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Abstract. Application-level multicast on structured overlays often suf-
fer several drawbacks: 1) The regularity of the architecture makes it
difficult to adapt to topology changes; 2) the uniformity of the proto-
col generally does not consider node heterogeneity. It would be ideal to
combine the scalability of these overlays with the flexibility of an un-
structured topology. In this paper, we propose a locality-aware hybrid
overlay that combines the scalability and interface of a structured net-
work with the connection flexibility of an unstructured network. Nodes
self-organize into structured clusters based on network locality, while con-
nections between clusters are created adaptively through random walks.
Simulations show that this structure is efficient in terms of both delay
and bandwidth. The network also supports the scalable fast rendezvous
interface provided by structured overlays, resulting in fast membership
operations.

1 Introduction

Overlay networks are popular as infrastructures for network applications such as
streaming multimedia [4], video conferencing and P2P gaming [10]. For these ap-
plications, fast membership operations and efficient data delivery are becoming
basic usability requirements.

Recent developments of structured [16,13,20] and unstructured [18,9] over-
lay networks point to a new diagram for overlay research to address these ma-
jor challenges, i.e., scalability, efficiency and flexibility. Several application-layer
multicast systems [14,21] build on these structured overlays by using reverse
path forwarding to construct multicast trees.

Structured overlays address the scalability requirements, but their homo-
geneous design can result in inefficient group communication on heterogeneous
networks, by either overloading or under-utilizing resources. This impact is espe-
cially visible on bandwidth-demanding multicast services. In contrast, multicast
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nodes on unstructured overlays can choose the number and destinations of their
connections, adapting them to network heterogeneity for improved network per-
formance. However, unstructured overlays often require flooding or gossiping to
route multicast messages [9], limiting scalability and efficiency.

To combine advantages from both approaches, we propose an application
infrastructure called H ybrid Overlay Networks (HONet). HONet integrates the
regularity of structured overlays with the flexibility of unstructured overlays in
a hierarchical structure. For network locality, nodes form clusters, each provid-
ing a root node that together form a core network. Local clusters and the core
network are separate structured networks. In addition, random connections be-
tween members across clusters serve as shortcuts to reduce network delay and
bandwidth consumption.

We make these random connections using a random walk algorithm. The
number of random connections is chosen according to each node’s local service
capacity. The neighbors connected to by these links are chosen probabilistically
according to the distribution of node service capacities through random walk.
This allows these connections to adapt to network heterogeneity.

HONet is an abstract framework and can work with structured overlays such
as Chord [16], Pastry [13], Tapestry [20] or De Bruijn networks [11]. In this paper,
we use De Bruijn networks as an example, and describe a protocol to construct
degree-constrained HONet (called HDBNet). We evaluate the performance of
HDBNet through simulation and show that HDBNet is flexible and efficient.
The relative delay penalty and cost in HDBNet are roughly 1/5 and 1/2 relative
to a flat De Bruijn network.

The rest of paper is organized as follows. We describe the problem context and
related work in Section 2. Next, we propose the HONet framework in Section 3.
Then in Section 4, we present the random walk scheme to construct random
connections between clusters. We present simulation results in Section 5, and
conclude in Section 6.

2 Related Work

Several approaches have been taken to address routing inefficiency and network
heterogeneity in overlay networks. Techniques to exploit topology information
to improve routing efficiency in flat structured overlays can be classified into
three categories [3]: geographic layout as in Topologically-Aware CAN, proximity
routing as in Chord and proximity neighbor selection as in Tapestry and Pastry.
However, these optimizations are often limited by the homogeneous design of
structured overlays.

Another approach builds auxiliary networks on top of structured overlays,
such as Brocade [19] and Expressway [17]. Although these schemes are efficient
for message propagation, they are not suitable for bandwidth-demanding mul-
ticast services because some nodes with high-degree will be overloaded. HONet
routing is similar to Brocade routing with partitioned namespaces plus the addi-
tion of randomized inter-cluster links. Canon [7], on the other hand, solves these
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Fig. 1. A HONet composed of clusters (C1,C2,. . . ). Root nodes (R1,R2,. . . ) from each
cluster form the core network. Messages can route using the hierarchical structure of
HONet, or through random connections between members in different clusters (fast
routing).

problems by extending the flat structured overlays to a hierarchy. Canon inherits
the homogeneous load and functionality offered by a flat design while providing
the advantages of a hierarchy. However it can not adapt to nodes’ heterogenous
service capacities, a problem solved in our scheme by removing the homogeneous
flat design.

Hierarchical structure is used in unstructured overlays to address efficiency
and scalability issues in systems such as mOverlay [18] and Hierarchical Gos-
sip [9]. Although they achieve good scalability, they often rely on flooding or
gossip to multicast messages, resulting in less than ideal efficiency. Random
walks are used in [8] to achieve good expansion of unstructured overlays.

3 The HONet Framework

In this section, we describe the general HONet framework, including its structure,
construction, and routing mechanisms. Note that HONet is optimized for efficient
and fast membership operations, useful for quickly and efficiently joining or
switching between multicast groups.

3.1 Overall Structure

As shown in Fig. 1, HONet is organized as a two-level hierarchy. The lower level
consists of many clusters, each containing a cluster root node. The cluster roots
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form the upper level, the core network. The core network and each cluster are
constructed as structured overlays with independent ID spaces. Each node is
identified by a cluster ID (CID), which is the local cluster root’s ID in the core
network, and a member ID (MID), which is the node’s ID in the local cluster
namespace.

Node degree in HONet (i.e. the number of neighbors a node knows) includes
two components: the regular connections in structured overlays and random
connections between clusters. Each node’s degree should be constrained by its
service capacity and network conditions. If cluster nodes have the capacity to
maintain neighbors outside of the regular overlay connections, they can create
random connections with members in other clusters. We describe the construc-
tion of these random connections in section 4.

We make some general assumptions in our design: (1) The inter-cluster net-
work latencies are larger than intra-cluster latencies, and available bandwidth
between clusters is much lower than inside clusters. (2) Nodes’ processing ca-
pacity and network conditions span a large range. Both assumptions are drawn
from the reality of current Internet [15].

In addition to inheriting the scalable routing of structured overlays and the
flexibility of unstructured networks, the clustered structure of HONet provides
fault-isolation: faults in a cluster will only affect local cluster nodes, with limited
impact on other clusters. Each cluster can choose the most stable member to
serve as cluster root, resulting in improved global and local stability.

3.2 Node Clustering

HONet is constructed through node clustering. When a node joins the network, it
locates a nearby cluster to join. Node clustering provides another way to address
topology-awareness in overlays.

Before a node joins, it identifies its coordinates in the network, possibly by
using network coordinate systems such as GNP [12] and Vivaldi [5]. In HONet,
we implement a simple coordinate system using a set of distances from each
node to a group of well-known landmark nodes. The coordinates of cluster roots
are stored in a distributed hash table (DHT) on the core network. A new node
searches the DHT for cluster roots close by in the coordinate system.

Since most DHTs in structured overlays use a one-dimensional namespace
for keys, while coordinates are multidimensional, we need to provide a mapping
from the multidimensional coordinate space to the one-dimensional DHT space.
The mapping should be: (1) a one-to-one mapping, (2) locality preserving, which
means if two points are close in multidimensional space, corresponding mapped
numbers are also close. Space filling curves (SFC), such as z-order or Hilbert
curves [2,17], have this property. In HONet, we use Hilbert curves to map the
coordinates into numbers called locality number (L-number).

With a SFC-based mapping, to find nodes close to a new node coordinate
l, the DHT searches the range: X = {x : |x − l| < T }. This searches for roots
with L-numbers within T distance of l, where T is a cluster radius parameter.
To find nearby roots, a new node sends out lookup message using l as key. The
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message routes to nodes responsible for l in the DHT, who search the range X ,
forwarding the message to close roots in namespace, who then reply to the new
node. If the new node cannot locate nearby cluster roots, or if the distance to the
closest cluster root is larger than cluster radius T , then this node joins the core
network as a new cluster root and announces its L-number and its coordinates
in the core network. Otherwise, the node joins the cluster led by the closest
cluster root.

Since each node in a DHT maintains a continuous zone of ID space, locality
information about close L-numbers (because of SFC’s distance-preserving map-
ping) will be kept in a small set of adjacent nodes. Locating nearby clusters
should be fast. Since clusters are significantly smaller than the overall network,
joining a local cluster is significantly quicker than joining a flat structured over-
lay. Finally, a new node can add additional inter-cluster connections according
to Section 4.

3.3 Message Routing

If a message is destined for a local cluster node, normal structured overlay routing
is used. Otherwise, we can use two approaches, hierarchical routing and fast
routing, both illustrated in Fig. 1. In either case, DHT routing is utilized in the
core network and inside local clusters.

Hierarchical Routing. In hierarchical routing, messages are delivered from
one cluster to another through the core network. In HONet, the MID for cluster
root is fixed and a destination is identified by a (CID, MID) pair. Thus if the
destination CID identifies the message as inter-cluster, the message routes to
the local root first, then routes through the core network to the destination
cluster’s root node, and finally to the destination. This is similar to routing in
Brocade [19].

Hierarchical routing is important for network construction and maintenance,
and is a backup when fast routing fails. Since latencies in the core network
are much larger than that inside clusters, we use fast routing across random
connections to reduce the path delay and bandwidth consumption in the core
network.

Fast Routing. Fast routing utilizes the random connections between clusters
as inter-cluster routing shortcuts. To implement fast routing, each cluster nodes
publishes information about its inter-cluster links in the local cluster DHT. For
example, if a node maintains a random connection with neighbor cluster CID
C, it stores this information in the local cluster DHT using C as the key. The
node storing this information knows all the random connections to destination
cluster C, and serves as a reflector to C.

If a source node doesn’t know the random connection to the destination
cluster, it simply sends the message to the local reflector through overlay routing.
The reflector will decide what to do next. If it knows of nodes with random
connections to the destination cluster, it forwards the message to one of them,
and across the random link to the destination cluster. If the reflector knows of
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no such random connection, the message routes to the local root and defaults to
hierarchical routing. When the message enters another cluster using hierarchical
routing, it can check again to see if fast routing is available. Local reflector can
tell the source node about the node with the random connection, so that later
messages can avoid inefficient triangle routing. Finally, reflectors can also use its
knowledge of shortcut links to balance traffic across them.

The difference between hierarchical routing and fast routing is the number
of inter-cluster routing hops. Since these latencies are much larger than intra-
cluster links, fast routing can significantly reduce end-to-end routing latency and
bandwidth consumption between clusters.

4 Random Walks

To construct random connections easily and adaptively, we use a random walk
algorithm.

A node’s capacity in HONet is measured by a generic fitness metric (denoted
by f), which characterizes service capacity and local network conditions. Ac-
cording to the definition of transition probability pi,j in formula (1), the scale
of f is not important when determining the quantity of pi,j. Thus the fitness
metric only needs to be consistent across nodes.

To consider node heterogeneity, a node’s fitness metric determines the num-
ber of random connections it maintains. Our scheme samples the nodes in HONet
according to the node fitness distribution. Since random walks can sample nodes
according to some distribution, we propose the following algorithm to construct
random connections. Assuming node i with fitness fi has ki neighbors, the algo-
rithm is:

1) Node i determines the number of random connections it will create ac-
cording to fi.

2) Node i initiates a random walk message with Time-to-Live (ttl) set to s
for each random connection. s is the number of skipped steps for the mixing of
random walk.

3) If node i has a random walk message with ttl > 0, it performs the next
step of random walk: select a neighbor j randomly and send the random walk
message to node j with probability:

pi,j =
1
ki

min{1,
fjki

fikj
} (1)

Otherwise the message will stay at node i in next step. ttl = ttl − 1.
4) If node i receives a random walk message with ttl > 0, goto step 3. Oth-

erwise, it is sampled by the random walk for corresponding random connection.
According to [6], we can see that above algorithm is just a typical Metropolis

scheme of Markov Chain Monte Carlo (MCMC) sampling. Since the detailed
balance equation

fipi,j = min{fi

ki
,
fj

kj
} = fjpj,i (2)
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satisfies, if s is large enough, the obtained nodes are samples according to the dis-
tribution of fitness. Moreover, since ki is proportional to fi in HONet, pi,j ≈ 1/ki,
the above random walk is similar to the regular random walk in the network.
For regular random walk, the mixing time is O(log(N)/(1 − λ)), where λ is the
second largest eigenvalue of the transition matrix of the regular random walk [8].
Usually λ is much less than 1 and the mixing time is small for general random
network if the minimum node degree in the network is large enough. Therefore
the s for above random walk is small and each random connection can be created
rapidly.

5 Performance Evaluation

We use a De Bruijn graph as the structured overlay network to construct HONet,
and call it a Hybrid De Bruijn Network (HDBNet). The performance of HDBNet
is evaluated through extensive simulations in this section.

5.1 Simulation Setup

We use GT-ITM to generate transit-stub network topologies for our simulation.
We generate 5 topologies each with about 9600 nodes and 57000 edges. We
assign different distances to the edges in the topologies (with values from [1]):
The distance of intra-stub edges is 1; the distance of the edges between transit
node and stub node is a random integer in [5, 15]; and the distance between
transit nodes is a random integer in [50, 150]. Nodes in HDBNet are attached to
different routers and the size of HDBNet varies from 1000 to 6000. The radix
of De Bruijn graph is 2. Five runs are performed on each network topology and
the average value reported.

We consider the following metrics:

– Relative Delay Penalty (RDP): the ratio of end-to-end HDBNet routing delay
between a pair of nodes over that of a direct IP path. RDP represents the
relative cost of routing on the overlay.

– Link cost: the average latency across all connections. The link cost is a
convenient, though simplified metric to measure network structure and data
delivery performance in different overlays.

– Hop count: the average number of overlay hops in an end-to-end path.

5.2 Evaluation Results of HDBNet

We now compare the performance of HDBNet to a flat De Bruijn overlays. The
radix of flat De Bruijn networks is set to 4 to have similar node degrees as
HDBNet. Since the cluster radius and random connections are the main fac-
tors affecting the performance of HDBNet, we first evaluate the performance
with different cluster radii (R = 20, 30, 40) when each cluster node has at most
4random connections (RC = 4). Then we compare the performance of HDBNet
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Fig. 2. The average relative delay penalty (RDP) between any pair of nodes in flat De
Bruijn and HDBNet when RC=4

Fig. 3. The link cost in flat De Bruijn and HDBNet when RC=4

by varying the number of random connections (RC = 1, 2, 3, 4) for R = 30.
These are representative of results run using other radius values. Fast routing is
used whenever possible.

Figure 2 shows the comparison of average RDP between any pair of nodes in
HDBNet and flat De Bruijn. We can see that the RDP in HDBNet is much
smaller than that in flat De Bruijn which does not take the network local-
ity into consideration. For R = 30 and R = 40, the RDP is very small (≈
2), roughly 1/5 of the De Bruijn RDP. When the network size is fixed, RDP
decreases as cluster radius grows. This is because larger cluster radii imply
less clusters, and more clusters are likely to be connected directly via random
links.

Figure 3 shows the comparison of link cost in HDBNet and flat De Bruijn.
We can see that HDBNet has only half cost compared with flat De Bruijn,
which indicates that the HDBNet is much more efficient in terms of end-to-
end latency. In fact, most connections in HDBNet are intra-cluster connections,
which are much shorter in term of latency than inter-cluster connections. While
flat De Bruijn does not take network proximity into account, and many neighbor
connections are inter-cluster links.

The comparison of average hop count between any pair of nodes in HDBNet
and flat De Bruijn is shown in Fig. 4. Hop count in HDBNet is 2 times or
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Fig. 4. The hop count in flat De Bruijn and HDBNet when RC=4

Fig. 5. The average relative delay penalty (RDP) in HDBNet when the number of
random connections (RC) varies and R=30

more than in the De Bruijn network. While the inter-cluster hops are reduced
in HDBNet, intra-cluster hops increase. Despite this result, the path length still
scales as O(log N).

Figure 5, 6, 7 show the comparison of average RDP, link cost and hop count
respectively when R = 30, and we vary the maximum number of random connec-
tions per node (RC = 1, 2, 3, 4). The number of random connections affects per-
formance dramatically. Just a few random connections can improve routing per-
formance dramatically. When more random connections are allowed, messages
are more likely to be delivered through random connections. Thus inter-cluster
routing will be reduced, resulting in lower RDP. Moreover, fewer inter-cluster
hops means less hops in intermediate clusters, resulting in shorter overlay path
length. Since the intra-cluster connections are shorter than inter-cluster connec-
tions, the link cost increases with allowed random connections.

Our results show that hierarchical structured overlays can perform better
than flat structures. These improvements should be applicable to HONets based
on other structured overlays. Our proposed mechanisms, node clustering and
random connections, offer an orthogonal way to address topology-awareness
compared to locality-aware structured overlays such as Tapestry or Pastry. A
performance comparison against traditional locality-aware structured overlays
is part of our goals for ongoing work.
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Fig. 6. The link cost in HDBNet when the number of random connections (RC) varies
and R=30

Fig. 7. The hop count in HDBNet when the number of random connections (RC) varies
and R=30

6 Conclusions

In this paper, we propose HONet, a locality-aware overlay framework for flex-
ible application-layer multicast that combines the scalability and interface of
structured networks and the flexibility of unstructured network. We use random
walks to create random connections between clusters of nodes. HONet preserves
the key features such as scalability, efficiency, routability and flexibility as in
the structured or unstructured overlay networks, and is a desirable platform for
flexible group communication.
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