly with the
disruption limit. (b) The gain of SKA over NKA decreases as werelax the primary
user disruption limit.

arrival and departure time that are required to evaluate theperfor-
mance of systems using smaller slot sizes.

We revisit this issue in Section 6 using our own UCSB dataset
with a 0.65s sweeping time. We show that because original owners
display highly random access patterns, reducing slot sizeshelps but
does not eliminate the need for conservative spectrum access. Thus
the problem of low extraction rate still remains.

Impact of Primary User Disruption Limit. The design of ac-
cess strategies implies that the primary user disruption limit has a
significant impact on the extraction rate. For example, the extrac-
tion rate of NKA scales linearly with the disruption limit. To under-
stand this dependency for SKA, we plot in Figure 8(a) the average
extraction rate as a function of the primary user disruptionlimit.
As expected, relaxing the disruption limit improves the spectrum
extraction rate. On the other hand, the relationship between the
two is non-linear. In fact, it can be proved that when the probabil-
ity of primary user returning to a channel increases monotonically
with existing channel idle time, SKA’s spectrum extractionrate is a
monotonically increasing and concave function of the primary user

disruption limit. We omit the proof due to the space limitation. Be-
cause of such non-linearity, we can show that the gain of SKA over
NKA shrinks as the primary user disruption limit increases,which
is also confirmed by Figure 8(b).

4.3 Available vs. Extracted Spectrum
Our second question is whether the average spectrum availability

is a reliable predictor of the amount of spectrum extracted.Answer-
ing this question is particularly important because many existing
studies have been using the average spectrum availability to evalu-
ate opportunistic access. Using the RWTH dataset, we re-evaluate
this claim by examining the relationship between the amountof
spectrum extracted and the amount of spectrum available.

We first plot the extraction rate as a function of the average spec-
trum availability. Using the segments discussed in Section4.2,
Figure 9(a) and (b) show the spectrum extraction rate for allthe
GSM1800DL segments at NED, as a function of the average spec-
trum availability of each segment. As expected, NKA extracts
about 10% available spectrum due to the 0.1 primary user disrup-
tion limit. The results display some small variations, especially at
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Figure 9: Scatter plots of spectrum extraction rates of GSM1800DL at NED with 0.1 primary user disruption limit. (a) NKA l eads to
roughly 10% extraction rate. (b) SKA becomes more effectivewhen the spectrum availability increases, although there is significant
variance at higher availability values. (c) But, the spectrum availability is no longer an accurate indicator of the spectrum extracted,
due to the large variance at high availability values.
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Figure 10: Cumulative distributions of secondary user’s blocking and service time, measured on all three locations, using a 2-hour
segment of randomly selected channels (same as the channelsused in Figure 5), using SKA and 0.1 primary user disruption limit.
We see that the median blocking time is an order of magnitude higher than the primary user busy time in Figure 5, while the median
service time is an order of magnitude smaller than the primary user idle time.

low availability values. This is because some segments havefewer
idle periods where the performance of a random access schemelike
NKA does not converge to its expected value of 10%. Nevertheless,
the extraction rate remains stable for all the availabilityvalues.

SKA’s extraction rate, however, shows significant variance, espe-
cially at high spectrum availability regions. This is not triggered by
the lack of idle instances, but the large variations in the distribution
of primary user idle time. While many segments display similar
average availability, their primary user idle time distributions and
access strategies are significantly different, leading to notably large
difference in their extraction rates. Overall, we observe aweak re-
lationship between the extraction rate and the average availability.

Next, we compare the amount of spectrum extracted to the amount
of spectrum available. Intuitively, a channel with larger availabil-
ity will produce more usable spectrum using opportunistic access,
which has been widely used to evaluate opportunistic access[8, 5].
Our results in Figure 9(c) show that such claim can be problematic.
Again we observe significant variance in terms of the actual amount
of spectrum extracted, particularly at high availability values. For
example, for GSM1800DL at NED, the uncertainty (standard devi-
ation/mean) of using the availability to predict the extracted spec-
trum is 36%. Therefore, an important conclusion from our analysis
is that spectrum availability is no longer a sole metric to evalu-
ate opportunistic spectrum access. One must also examine the ac-

cess strategy as well as the primary user idle time distribution when
comparing two frequency channels.

4.4 Usability of Extracted Spectrum
We also wish to understand the feasibility of using extracted

spectrum channels to serve traditional wireless applications. To
do so, we examine the statistical patterns of the channel service
and blocking time experienced by secondary devices. For each fre-
quency channel, the service time defines the time a secondaryuser
can continuously access the channel while the blocking timede-
fines the amount of time a secondary user must wait before access-
ing the channel.

Figure 10 shows the cumulative distribution of both metricsus-
ing the same set of channels in Figure 5 and the SKA scheme. Com-
paring this result to that of Figure 5 (the raw idle and busy duration
of the channel), we see that the service time is one order of mag-
nitude smaller than the primary user idle time, while the blocking
time is one order of magnitude larger than the primary user busy
time! While disappointing, this result is somewhat expected, given
that the extraction rate of SKA is<30%.

The absolute values are not promising. Secondary users expe-
rience prolonged blocking (2-200 seconds) and short service time
(2-10 seconds). This means that secondary users have a very lim-
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Figure 11: (a)-(b) Pair-wise correlation of GSM1800DL channels at NED across different hours of the day. Both correlation coeffi-
cient and mutual information are close to 0. (c) Correlationcoefficient as a function of frequency separation. Adjacentchannels are
highly correlated due to imperfect alignment between measurement and service channels.

ited window for transmissions and face frequent interruptions. This
type of access is unable to serve many of today’s applications.

5. FREQUENCY BUNDLING
The results in Section 4 demonstrate that despite the abundant

availability of partially used spectrum, the amount of spectrum ac-
tually accessible is much smaller than expected. More importantly,
the extracted spectrum is heavily fragmented and scatteredacross
time. Thus the equivalent channels available to secondary devices
are highly unreliable.

In this section, we examine the feasibility of building reliable
transmission channels by combining together multiple unreliable
frequencies, utilizing frequency diversity to compensatefor the lack
of reliability on individual channels. We refer to this method asfre-
quency bundling.

Frequency bundling is both feasible in practice and attractive to
primary and secondary users. Recent advances in radio hardware
design make frequency bundling practical for secondary users. New
frequency-agile radios can combine non-contiguous frequency chan-
nels to form a single transmission [25]. This bundling can beper-
formed either before allocation by a primary user or spectrum reg-
ulator, or after allocation by the secondary users themselves. In
the second case, care must be taken to avoid bundling contention
between secondary users.

Challenges. Frequency bundling faces two key challenges. First,
how should secondary users choose and group channels? To re-
duce blocking time, one should group channels that complement
each other in time,i.e. negatively correlated in their spectrum us-
age patterns. This motivates us to examine the correlation across
channels using our measurement dataset. Second, given a bundle
of frequency channels, how should we design multi-channel sec-
ondary access mechanisms that effectively utilize these channels?
We address these questions in Section 5.1 and 5.2, respectively, and
examine the bundling performance in Section 5.3.

5.1 Correlation among Frequency Channels
In searching for bundling strategies, we start by examiningthe

correlation among frequency channels in terms of their primary
user spectrum usage patterns. For this task, we again use theRWTH
dataset because of its extensive coverage of frequency channels.
We divide each channel trace into multiple 1-hour segments and
compute pair-wise correlation among the channels by individual

segments. We do not use our segmentation mechanism from Sec-
tion 3 and 4 here, because it produces variable-length segments
among channels that cannot be used to calculate time-domaincor-
relation. We study correlation between channels within thesame
service as well as across adjacent services, considering that frequency-
agile radios are likely to combine channels in close proximity.

We use two metrics to quantify correlation:Pearson’s correla-
tion coefficient[17] andmutual information[12].

Metric 1: Correlation Coefficient. For any two binary se-
quences, X and Y, the correlation coefficient is defined as:

ρx,y =
E[(X − µX )(Y − µY )]

σXσY

whereµX andµY are the mean,σX andσY are the standard devi-
ation ofX andY , respectively. The value ofρx,y ranges from -1 to
1, where -1 indicates strong negative correlation, 1 indicates strong
positive correlation, and 0 indicates independency when X and Y
are jointly normal [17]. While capturing both positive and negative
correlation, this metric can only detect linear dependency.

Metric 2: Mutual Information. It is an entropy-based quantity
for measuring the mutual dependency between any two sequences:

I(X;Y ) =
X

x∈X

X

y∈Y

p(x, y) · log
p(x, y)

p(x)p(y)

wherep(x, y) is the joint probability distribution function ofX
andY , andp(x) andp(y) are the marginal probability distribution
functions ofX and Y , respectively. I(X; Y ) ranges from 0 to
1, where it is 0 if and only ifX andY are independent. Unlike
correlation coefficient, this metric detects general dependency.

Results. Our analysis on the RWTH dataset shows that channels
display little dependency unless they are adjacent in frequency. As
an illustrative example, Figures 11(a) and (b) plot both correlation
metrics over a day using all the GSM1800DL channels at NED.
We segment the 24-hour duration into 24 1-hour segments, andfor
each hour calculate the pair-wise correlation among all thechannel
pairs. We show our results by the median, 5% and 95% values
of the channel pairs. We see that all these values are close to0,
indicating minimum correlation between channels.

Figure 11(c) shows a detailed trace of the correlation coefficient
as a function of frequency separation. Again it shows that un-
less the two channels are adjacent to each other, there is no sign
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Figure 12: Percentage of pairs with correlation coefficientbetween [-0.1,0.1] and mutual information between [0,0.1]at NED. A high
percentage of channel pairs have very low correlation both within a service and across services.

of strong correlation. The strong correlation among close pairs
(those separated by less than 400KHz) can be explained by two
reasons. First, while the RWTH measurement channels are of the
same width as the GSM1800 service channels (200kHz), they are,
however, not perfectly aligned with the GSM1800 service chan-
nels. Thus, adjacent measurement channels may map to the same
service channel and hence appear heavily correlated. Second, ad-
jacent channels can produce cross-band interference to each other,
which makes them inherently correlated. The same was found from
our UCSB GSM measurement results.

We have examined other services over different time periodsand
the results show very similar trends. To illustrate the general trend
across all the services, in Figure 12 we show the portion of chan-
nel pairs with correlation coefficient between [-0.1,0.1] and mutual
information between [0.0.1]. In addition to considering channel
pairs within each service, we also include the result of channel pairs
across adjacent services. We see that the majority of channel pairs,
either within the same or adjacent services, display very little cor-
relation. The correlation result is service-dependent because each
service has different transmission properties and servicechannel
width.

Summary of Findings. Our analysis on pair-wise channel cor-
relation leads to two key findings:

• Most of the channel pairs, either within a service or between
adjacent services, display little correlation.

• Frequency channel pairs that are adjacent in frequency dis-
play relatively high correlation.

These results imply that opportunistic spectrum access across a fre-
quency range will produce multiple channels with little correlation
in their available spectrum patterns.

5.2 Bundling Frequency Channels
The availability independency across channels means that we

can significantly improve overall reliability by simply bundling ran-
dom channel pairs together. In the following, we first describe three
candidate methods to access channels in a bundle, and then present
our method for forming channel bundles.

Using Frequency Bundles. We propose three usage models,
each mapping to a specific radio configuration and application type.

• Channel Switching(for simplified hardware) – We consider
secondary users with WiFi-like radios that can only access a
single channel, but can switch between channels on the fly. In
this model, each user switches to another channel in the bun-
dle when the current channel becomes busy or too risky to

access. One artifact of this model is that because secondary
users cannot monitor each channel continuously, they cannot
use SKA which requires the channel usage history. Instead,
they can only use NKA and extract less spectrum.

• Channel Redundancy(for maximum reliability) – In this model,
secondary users can sense and communicate on multiple chan-
nels simultaneously. To maximize transmission reliability
and minimize blocking time, this model sends the same data
stream on all the idle channels in the bundle. When a chan-
nel becomes blocked, it skips the data stream. Because sec-
ondary users can sense and monitor each channel, they use
SKA to access each channel independently. This model fo-
cuses on maximizing reliability – unless all the channels are
inaccessible, secondary users can communicate continuously.

• Channel Multiplexing(for maximum bandwidth) – This model
also accesses multiple channels simultaneously using indi-
vidual SKA, but multiplexes the data stream across current
idle channels without any redundancy. Different from the
Redundancy model, the effective transmission bandwidth varies
over time.

Forming Frequency Bundles. We choose a random bundling
method. It takes as input,k, the bundle size, and randomly selects
k channels from the channel pool to form a bundle. We choose
this method because of two reasons. First, the best strategyto min-
imize blocking time for all three models is to combine channels
that complement each other,i.e. negatively correlated. Yet be-
cause the majority of channel pairs show no sign of correlation,
random bundling wins due to its simplicity. Second, we use ran-
dom bundling to understand the performance trend of opportunis-
tic access with different bundle sizes, and to evaluate practical sit-
uations where secondary users have a small pool of channels for
bundling. We only consider partially used channels for bundling,
since adding idle channels simply increases the bundle capacity by
a fixed amount.

5.3 Bundling Performance
Using the RWTH data set, we evaluate the effectiveness of fre-

quency bundling by combining channels from the same services.
We divide an one-day trace into one-hour segments, randomlybun-
dle channels together, and simulate the three usage models on each
segment. As usual, we only consider channels with daily average
availability within [0.05,0.95], and assume a primary userdisrup-
tion limit of η=0.1.

We evaluate frequency bundling by the resulting channel’s block-
ing time and extracted spectrum. In this case, the blocking time of
a frequency bundle is the duration where all the channels arebusy
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Figure 13: The performance of 2-channel frequency bundlingfrom all the 15 services at the NED location. Redundancy experiences
the lowest blocking time, and Multiplexing enjoys the highest extracted spectrum. Yet for 70+% of bundles, Redundancy has similar
extracted spectrum as Multiplexing. This is because of (c) the non-linearity between the improvement in available spectrum and
those in effective spectrum availability.

or too risky to access. The extracted spectrum defines the amount
of spectrum used to send unique information. For Multiplexing,
this is the sum of those from each channel in the bundle, whilefor
Redundancy, it must discount periods where both channels simul-
taneously extract their spectrum (but use them to send the same
information).

2-Channel Bundling. Figures 13(a)-(b) plot the cumulative dis-
tribution of secondary user’s blocking time and extracted spectrum
using 2-channel bundles. We compare the performance of Single-
channel, Switching, Redundancy and Multiplexing. The perfor-
mance of Single-channel is the mean of the two channels bundled
together. Figure 13(a) shows that Redundancy has the least block-
ing time by utilizing every available channel to avoid blockage. On
the other hand, Switching experiences 16+ seconds blockingtime.
This is because Switching uses NKA due to lack of continuous
channel monitoring. With a 0.1 primary user disruption limit, in
average its users will be blocked by 90% of time, or a blockingtime
of 9 ∗ 1.8 = 16.2s. On the other hand, if we extend Switching to
monitor each channel continuously, its performance will approach
that of Redundancy for the 2-channel case.

Figure 13(b) examines the actual spectrum extracted from these
bundles. As expected, Multiplexing extracts the largest amount
of spectrum by avoiding redundancy across channels. Yet sur-
prisingly, Redundancy performs similar to Multiplexing for 70%
of the bundles. This is due to the non-linear mapping between
spectrum available and spectrum extracted (discussed in Section 4,
Figure 9(c)). While Multiplexing improves the effective spectrum
availability, its improvement in the spectrum extracted islimited.
We confirm this hypothesis in Figure 13(c), plotting the improve-
ment in extracted spectrum as a function of the improvement in
the effective spectrum availability. Even after adding 0.8(or a raw
160KHz) to the effective availability, the actual extraction improve-
ment is only 20-30KHz.

Impact of Bundle Size. Next we investigate how the perfor-
mance of frequency bundling scales with the size of the bundle.
Using the same pool of channels, we vary the bundle sizek be-
tween 2 and 10, and measure the resulting secondary user blocking
time, service time as well as extracted spectrum. Results for the
Redundancy model in Figure 14 (a)-(c) show that bundling canef-
fectively reduce blocking time and increase service time. In fact, a
linear increase in the bundling sizek leads to one order of magni-

tude reduction in blocking time and improvement in service time.
As k increases beyond 5, the performance quickly converges be-
cause additional channels do not offer any new availability. These
results clearly demonstrate the effectiveness of frequency bundling.

The absolute values of average blocking and service times look
very promising. For the 6 services shown in this result, bundling
k=10 channels randomly creates a pseudo single channel that en-
joys in average a prolonged service time of 120–1300 secondsand
occasionally 2–4 seconds interruptions. These numbers arealmost
two orders of magnitude better than the single channel performance.

Figure 14(d) plots extracted spectrum for various bundle sizes
using the Multiplexing model. Like the Redundancy model, the
spectrum extracted increases exponentially with bundle size. The
improvement is much higher than that of the redundancy modelbe-
cause multiplexing transmits different data on each channel to max-
imize spectrum utilization. Unlike the Redundancy model, how-
ever, the amount of usable spectrum varies across time depending
on the availability of each channel in the bundle.

5.4 Summary of Findings
Our analysis in this section leads to two key findings:

• In terms of their spectrum availability patterns, the majority
of frequency channel pairs in our dataset (200kHz in size)
display little correlation, unless they are adjacent in frequency.

• Frequency bundling can effectively build reliable and high
performance frequency channels from multiple unreliable chan-
nels. Even with random bundling, the improvement in sec-
ondary user’s service and blocking time scales exponentially
with the bundle size.

6. IMPACT OF TIME GRANULARITY
Finally, we wish to understand the impact of the sweeping inter-

val in our conclusions. In particular, are the measurementssuffi-
ciently fine grain to capture the variability in primary useraccess
patterns? If so, then secondary devices can improve their spec-
trum usage by simply sensing and accessing channels at a finertime
granularity. If not, then what are the potential artifacts when sec-
ondary devices sense and access channels at a coarser granularity
than the variability in primary user access patterns?

We use the 2nd dataset (collected locally by us for this project)
to answer these questions. It only covers the GSM1900 downlink
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Figure 14: (a-c) Impact of bundle size on average blocking time, service time and extracted spectrum, using random bundling and
the Redundancy model, for 6 services over a period of one day.The improvement in both blocking time and service time scales
exponentially with the bundle sizek. (d) Impact of bundle size on extracted spectrum, using random bundling and the Multiplexing
model, for 6 services over a period of one day.

frequency band (1925MHz-1995MHz), but uses a sweep interval
of 0.65s. Out of 300 channels we measured, 91 were partially used
and thus considered in our analysis.

The Need for Fine Grained Measurements. Figure 15 com-
pares the distribution of the spectrum availability and channel idle
time on each of the 91 channels. We segment traces into one-hour
segments. To examine the impact of sweep time, we compare the
results by using 0.65, 1.3 and 1.95 seconds sweep time. The mea-
surement results of the latter two were obtained by downsampling
the original measurement traces. We see that while their average
availabilities appear similar, the measurement results using differ-
ent sweep times display different idle duration distributions. This
means that the variations in channel availability continueat finer
time scales, and secondary devices cannot simply improve perfor-
mance by working at finer time scales.

Artifacts of Using Coarse Granularity. The above results show
that the current measurement granularity (1.8 seconds and even
0.65 seconds) is unable to capture variations in primary user spec-
trum access. With this in mind, we wish to understand the potential
artifacts when secondary devices use coarse access granularity than
that of channel availability variations.

We use the measured traces (with slot size ofτ ) to approximate
true primary user access patterns. To implement coarse access
granularity, we consider opportunistic access with slot size of kτ
by subsampling the traces by a factor ofk. This means that sec-
ondary users sense the channel at the start of eachkτ interval, and
make access decision for the entirekτ interval. For a fair com-
parison, we evaluate all the access systems using the same primary
user access patterns and the same, exact statistical knowledge on
primary user access patterns.

We examine the artifacts of usingk=2 and 3 (1.3s and 1.95s ac-
cess slots) and the SKA scheme. Figure 16(a)-(b) show the cumu-
lative distribution of the normalized change in extractionrate and
the actual primary user disruption rate, across all channelsegments.
Using coarser access granularity leads to both overly conservative
and aggressive access decisions – the normalized change of extrac-
tion rate is between 0.6 and 1.4. These suboptimal decisionslead
to 0–0.4 primary user disruptions. On 45+% of channel segments,
they violate the primary user disruption limit (0.1). This shows that
only if secondary user’s access granularity is no coarser than that
of variations in primary user access patterns, can SKA defined in
(1) fully satisfy the primary user disruption limit. When using a
coarser access granularity, secondary users must modify their SKA
scheme in order to avoid disrupting primary users.

These improper access decisions occur because secondary users
must round the optimal fine-grained access decision by the coarser
time granularity, either stop transmission too earlier or too late. In-
tuitively, the impact of such rounding effect is most severewhen
primary user access patterns display small idle durations.This is
further confirmed by the results in Figure 16(c), which plot the nor-
malized difference in extraction rate vs. the average primary user
idle duration.

7. RELATED WORK
We classify the related work into spectrum measurement studies

and opportunistic spectrum access.

Spectrum Measurements. Several measurement campaigns
have studied spectrum occupancy across the globe [1, 5, 7, 13, 23,
24]. All of them have discovered significant opportunities for op-
portunistic spectrum access. An extensive measurement on 30MHz-
3GHz frequency bands at six US locations [1] identified a maxi-
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mum 13% spectrum occupancy. Measurements on 2006 Football
World Cup at two Germany locations shows significant variations
in spectrum usage before, during and after the match. Significant
variance was also found on cellular network’s spectrum usage, us-
ing call logs over three weeks [24]. Recent measurement study at
four Chinese locations detects strong dependency across frequency
channels and applies a pattern matching algorithm to predict chan-
nel state from past observations [7]. Finally, the Mobnets group
from RWTH performed extensive measurements at three European
locations [23].

Our work differs from existing works by examining the actual
spectrum accessible to secondary users without violating the pri-
mary user disruption limit. Even with accurate knowledge ofpri-
mary user access statistics, we show that the accessible spectrum is
significantly less than the available spectrum. We then propose and
evaluate frequency bundling that builds high-quality transmissions
out of many scattered spectrum fragments. Different from [7], our
analysis shows that channels are mostly independent in their spec-
trum occupancy patterns. These differences might be attributed to
two factors: 1) differences in usage at different measurement sites
and 2) inclusion of completely busy and idle channels in [7] during
correlation calculation.

Opportunistic Spectrum Access. Research efforts in this area
have developed both analytical access strategies and models [14,
21, 19, 28] as well as practical algorithms and systems [4, 9,22].
They have motivated us to consider practical opportunisticaccess
systems and to quantify the actual accessible spectrum. While most
of these works either assume analytical models on primary user ac-
cess patterns or focus on realizing sensing and accessing inreal sys-
tems, our work offers a complementary study that uses real world
measurement traces to understand the feasibility and effectiveness
of opportunistic spectrum access.

8. CONCLUSION
Little is known about how well secondary devices in dynamic

spectrum networks can make use of the partially utilized channels
occupied by primary users. We present in this paper the first com-
prehensive study on the level of “usable” spectrum available to sec-
ondary devices while respecting hard limits on disruptionsto pri-
mary users. Our analysis of extensive fine-grain spectrum usage
traces shows that even with extensive statistical knowledge on pri-
mary user access patterns, and while running optimal algorithms,
secondary devices can only extract 20–30% of available spectrum
in a channel. While this means current access schemes cannotpro-
vide usable channels to support traditional applications,we can re-
gain reasonable levels of reliability by bundling multipleunreli-



able channels together. Our analysis shows very little to nocor-
relation in spectrum usage patterns across channels, whichleads
us to choose a simple random frequency bundling scheme. We
also show that performing fine-grain extensive spectrum measure-
ment is critical to understanding the performance and limitations
of opportunistic spectrum access, and that the granularityof cur-
rent measurements is not enough to fully capture original owner’s
spectrum usage variations.
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