HPTP: Relieving the Tension between ISPs and P2P

Guobin Shen!, Ye Wang'?, Yonggiang Xiong', Ben Y. Zhao?, Zhi-Li Zhang*
! Microsoft Research Asia, Beijing, P.R.China
2 Electronic Engineering Department, Tsinghua Univ., P.R.China
3 Computer Science Department, U.C. Santa Barbara
* Computer Science Department, Univ. of Minnesota at Twin Cities

ABSTRACT

Measurement-based studies indicate that there is a severe tension
between P2P applications and ISPs. In this paper, we propose a
novel HTTP-based Peer-to-Peer (HPTP) framework to relieve this
tension. Thekey ideaisto exploit the widely deployed web cache
prozies of |SPsto trick them to cache P2P traffic. Thisisachieved
via a process we refer to as “HTTPifying”: we segment (if nec-
essary) large P2P files or streams into smaller chunks, encapsulate
and transport them using the HTTP protocol so that they are cache-
able. We outline the design of several key tools of the proposed
HPTP framework — HTTPifying, cache detection and usability test
tools, and describe a cache-aware tree construction (CATC) proto-
col for delivering P2P streaming traffic as an example to showcase
the HPTP framework. Simulation results demonstrate that HPTP
can lead to significant performanceimprovement. We argue that the
HPTP framework will benefit both 1SPs and end users (P2P as well
as normal web users) by significantly reducing network overload
caused by repetitive P2P traffic.

1. INTRODUCTION

While peer-to-peer (P2P) applications eliminate the prob-
lems of “flash crowd” and server overload that afflict servers
inthetraditional client-server systems, their increasing popu-
larity, in particular, emergence of P2P streaming applications
such as P2P IPTV, has created another problem — namely,
traffic surges and network congestion at Internet Services
Providers (ISPs). Numerical 1SPs have reported that P2P
traffic accounts for a mgjor portion of the Internet, surpass-
ing any other application category such as web, and and is
boundto increasefurther. The network congestion caused by
P2P traffic not only affects users of P2P applications, but also
those of other applications such as web. Furthermore, it has
also been reported that more than 92% P2P traffic traverse
transit/peering links among ISPs [1], thereby affecting the
bottom line of (customer) ISPs. As an additional side-effect
of this problem, the overwhelming bandwidth consumption
of peer-to-peer systems — despite the inherently scalable de-
sign —may prevent them from scaling further, at least within
University-like environments, as the measurement study [2]
concludes.

The excessive traffic overload (and perhaps more impor-
tantly, the resultant financial burden) incurred by P2P appli-
cationson | SP networks has prompted many of themto resort
to blocking or rate-limiting P2P traffic. Such “reactionary”
measures, on the other hand, often irk users who may take
their business elsawhere. A more “ constructive” approachis

to attempt to deploy cache proxiesto cache P2P traffic, sm-
ilar to web caching. In fact, several P2P caching schemes
have been proposed [2,4-7], and a few startups have aso
appeared. Unfortunately, there are afew obstaclesin deploy-
ing P2P caches: firstly, P2P caching systems are likely to be
very complicated. Unlike web traffic standardized in using
HTTP transport through few dedicated ports like 80, thereis
no a standard P2P protocol and every P2P protocol uses its
own port. Therefore, P2P caching systems are forced to take
an ad hoc approach by enumerating and handling every P2P
protocol. So far such an approach appears feasible, since
there are only a few popular P2P systems that contribute
most of the traffic at the moment. Yet another drawback of
this ad hoc approach is the requirement of regular update
of the P2P cache engines to handle newly emerged popular
P2P protocols. Secondly, extra, possibly huge, investment is
required for the equipment and facility purchase and a so the
administrative cost.

Inthispaper, we proposeanovel HTTP-based Peer-to-Peer
(HPTP) framework to relieve thistension. Thekey ideaisto
exploit the widely deployed web cache prozies of ISPstotrick
them to cache P2P traffic. This is achieved via a process
we refer to as “HTTPRifying”: we segment (if necessary)
large P2P files or streams into smaller chunks, encapsulate
and transport them using the HTTP protocol to ensure them
cache-able by properly specifying the cache-control related
directives of the HTTP request/response header. The key
difference between HPTP and other P2P caching proposals
lies in that we utilize the ezisting web cache infrastructure
deployed by ISPs

Theefficacy of HPTP dependson how successfully we can
trick the web cache proxiesto cache the HTTPified P2P traf-
fic. To increase the hit rate, a cache-aware P2P overlay con-
struction protocol is highly desired. However, unlike normal
P2P applications where peers’ addresses are known, most
caching proxies (especially those deployed by ISPs which
are transparent caches) are unknown. This necessitates a
tool to detect the cachesin the first place. In this paper, we
present alight weight cache detection tool called #Ping and,
as afirst case study to cache-aware overlay construction, a
cache-aware tree construction protocol that can be applied
to a practical streaming scenario. We perform some exper-
iments and simulations to demonstrate the effectiveness of
the HPing tool for cache detection and usabhility test, and the
significant performanceimprovementto P2P usersand traffic
reduction on the backbone and transit/peering links among

| SPs due to HT TPification.

The remainder of this paper is organized as following. In
Section 2 we providesabrief introductionto web caching and
discuss related work. In Section 3 we present the proposed
HPTP framework and the key tools. Experimental resultsare
reported in Section 4. The paper is concluded in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Brief Introduction to Caching Proxies

A caching proxy (or cache for short) usualy intercepts
the TCP connection of a web request and splits it into two
separate TCP connections, one to the client and the other to
the server. Thelogic behind this designisto always perform
cache checking first before attempting to make a connection
to the server. The latter connection will be established only
if acachemiss happens. Itissuch designthat leadsto shorter
response latency and reduces the traffic to the server.

Upon receiving a request, the cache engine must quickly
determine if it still stores the response. This requires the
response to be uniquely indexed with hints from its request
and lookup to be performed efficiently. The uniqueindexing
is achieved by indexing the response using its URL whichis
intrinsically unique and efficient lookup is achieved through
hashing.

The network host address in a URL can be expressed us-
ing hostnames or I1Ps, and more interestingly, in an HTTP
session, up to three network host addresses may be speci-
fied, therefore, we want to understand if the hostname and
IP are interchangeable and which network host address are
used in the cache'sindexing scheme. We experimented with
threepopular caching proxies, aCisco Cache Engine (M odel:
505), Microsoft ISASand Squid. Wefound that 1) hostnames
and IPs are considered different in indexing a response;
2) the response is indexed with preference Hostname get,
Hostname_host, Hostname_con. Our test messageis:

telnet Hostname_con 80
GET Hostname_get/helloworld.html http/1.1
HOST Hostname_host

Many different factors can affect the cache-ability of apar-
ticular response, and these factors interact in a complicated
manner. In general, for a response to be cache-able, one
needs to ensure the size of the object is suitable and certain
cache-control directives are properly set in both the request
and the response.

Finally, because caching proxies are shared among many
users, they are, therefore, essential services for 1SPs and
many organizations (e.g., corporations and universities). As
aresult, they aretypically deployed at some strategic points
such as near the organization’s network gateways or near
ISPs' Point of Presence (POP) in different locations.

2.2 Related Works

P2P traffic of asmall ISP wasfoundto behighly repetitive,
showing great potential for caching[4]. In[2], initial analysis
reveal ed that the outbound hit rate coul d reach approximately
85%, and theinbound hit rate reachesto 35% even thoughthe

cache hasnot fully warmed. Significant locality in the Kazaa
workload was further identified in [5], which implies a 63%
cache hit rate under extremely conservation trace-driven es-
timation. P2P systems exhibit good stability and persistence
at the prefix and AS aggregation level s and suggest inserting
local indexing/caching nodes or applying traffic engineer-
ing may be a promising way to manage the P2P workload
in an ISP's network [3]. Besides the data messages, query
messages in Gnutella networks are found to exhibit temporal
locality and therefore cache-able[7].

The aggregate popularity distribution of objects is found
to deviate from Zipf curves [5] and further modeled by a
Mandel brot-Zipf distribution [6]. A novel caching algorithm
based on object segmentation and partial cachingis proposed
to cache each object by a portion that is proportiona to its
popularity. Trace-based simulations show that a relatively
small cache size would lead to up to 35% byte hit rate [6].

A few startupslike Cachel ogic[1], Sandvine (www . sandvine .
com), P-Cube (www . p-cube . com, acquired by Cisco in August
2004) etc., have devel oped hardwareor software P2P caching
systems. They al use routing policy enforcement to look up
ISP's own network before looking further afield and adopt
the divide and conquer method to handle different P2P pro-
tocols. It iswell anticipated that regular updates are needed
as P2P protocols evolve, so the annual support service is
necessary.

Thekey difference between HPTPand al above mentioned
P2P caching proposalsisthat we utilizethe already deployed
caching proxies and there is no extraadoption cost for | SPs.

Finally, Content Delivery Networks (CDN) has beenama-
ture business since they are compelling to content providers
because the responsibility for hosting content is offloaded to
the CDN infrastructure. CDN is related to our work in the
sense that they al so use caches, but unlike HPTP that uses al-
ready deployed caching proxies, they deploy and use reverse
proxy caches.

3. HPTP FRAMEWORK

In this section, we present several key components of the
HPTP framework and a specific cache-aware tree construc-
tion protocol.

3.1 HTTPIifying Tool

Since caching proxies typically caches only HTTP traf-
fic, an indispensable component of HPTP framework is the
HTTPifying tool, which segments (if necessary) the files
or streams into small-sized chunks, use HTTP protocol for
the transport of the resultant chunks and ensure such HTTP
wrapped chunks are cache-able by specifying the correct
cache-control related directivesof theHT TP response header.

The reason we want to segment the origina file is three
folds: 1) to make it cache-able since most web caches im-
poses constraintson thesize of cache-able objects; 2) toallow
partial caching and fine cache replacement, which has proved
to be crucial with certain cache replacement schemes [6]; 3)
to exploit the potential of soliciting content from multiple
sendersas in BitTorrent.

Obviously, HTTPifying incurs some overhead. The over-

Send HTTP GET msg,
Recv response (IP_seen)
[Optional : measure RTT]

!

Init (cnt_local=1, msg_cnt=1) :

Send HTTP GET msg,
Recv response (ReqNum)
[Optional: measure RTT]

1P_seen=IP_local

Terminate
[no cache]

Terminate
[cache available]

i ‘New counter (=1)‘ ‘ counter ++ ‘

! Retun IP_seerD Gelurn counleD

cnt_local = ReqNum

msg_cnt ++

Terminate
cache not available

Client Module | Server Module

Figure 1: The overall process of HPing. In the client
module, the shadowed box is for cache detection,
and the rest for usability detection.

head equals to the size of HTTP wrapper divided by the
segment size. If the segment size is set to 256K B, then the
overhead is less than 1%.

3.2 #Ping Tool

Optimal cache placement problem has attracted in depth
studies and we expect it is worth more study in a P2P set-
ting. However, in the HPTP context, because the caches are
already deployed, we need to discover where such cachesare
deployed. Moreover, besides telling the existence of caches,
we also want to learn the usability (i.e., how likely the cache
will cache our HPTP traffic) of discovered caches. We have
developed alight weight cache detection and cache usability
test tool, called HPing, that can fulfill these requirements.

3.21 Caching Proxy Detection

The HPing performs cache detection based on the fact that
a caching proxy splits a web request into two separate TCP
connections, one to the client and the other to the server.
This fact implies that the source IP the server sees from the
request will be different from the original source IP (the IP
of the requesting client) if there exists a cache in between.
Therefore, we can tell the existence of acache by comparing
theoriginal source| P against the source | P seen by the server.

‘HPing containstwo modules: aclient module and aserver
module (i.e., the daemon). The overal process of HPingis
illustrated in Figure 1 and is elaborated below. Let Peer A
(P4) and Peer B (Pg) denote the pinging peer and the peer
being pinged, respectively.

P, first sendsan HTTP GET request message (referred to
as HPing message hereafter) to Pp. If itisthefirst time Pp
receivestherequest, it createsacounter (initialized to one) for
the new unique request and responds with a cache-friendly
HTTP response with the content being the requestor’s | P ad-
dressit saw; otherwise, P incrementsthe counter associated
with that request and responds only the counter. P4 compare
the |P address returned from Py with its own |P address. If
they arethe same, then we can concludethat thereis no cache
between the two peers; otherwise, there exists a cache and of
which the IP addressis a so known.

Note that +#Ping may lead to possible false positive con-

clusionfor the NAT/NAPT users. Thatis, thereisactually no
cache in between, but the #Ping would conclude that there
existsonebecausethe | P address seen by the server isactually
theclient’sNAT’ ed (externdl) | P and differsfrom theclient’s
own (internal) IP. Fortunately, the false positive conclusion
does not hurt much (except possible waste of few HPing re-
quests) because the “non-existing”, falsely claimed cacheis
doomed not to pass the usability. Also, for most of the or-
ganizational networks, caching proxies are usually deployed
on the gateway which implies that most of the seemingly
false positive conclusions are actually correct. One limita-
tion of HPing is that it can only tell the one closest to Pp
evenif theremay exist multiplecachesinthe pathfrom P to
Pg. Nonetheless, we can progressively refine the locations
of caches by recursively applying the cache detection logic,
as donein the cache-aware tree construction.

3.2.2 Cache Usability Test

‘HPing performs cache usability test using chained HPing
messages. The message chain is formed by K subsequent
same HPing messages. Still using P4 and Pp as examples.
P4 issues up to K same HPing messages, one by one, imme-
diately after theresponseto apreviousrequest isreceived and
processed. As above said, during the cache detection phase,
Py has aready associated a counter to each unique request,
and the counter will beincremented (i.e., RegNum++) for re-
peated request and included in P’ s cache-friendly response.
P4 checkstheresponseandtest if the Req Num hasincreased.
If the Req Num does not change, we can conclude that there
indeed exists a cache between P4 and P5 (i.e., not afase
positive case) and the cache is immediately usable, and the
procedure terminates. If al K HPing messages are sent but
no conclusion can be drawn, then we simply conclude that
the cachein betweenisnot immediate usable such asrunning
out of capacity or afalse positive case caused by NAT/NAPT.

In HPing, K isasystem parameter related to the available
caching capacity and also the cache replacement policy. We
have not obtained a good estimation method for it. Instead,
we follow the intuition by setting an initial large K and dy-
namically reduce it by looking at the incremental steps of
the returned ReqNum. Its rationale lies in that fact that
the incremental speed of ReqNum gives the hint of how
many other peers are performing the probing concurrently,
i.e., ReqNum isanindicator of popularity. Moreover, HPing
doesnot differentiatethe requestsfrom different peers, there-
fore, al peersareactually performingthe cache detectionand
usability test collectively. Thiswill lead to an accuracy es-
timation if the user base is large. Otherwise, if each peer
issues a unique HPing message, it would be hard to tell the
likelihood of the usability of the cache.

3.3 Cache-aware Tree Construction (CATC)

In anaive case, we can simply let the source HTTPify the
P2P data and ask all peers to request data from the source
directly, using HTTP transport. We refer to this scheme
as naive HPTP. In some sense, naive HPTP is similar to
HTTP tunneling except that we deliberately make the traffic
cache-able through HTTPifying. However, thisis a passive

and best-effort leverage of caches. The extent to which the
cachesareutilized dependson the (geographical) distribution
of peersand the caches. Nevertheless, it isstill beneficial be-
cause the caches are usually strategically deployed. Another
drawback of this naive scheme is that the source may risk
heavy burden and becoming performance bottleneck since
thereis no guarantee on the cache hit.

To avoid such situation, we build cache-aware delivery tree
with explicit control onthe selection of caching proxies. This
is achieved via the cache-aware tree construction (CATC)
protocol described below. Once the tree is built, each peer
only requests data from its parent, instead of the sourceasin
the naive HPTP case.

3.3.1 The CATC Protocol

We regard all peers and the source as in alarge cluster at
the beginning with the source being the cluster head.

1. All peersin the same cluster perform cache detection
and usability test against the cluster head, and record
(in stack order) the head information locally.

2. All peers report their results and own | P addresses to
a (new) DHT node and remove their records from the
previous one. Peers are further clustered (naturaly)
according to their detected caches. Those failed to
discover new usable caches remain at their previous
cluster and form an orphan set.

3. The DHT nodes appoint the peer whose IP address!
is the closest to the source as the new cluster head
(through IP matching) and inform all peersin the same
cluster.

4. Above steps are recursively applied until there is no
new usable caches can be found any further.

5. Findly, the treeis constructed recursively in areverse
order, starting from the finest clusters. peers in the
same cluster form a subtree by directly connecting to
thecluster head. Thisstepisrepeated until all the peers
arerecruited into thetree. In case of alarge orphan set,
we may build a tree out of it using normal P2P tree
building logic, but use HPTP transport strategy.

Note that we have chosen to use a DHT to organize the
collected cache information. Alternatively, we can use a
server for this purpose. However, DHT naturally helps to
cluster the peerssince peersreporting to the same DHT nodes
are covered by the same caching proxy. This avoids an
explicit clustering process as would be the case if a server
were used. Also, using DHT is a more robust and scalable
way if we want to collect the cache information for alonger
term.

3.3.2 Handling Peer Dynamics

Peer dynamics handling usually represents a big obsta-
cle in any P2P system design. Unlike other P2P systems,
peer dynamics handling in the HPTP framework becomes

'For peers behind NAT/NAPT, external IPs are required.

much easier because of the recruited caches are indeed “gi-
ant peers’: powerful, reliable, dedicated and strategically
deployed. Their existences help to hide away the peer dy-
namics, besides boosting the delivery performance, as de-
tailed below:

Peer leave or failure: the system keeps silent as much as
possibleto peer leave or failure. If leaf nodes|eft the system,
thereis no impact at all. If some intermediate nodes of the
resulting tree (i.e., those who have been HPing' ed) left the
system, there is no change to children peers at al (because
the content may have been cached already and cache can help
to response) unless the children peers receive a “connection
refused” error message (indicating the content isnot cached).
In this case, the children peerswill react by simply popping
up another peer from their local stacks that have been built
during the tree construction process.

Peer joining: newly joining peersawaysfollow the CATC
procedure to reach the finest cluster. When no new useful
cache can befound, it addsitself to the orphan set at the cor-
respondinglevel and directly connectsto thelast successfully
‘HPing' ed peer. One interesting artifact is that even if anin-
termediate node has actually left the system when alater peer
joins, it is still possible for that peer to reach a finer subtree
of that intermediate node, as long as its response to HPing
isstill cached. Peersin orphan set may periodically perform
peer joining procedure in case there are caches warmed up
after their usability test.

We want to emphasize here that the robustness of the
cache-aware tree to the peer dynamics is a direct result of
the design logic of caching proxies. always perform cache
checking first before attempt to make connections. This
property of caching proxy also makes the maintenance of
the cache-aware tree very simple. Unlike other tree mainte-
nance protocol, we do not need heartbeat message to test the
liveness of the peers. Similarly, there is no need to perform
periodical optimization for the cache-aware tree. Instead,
only peers experiencing low performances may perform op-
portunistic optimization by rejoining the tree.

4. EXPERIMENTS

We have performed some preliminary cache detection and
usability test experiments with peers from many universities
and aso performed some simulation study on the cache-
aware delivery tree.

4.1 Cache Detection and Usability Test

Ideally wewould haveliked to test the existence of caching
proxies between PlanetLab nodes. Unfortunately, we cannot
run our daemon on the PlanetL ab nodes, due to the fact that
the Port 80 is reserved for administration purpose. Asare-
sult, we used anode from Tsinghuauniversity (China) asthe
‘HPing target, and performed cache detection tests from var-
ious PlanetL ab nodes using +Ping. Rather disappointingly,
no caches are found. This somehow confirmed the message
in [8] that reads. “Although interception caches can also be
located on backbone networks, it is not very common.”

The second set of experimentsis that we asked some (now
19) friends from many universities (spreading China, USA,

Canada, and Hongkong) to HPing the same target at Ts-
inghua. Table 1 shows the cache detection and usability test
results. We seethat 11 out of 19 nodes have detected ausable
caching proxy on their way to Tsinghua University.

Nodes from

| Success | False Positive | Failure

Univ’'sin China

Univ'sin USA

Univ’'sin Canada

Univ’sin HongKong

wl| PP k| ;
Ri|lololo|n
ROk k| N

MSR Asa |

Table 1: Cache detection and usability test results.

Although preliminary, the positive results indicate that
there a large amount of web caches already deployed in the
Internet. We feel the basic idea of HPTR, i.e,, to turn these
hidden cache into “giant peers’, is very promising.

4.2 Performanceof CATC

To evaluate the performance of HPTP and compareit with
normal P2P, we used the GT-ITM [9] to generate an Internet-
like topology with 100 routers, four of which are purely
transit routers while the rest are stub ones providing access
services. 1000 peers are randomly connected to different
stubs and their access bandwidths are randomly distributed
between 1Mbpsto 10Mbps. In thetext below, K denotesthe
number of usable caches and H denotes the actual byte hit
rate of those caches.

We simulate and compare three schemes, namely normal
P2P, naive HPTP and the CATC HPTP, using three metrics:
average latency between a peer and its parent (could be an-
other peer, a cache or the source), average bandwidth for
peers, backbone traffic. The normal P2P delivery tree (i.e.,
an application layer multicast tree) is built using the short-
est path routing with latency as path metric. Naive HPTP
is achieved by directly HTTPifying the resulting P2P tree.
Note that we do not constrain the number of children a peer
can supply, but all the children will compete for the egress
link bandwidth of that peer.

In the first experiment, we set K = 30 and let H be fixed
to 67% (according to the results in [4]) or varying with the
request popularity. More specifically, we set H; = min(c -
log W3, 80%) with W; bethe number of peerssharing thesame
cache and ¢ a normalization constant. To be more redlistic,
the hit rate is capped at 80%. The results (averaged over 10
runs) are shown in Figure 2 to Figure 4 for the four metrics.

Figure 2-(a) and Figure 2-(b) show the comparison for the
average parent-to-child latency perceived by peers for the
three schemes under a high fixed cache hit rate and avarying
hit rate, respectively. It is evident that in both cases naive
HPTP outperforms the normal P2P while the CATC HPTP
performsthe best with alarge margin. Comparethetwo sub-
figures, we see immediately the advantages of CATC over
naive HPTP under amorerealistic cache hit ratemodel. This
isobviously dueto theexplicit effortin CATC to better lever-
age caches. Similarly, we can see the performance boost of
HPTP schemes with regard to the average bandwidth metric

1 e
08 Lemm T 1
w 0.6 LT e 1
) PR
O o04f et B
D R P2P Tree
0.2l et - - HPTP Naive
[e! — HPTP CATC
0 - Il Il Il Il T
0 20 40 60 80 100 120
Parent-to—Child Latency (ms) (fixed H)
1 : : : : o
0.8 et 1
EO
u 0.6F _.a""’ i
a | /S e -
© o4t o :
m«-" “““ P2P Tree
0.2 s - - HPTP Naive
e — HPTP CATC
0 - Il Il Il Il T
0 20 40 60 80 100 120

Parent-to—Child Latency (ms) (varing H)

Figure 2: CDF of average parent-to-child latency:
(a) fixed cache hit rate, (b) varying cache hit rate.

! ‘ ; R TP PRSI R Dl
08 B RS FELE i
0.6 et |
g ;

O 04 ¢ |

L ar N B P2P Tree
o2rs - - HPTP Naive
’ — HPTP CATC
0 T
° 2 8 5 8 10

Average Bandwidth (bps) (fixed H) « 10°

1 .

0.8 _____——‘ |
L 0.6F Lzt |
[a)] ,)
O o4 { |
4 L P2P Tree
oz - - HPTP Naive |
2 — HPTP CATC

0 s ;

° 2 . 6 8 10
Average Bandwidth (bps) (varying H) x 10°

Figure 3: CDF of average bandwidth of all peers:
(a) fixed cache hit rate, (b) varying cache hit rate.

in Figure 3, under different cache hit rate models.

We stated before that HPTP can lead to significant reduc-
tion in the transit traffic as well as the Internet backbone
traffic because of the caches' help. Thisisclearly confirmed
in Figure 4. The reduction of backbone traffic also implies
that HPTP achieves, implicitly but automatically, locality
awareness and reaches a finer level than an application level
locality-aware protocol can achieve. Note that the way how
normal P2P tree is built in our experiment actually repre-
sents excellent locality awareness because closer peers are
assigned shorter latency.

We also conduct another set of experimentsto measurethe
path length (in hops) from a peer to the source. The results
reveal that there areindeed some peerstravel morehops(i.e.,
detouring) to reach the source in order to seek for caches.
But when transferring, on average, they enjoy ashorter route
due to cache hitting. We omit the figure for sake of space.

Finally, as aforementioned, the performance of HPTP de-
pends on both the hit rate and deployment of those web
caches. So we perform another two sets of experiments to
study how the number of caches (K) and their hit rate (i)
influence the HPTP performance. To obtain moreinsight on

1 ‘ ‘ ‘ ‘ ‘ ‘ —
0.9 ——H_ B —
r
u 0.8 e —
& [,
©ort -
““““ P2P Tree (Avg: 38.4Mbps)
0.6 - - HPTP Naive (Avg: 37.1Mbps) H
— HPTP CATC (Avg: 25.7Mbps)
05 1 1 1 T T ; T
0 1 2 3 4 5 6 7 8
Throughput (bps) (fixed H) x 10’
1 T T T T T T T -
e i e vt vt e et e e s v
0.9 ——,H_ B 1
L 08} i 1
& [.
©ort -
““““ P2P Tree (Avg: 38.1Mbps)
0.6 - - HPTP Naive (Avg: 37.9Mbps) H
— HPTP CATC (Avg: 25.7Mbps)
05 1 1 1 T T ; T
0 1 2 3 4 5 6 7 8
Throughput (bps) (varying H) X107

Figure 4: CDF of traffic on backbone links: (a) fixed
cache hit rate, (b) varying cache hit rate.

their respective impact, we fix one of them while adjusting
the other. Due to the space limit, we are not able to include
thefiguresthere. Theresultsrevealsthat: 1) the performance
of HPTP goes better ailmost linearly with the growth of the
caches byte hit rate; 2) the number detected-usable web
caches also has amost linear impact on the HPTP perfor-
mance; 3) the placement of caches is very important where
the number of cachesis small.

5. CONCLUSION AND FUTURE WORKS

In this paper we have proposed an HTTP-based Peer-to-
Peer (HPTP) framework to leverage the aready deployed
ISPs caching proxies to relieve the tension between P2P
and ISPs. We presented the basic concept of HPTP frame-
work, designed necessary tools like the HTTPifying tool
and the cache detection and usability test tool, HPing. We
a so performed case study by building a cache-aware tree to
demonstrate the potential gains of HPTP. Experimental and
simulation results confirmed that the tools are effective and
HPTP can indeed lead to significant performance improve-
ment for peers and traffic reduction on transit links and the
Internet backbone.

We believe that the proposed HPTP framework will ben-
efit both 1SPs and end users (P2P as well as web users), as
HPTP proactively recruits many “giant-peers’ - powerful,
stable, dedicated and strategically deployed caching proxies
- to help deliver P2P traffic. HPTP can produce substantial
reduction of the transit/peering traffic across ISPs and the
traffic on the Internet backbone, at no extra adoption cost as
compared with P2P caching solutions or other alternatives.
It is therefore more appealing to 1SPs. While P2P users will
benefit immediately and directly from HPTPR, normal web
users will indirectly benefit from HPTP as well because the
reduced P2P traffic on the backbone will make downloading
of uncacheable dynamics web contents faster, given the fact
that more and more web pages are using uncacheable dy-
namic content heavily. In addition, as the hit rate increases
only logarithmically with the cache size [4], caching prox-
ies can be more efficiently utilized by caching P2P traffic,

while its negative impact on the web cache can be mitigated
by using intelligent P2P caching schemes such as the one
developedin [6].

As a final remark, we would like to point out that the
current cache index schemes prevent us from most efficient
utilization of caching proxies because the same content from
different peers are indexed differently which would cause
huge waste of cache storage in a P2P setting. We are cur-
rently investigating some practical work-arounds. Moreover,
as the Internet evolves towards a data-oriented architecture
where files can be referred to with location-independent flat
identifiers [10] or Uniform Resource Names (URNS, RFC
2141), the efficacy of HPTP would be maximized.

Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0546216. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation.

REFERENCES

[1] CachelLogic, “http://www.cachelogic.com.”

[2] S Saroiu, et d, “An analysis of internet content
delivery systems,” in Proc. of OSDI’02, 2002.

[3] S. SenandJ. Wang, “Anayzing peer-to-peer traffic
across large networks,” IEEE/ACM Trans. on
Networking, vol. 12, no. 4, pp. 219-232, 2004.

[4] N. Leibowitz, et a, “Are file swapping networks
cacheable? characterizing p2p traffic.” in Proc. of
WCW’02, Boulder, Colorado, Aug. 2002.

[5] K. P.Gummadi, et a, “Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload,” in
Proc. of SOSP’03, Oct. 2003.

[6] O. Salehand M. Hefeeda, “Modeling and caching of
peer-to-peer traffic,” in Proc. of ICNP’06, Santa
Barbara, CA, Nov. 2006.

[7] S. Patroand Y. C. Hu, “Transparent query caching in
peer-to-peer overlay networks,” in Proc. of IPDPS’03,
Washington DC, 2003.

[8] D. Wessels, Web Caching. O’ Reilly & Associates,
Inc., 2001.

[9] K. Calvert, M. Doar, and E. W. Zegura, “Modeling
internet topology,” IEEE Comm. Magazine, 1997.

[10] M. Caesar, et d, “Rofl: Routing on flat 1abels,” in
Proc. of the ACM SIGCOMM, Pisa, Italy, 2006.

[11] V. S. P4, et al, “The dark side of the web: an open
proxy’sview,” SIGCOMM Comput. Commun. Rev.,
vol. 34, no. 1, pp. 57-62, 2004.

[12] A. Wolman, et al, “On the scale and performance of
cooperative web proxy caching,” in Proc. of SOSP’99,
1999, pp. 16-31.

