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Abstract
Structured peer-to-peer (P2P) overlays rely on consistent
and robust key-based routing to support large-scale net-
work applications such as multicast and global-scale stor-
age. We identify the main attack in these networks as a
form of P2P identity theft, where a malicious node in the
path of a message claims it is the desired destination node.
Attackers can hijack route and lookup requests to forge
and destroy data to disrupt applications. We propose a so-
lution where nodes sign proof-of-life certificates for par-
tial node ids and distribute them to randomly chosen proof
managers in the network. Source nodes can evade attack-
ers by requesting proofs from multiple proof managers.
Analysis and simulation show the approach is effective
and imposes storage and communication costs that grow
logarithmically with network size.

1 Introduction
Structured peer-to-peer overlays [15, 8, 14] provide scal-
able and resilient infrastructures for Internet-scale appli-
cations. A variety of Internet-scale applications have
been built on them, including application-level multi-
cast [18, 10], distributed file systems [7, 9] and distributed
query processing [5]. While many projects have stud-
ied these overlays, few have examined their security is-
sues [12, 1]. Given their global scale, use of low cost
identities, and distribution across independent network
domains, we cannot treat the presence of malicious nodes
as aberrations, but must expect them as part of normal op-
erations.

The core functionality applications leverage is key-
based routing (KBR) [2], where all messages with the
same destination-key route to the same node consis-
tently across changes in the network. Applications use
this mechanism to store and locate data using location-
independent names, much like a distributed hash table [2].
Since the overlays use large sparse namespaces (160 bits)
to avoid name collision, nodes must deliver each message
by choosing a single node closest to the destination key.

∗The authors gratefully acknowledge support from the DARPA Con-
trol Plane project: BAA04-11.

This is often called the key’s root node.
For any route request to key K , a malicious node on the

routing path can hijack the key-based routing primitive by
claiming that it is K’s root node. Since nodes only keep
state about logN nodes for a N node network, they must
rely on intermediate nodes to determine the key to root
mapping. For example, an attacker with ID 12340 can
hijack a message destined for node 12345 by claiming it
is the only node with prefix 1234. We call this the Iden-
tity Attack, since the attacker is stealing the identity of the
true root node. To attack a file system, several malicious
nodes close to a target node can claim they (or their col-
luding neighbors) are the root nodes for all outgoing read
requests, and return arbitrary data in response.

In this paper, we describe the Identity attack, and
present a solution where client nodes find self-certifying
proofs to verify the existence of their desired destinations.
Nodes periodically push signed proofs of their existence
out to a random subset of network nodes. Client nodes
use their routing table to estimate namespace density and
determine when a root node is suspicious. They verify
authenticity of root nodes by requesting existence proofs
for closer IDs. Our detailed simulations show that names-
pace density estimation is effective at detecting suspicious
nodes, and existence certificates provide proof of an attack
while requiring reasonable traffic overhead.

We begin in Section 2 with a discussion of structured
overlay security and related work. We then describe the
identity attack and our defense in Section 3. Next in Sec-
tion 4, we explore its efficiency and cost tradeoffs via de-
tailed simulations, followed by conclusions in Section 5.

2 Background and Related Work
In this section, we describe structured overlays and key-
based routing. We then discuss known attacks on these
systems and other work related to this paper.

Key-based Routing A structured overlay is an
application-level network connecting any number of
nodes, each representing an instance of an overlay
participant. The nodes are assigned nodeIds uniformly at
random from a large identifier space. Application-specific
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Figure 1: Base 10 prefix routing in Tapestry from 5230 to
8954.
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Figure 2: Base 4 routing table for node 123002.

objects are assigned unique identifiers called keys from
the same space.

Each key is dynamically mapped by the overlay to a
unique live node, called its root node. While a key’s root
can change with network membership, a single node is
responsible for a key in a consistent network at any given
time. To deliver a message to its root node (key-based
routing), each node forwards messages using a locally
maintained routing table of overlay links. Figure 1 shows
an example of Tapestry’s prefix routing algorithm, and
Figure 2 shows a node’s routing table.

Each system defines a function that maps keys to nodes.
For example, keys can be mapped to the live node with
the closest nodeId as in Pastry [8], or the closest nodeId
clockwise from the key as in Chord [14].

P2P Attacks and Defenses Previous work describes
two attacks on structured overlays, the Sybil attack [3] and
the Eclipse attack [1]. In the Sybil attack, an attacker gen-
erates a large number of identities and uses them together
to disrupt normal operation. In the Eclipse attack, attack-
ers try to organize to disproportionately populate routing
tables inside target nodes to affect routing operation. Both
attacks can increase the probability that a malicious node
can intercept a desired route request, resulting in an Iden-
tity attack. The Identity attack is more general, however,
since it can be launched by a single malicious node, and
affects every route, lookup or store operation.
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Figure 3: In a network using digits of base 4, node 1023 routes
a message towards key 3223. Before it reaches the root (3223),
an attacker intercepts the message and responds as the root.

Several approaches limit the Eclipse attack by con-
straining connectivity in the network [1, 4, 11]. How-
ever, these defenses can only limit attackers from attract-
ing more than their share of normal traffic, but cannot pro-
tect traffic that routes to malicious nodes. They also re-
quire external mechanisms to verify node properties such
as in-degree and location in the network. In contrast, our
approach requires only key-based routing, and can signifi-
cantly reduce the impact of malicious nodes in the routing
path.

Finally, public-private keypairs based on prefix IDs was
also used in the Cashmere [17] anonymous routing sys-
tem. Network indirection across an overlay is generalized
for mobility and resilience in the Internet Indirection In-
frastructure (I3) project [13].

3 Defending Against the Identity Attack
3.1 The Identity Attack
To perform an Identity Attack, a malicious node hijacks
an overlay connection at setup time by spoofing the des-
tination node. When an overlay node routes a message to
some key K , it wants to connect to K’s root node (gen-
erally the node in the overlay with ID closest to the key).
A malicious node on the routing path intercepts the mes-
sage and responds to the source claiming that it is K’s
root node.

By claiming to be K’s root node, the attacker can inter-
cept application requests and return data of its own choos-
ing. For example, the attacker can hijack a request for a
block in a distributed file system and respond with arbi-
trary data. At worst, she can arbitrarily manipulate ap-
plication behavior; at best, the application invalidates the
data, reducing this to an effective denial-of-service attack.
Figure 3 shows an example of the identity attack.

While a single node can perform the attack, malicious
parties can increase the effectiveness of the attack by us-
ing the Sybil attack [3] to generate a large number of col-
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Figure 4: Nodes 3222 and 3223 periodically send signed ex-
istence proofs for prefix 322 to 3 randomly chosen proof man-
agers in the overlay; node 1023 requests proofs.

luding attacker nodes. Attackers can generate numerous
identities to perform a client-based or key-based iden-
tity attack. In a client-based attack, multiple malicious
nodes collude to fill a target node’s routing table using the
Eclipse attack [11]. They can then isolate the node and
hijack all outgoing application requests. In a key-based
attack, the attacker targets a specific application-level key,
and generates identities until it obtains a substantial num-
ber of identities close to the target key. Distributed across
the network, these nodes will intercept most routing paths
to the target, and effectively isolate the real root node (and
content) from the network.

3.2 Existence Proofs
Our defense uses signed certificates to prove the existence
of nodes with IDs in a namespace range. Online nodes
periodically sign and send these existence proofs to a ran-
dom subset of nodes, proof managers, for storage. When
a node responds to a message with key K , the message
source uses a namespace density estimate to determine
whether the responder is a likely root. If not, the source
node guesses the prefix that K’s real root will share with
K , and sends verification requests to the proof managers
responsible for that prefix. If a better root exists, it will
have signed a recent certificate with which the source can
prove the identity theft. See Figure 4 for an example.

In a prefix routing protocol such as Tapestry [15], we
use prefixes of different lengths to identify specific ranges
of nodeIDs. In a namespace where nodes have IDs of L
digits, we use a prefix of length l < L to define a prefix
group corresponding to the set of all nodes whose IDs start
with that prefix. Shorter prefixes will have prefix groups
with more members. If nodes use L-digit IDs, each node
potentially belongs to L different prefix groups. This cor-
responds to different sized partitions of the namespace
whose members are nodes with IDs in the range.
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Figure 5: Routing table for node 1213220, showing the cusp
region.

To certify that a prefix-group is non-empty, a mem-
ber node uses a public key to sign an existence certifi-
cate embedded with a nonce. To simplify verification, a
central offline CA distributes a unique public-private key
pair to all members of each unique prefix group when they
join the network. For example, a node ABCD would re-
ceive key pairs for prefix groups A, AB, ABC, and ABCD.
Existence proofs are signed with the private key for the
corresponding prefix. At regular intervals according to
a network-wide parameter I , a node N signs certificates
proving the existence of various prefix groups it belongs
to. To determine the proof managers for prefix group P ,
N applies a SHA-1 hash to P with several salts (i.e., 1,2,3)
to generate several random keys in the namespace. The
proof-managers are the root nodes of those keys.

A node initiates verification when it thinks a responder
to a message for key K is suspicious. It examines its local
routing table, to find the longest prefix column for which it
has all entries filled. This threshold T is a measure of the
density of the network. The responder should match the
desired key with at least T prefix digits. If not, the node
tries to verify the existence of nodes matching longer pre-
fixes of key K . It searches for nodes matching a prefix
by calculating its proof managers using the salted hash as
described above, and queries them for the relevant certifi-
cates. If any queries are successful, it has discovered an
attempted identity attack.

3.3 Limiting Prefix Groups
Certifying every possible prefix group in the network
would be effective, but prohibitively expensive. In this
section, we show how to validate the entire network by
certifying only a small number of prefixes.

Our goal is to provide existence proofs for all prefixes
of a certain length L. A small L means many nodes will
matching the prefix, resulting in large bandwidth and stor-
age overheads for verification. A large L means the client
node may need to verify many prefixes in order to “find”
a suitable root node.

Recall that nodeIDs are chosen uniformly at random
using a secure hashing function (e.g. SHA-1). To choose
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an appropriate prefix length to store proofs for, the client
node examines its own routing table to measure the den-
sity of nodes in the namespace. It chooses several prefix
lengths for which its routing table contains columns with
a mixture of empty and nonempty entries. We call this re-
gion the cusp. Figure 5 shows a node’s routing table along
with its cusp region. Choosing a prefix length L in this re-
gion means that each prefix of length L is likely to match
a “small” number of nodes in the system.

Prior work [16] proved that with a high probability,
such a cusp will have a size ≤ 2, independent of network
size. The proof is an application of the Coupon Collec-
tor problem, where entries in a row of the routing table
are coupons, and collecting coupons is the act of assign-
ing random IDs to fill a particular entry. The result says
the probability of the cusp including more than 2 routing
levels is P ≤ b/eb, where b is the base of the prefix digit.
P is less than 0.07 for b = 4 and less than 1.8 ∗ 10−6 for
b = 16.

As a result, we assume a cusp size of 3. A client node
searches its routing table, and marks the start of the cusp
as the first routing level that contains an empty entry.
For example, node 1213220 in Figure 5 uses prefixes
of length 4, 5, and 6 when sending certificates and re-
questing verifications. Verifications start from the longest
possible prefix and work downwards. To test for the exis-
tence of a node 12301230, our node would first test pre-
fix 123012, then 12301 if necessary, and finally 1230.

3.4 Replicating Proof Managers
Several factors can affect the success rate of verification
requests. Node churn can limit the availability of proof
managers for a given prefix. Malicious nodes on the path
between the client and proof managers can hijack and
drop the verification request. Finally, if proof managers
themselves are compromised, they can simply deny ever
seeing the requested existence certificate.

We can improve the verification success rate by increas-
ing the number of randomly chosen proof managers. A
larger replication factor means more managers will be on-
line despite network churn and more of them will be non-
malicious. Verification requests will take a larger number
of random routes, increasing the number of requests that
will avoid malicious nodes. We evaluate the impact of
these factors on verification in Section 4.

3.5 Extension to Other Protocols
While much of our discussion assumes the use of prefix
routing, our technique easily generalizes to other proto-
cols. For example, a range-based routing protocol like
Chord simply routes “towards” a given value. Instead
of certifying existence of nodes matching a given prefix

Topology Random
Length of run 7200s
Base 16
Prefixes certified (cusp size) 3
Certification interval 500s
Certificate time-out period 1500s

Table 1: Simulation Settings

0123, we would certify existence of nodes in a certain
value range (e.g. 12300-12399). Similarly, our mecha-
nism for choosing prefix lengths to certify reduces to find-
ing several range sizes that have the right node density.
We are studying these mechanisms in ongoing work.

4 System Evaluation
In this section we describe some preliminary results based
on detailed simulations on the P2PSim simulation plat-
form. P2PSim [6] is a multithreaded discrete event sim-
ulator with full implementations of several protocols.
Our experiments are run using the implementation of
Tapestry [15] included with P2PSim. The simulation set-
tings are listed in Table 1.

4.1 Overhead of Existence Proofs
In order to defend against Identity Attacks, each node in
the network incurs bandwidth overhead in sending exis-
tence proofs (certificates) to proof managers, and storage
overhead in storing existence proofs for other prefixes.
We use simple analysis to quantify these overheads.

Bandwidth Cost. Nodes certify their prefix groups ev-
ery T seconds (T = 500s in our simulations). Let v
denote the number of prefix groups each node certifies
(v = 3 in our simulations), and r denote the replication
factor (number of proof managers per prefix). Thus the
rate that each node sends out certificates is v·r

T . With
our simulation parameters, we expect each node to send
3·4
500 = 0.024 certificates/second. This is confirmed by our
measurements that show the rate to be 0.025 certificates
per second for all network sizes. As expected, this over-
head increases linearly with replication factor. Certificates
should be no larger than 50 Bytes, resulting in bandwidth
cost of 1.25 Bytes/second or 10 bps.

Storage Cost. If we assume that a new certificate re-
places previous certificates from the same host, then each
node generates vr certificates to be stored. Assuming the
hash function to generate proof manager IDs spreads the
load evenly across all nodes, each node only needs to store
vr certificates, for a total cost of 600 Bytes of storage per
node using our parameters. Clearly, the overhead from
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Figure 6: Effectiveness of the verification system un-
der ideal conditions (no denials, no certificate hijacks, no
node churn).

generating and storing certificates is small enough to not
impact overall system performance.

4.2 Resilience Against the Identity Attack
We evaluate our defense against the Identity Attack under
a variety of conditions. We first consider the basic identity
attack in a stable network where all mechanisms function
normally. Next, we consider the case when compromised
proof managers deny the presence of certificates. This
models colluding malicious attackers, where colluding at-
tackers cover each others’ tracks by refusing to service
verifications. Another factor is certificate hijacks, where
malicious nodes intercept certificates on the path between
the signer and a proof manager. This is a stronger attack,
where we assume in-path routers has read the message
payload to determine if it is a certificate (i.e. no overlay
link level encryption). This attack also applies if mali-
cious nodes indiscriminately hijack all messages they see
without interpretation. Finally, we examine the impact of
nodes entering and leaving the network (node churn).

Performance Metrics To quantify the effectiveness of
our defense, we examine two metrics, the trigger rate,
how often does an attack trigger a verification request, and
the verification rate, how often do requests succeed in lo-
cating an existence proof proving the attack. Our simu-
lations show that we get a trigger rate of 100% using our
threshold detection scheme, with roughly 3 verifications
requested per actual attack. We are currently tuning our
threshold to reduce the verification overhead. Since the
trigger rate is 100%, our experiments measure the verifi-
cation rate under different conditions.

Ideal Conditions We assume that malicious nodes hi-
jack non-certificate messages, but do not hijack certifi-
cates, and compromised proof managers perform nor-
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tion effectiveness (certificate denials, no hijacks, no node
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Figure 8: Use of replication factor to increase verifica-
tion effectiveness (certificate denials and hijacks, no node
churn).

mally. We vary the network size and assume no node
churn. Figure 6 shows that for all network sizes, our trig-
ger rate is 100%, and verification rate is over 99.8%.

Verification Denials Here we assume malicious nodes
hijack messages and deny verification requests, but do not
hijack certificates. We simulate a network of 4K nodes
while varying the percentage of malicious nodes. Figure 7
shows that the verification rate falls as the proportion of
malicious nodes increases. For a given proportion of ma-
licious nodes, however, performance improves if we in-
crease the number of proof managers. This improvement
is significant when a large number of nodes is malicious.
Note that even when 90% of nodes are malicious, over
80% of attacks are caught with just two proof managers.

Certificate Hijacks This model is similar to the last
model, with the addition that malicious nodes also hijack
certificates en route to proof managers. Our results in Fig-
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Figure 9: Use of replication factor to increase verification
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assuming 20% malicious nodes).

ure 8 show that this additional factor causes a steep fall in
performance. For a given % of malicious nodes in the net-
work, certificate hijacks have a much stronger impact than
verification denials. This is because the likelihood that a
malicious node is in the path of a certification is higher
than the likelihood that it is a proof manager. For predom-
inantly malicious (over 50%) networks, the percentage of
attacks caught is very poor, even when many proof man-
agers are used. But for networks with up to 40% malicious
nodes, nearly 80% of the attacks are caught.

Churn Finally, we examine the effect of adding churn
to the network. We simulate an attack model that includes
Identity Attacks, verification denials as well as certificate
hijacks, and ran it on networks of 4096 nodes, 20% of
which are malicious. Figure 9 shows that increasing churn
degrades performance. With 8 or more proof managers,
it is highly likely that at least one non-malicious proof
manager can service each verification request; hence over
95% of the attempted hijacks are caught.

5 Conclusion

In this paper, we described the Identity Attack, a sim-
ple attack that subverts the fundamental key-based routing
functionality in structured peer-to-peer overlays. Unlike
the Sybil and Eclipse attacks, the Identity attack directly
impacts application level behavior, and can leverage both
prior attacks for increased effectiveness. We propose a de-
fense that uses the placement of signed existence proofs at
randomized node subsets. After routing requests, source
nodes use estimates of namespace density to trigger verifi-
cation, where they determine whether “better” root nodes
exist by searching for their existence proofs.
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