
Integrated Data Location in Multihop Wireless
Networks

Irfan Sheriff, Prashanth Aravinda Kumar Acharya, Ashwin Sampath,
Ben Y. Zhao and Elizabeth M. Belding

Department of Computer Science, UC Santa Barbara
{isheriff, acharya, ashwins, ravenben, ebelding}@cs.ucsb.edu

Abstract— Multihop wireless networks are ideal as infrastruc-
tures for location-aware network applications, particularly for
disaster recovery operations. However, one missing component
is an efficient and scalable distributed data location service.
Existing approaches impose significant communication overhead
on the underlying wireless layer and generally limit the total
number of locatable objects in a network. To address this
problem, we present the Integrated Data Location Protocol
(IDLP), which provides scalable location of a large number of
objects by integrating compressed summaries of object signatures
into the routing layer. We evaluate our approach using extensive
simulations in Qualnet, as well as detailed measurements from a
deployed AODV-implementation on the UCSB MeshNet testbed.
Results show that IDLP maintains low communication overhead
while efficiently locating up to a hundred objects per node.

I. INTRODUCTION

Spontaneous wireless ad hoc networks are a flexible exten-
sion to wired infrastructure. Wireless routers can be quickly
deployed over poles, buildings or even transport vehicles,
and require minimal existing infrastructure. In the wake of
Hurricane Katrina, multihop wireless networks have emerged
as critical communication infrastructure during emergency
disaster recovery. With wireline phone service and cellular
networks disabled by Katrina, a wireless network designed
for video surveillance was the only functional communication
system remaining. During Katrina’s recovery, the VoIP traffic
carried by the mesh network represented a lifeline for strug-
gling local businesses. The wireless mesh network is generally
credited for the population growth from 50,000 to 250,000
from November 2005 to February 2006 1.

Timely communication and information sharing is critical to
the success of any emergency or disaster recovery operation.
While years of research have focused on reliable and efficient
wireless routing techniques, much less attention has been paid
to wireless infrastructure support for information sharing such
as data location and distributed search. In addition to location
and access to mobile data, these techniques can also be applied
to locate objects and resources based on their proximity to
wireless nodes or access points. For example, emergency
workers might search for the location of resources such as
food, medical supplies and clothing, rescue equipment such
as ambulances and flashlights, or individual people such as
fire-fighters or military personnel. Nodes in an ad hoc wireless

1http://www.infoworld.nl

network can track these resources by their relative proximity,
and make their location available to users in the network.

While data location is a well known problem, it faces new
challenges in the context of multihop wireless networks. First,
multihop wireless networks present a dynamic environment
due to intermittent device connectivity, unreliable wireless
links and mobility in the network. Hence, solutions based
on centralized service agents or conceptually static entities
such as directory agents will provide highly unreliable re-
sults. Second, without a wired infrastructure and network
structure, object location on multihop ad hoc networks can
incur unacceptable control traffic overheads with application
layer techniques. Third, the bandwidth constrained nature of
multihop wireless networks implies a trade-off between control
protocol overhead and search accuracy. An ideal solution, thus,
should adopt a concise object representation technique that
supports unique object identification while imposing minimal
control protocol overhead.

In this work, we propose Integrated Data Location Protocol
(IDLP), a light-weight distributed object location solution for
multihop wireless networks. The IDLP architecture attempts to
minimize control protocol overhead; handles the constant node
churn that is characteristic of multihop wireless networks; and
addresses the bandwidth limitations and unreliable links of
a wireless environment. In IDLP, each node creates a data
signature of its objects and advertises these signatures through-
out the network by leveraging routing control packets. Similar
advertisements from other nodes are associated with routing
entries and stored in the routing table. Object queries gener-
ated by applications are searched locally within the routing
table amongst data signatures before invoking a network-wide
search for a provider node. This technique utilizes the partial
topology information available at the nodes and minimizes
network-wide search operations. Together, these techniques
allow us to locate objects within a decentralized wireless
network while maintaining low communication overhead.

The rest of the paper is organized as follows. First, we
provide background on existing content location schemes
in Section II. We then present the design of an Integrated
Data Location Protocol (IDLP) in Section III. We evaluate
the performance of IDLP through Qualnet simulations in
Section IV, followed by results obtained from a deployment
of IDLP on the UCSB MeshNet testbed in Section V. Finally,
we summarize and conclude in Section VI.

II. RELATED WORK

Significant work has gone into the design of scalable service
discovery systems for the wired Internet. Some solutions, such
as LDAP [1], JINI [2] and SLP [3], rely more on centralized
client-server architectures. Others, such as DNS [4], Globe [5]
and the Berkeley Service Discovery Service (SDS) [6], lever-
age hierarchical architectures to scale to large numbers of
records and across network domains. In particular, the Berke-
ley SDS uses Bloom filters [7] to summarize service descrip-
tions across network domains in order to route queries to the
appropriate local servers. Similarly, Bloom filters are also used
to locate data objects in both the Summary Cache [8] and the
Probabilistic Data Location [9] projects. Unlike these projects,
we cannot rely on a stable underlying network topology to
build state for query forwarding. In addition, interference on
wireless links and the resulting bandwidth constraints limit
the amount of acceptable communication overhead for data or
service location.

A number of service location systems for wireless networks
work at the application layer. Some use a decentralized ap-
proach based on peer-to-peer (P2P) caching [10]–[13], while
others use a hybrid of P2P and directory-based architec-
tures [14]–[16]. Still others push service discovery down the
network stack in order to work more closely with the routing
layer [17]–[20].

In [16], the authors adopt a two phase hybrid architecture
similar to the Kazaa file-sharing network [21]. Local directo-
ries (supernodes) aggregate service records and resolve local
queries. When local resolution fails, a directory forwards the
query towards other directories likely to have relevant informa-
tion. Query forwarding is guided by aggregate summaries of
service records using Bloom filters, identical to the way query
forwarding is performed in the Berkeley SDS [6]. However,
mobility patterns of the underlying nodes require deleting
records from Bloom filters, an expensive and difficult task.

Ekta [15] performs data location on wireless networks
by layering a distributed hash table (DHT) on top of the
Pastry [22] P2P network. To locate an object, it must first be
moved to the wireless node whose Pastry identifier matches
closest with the object. If metadata is stored instead of the
object itself, a client node must use P2P routing to locate the
metadata, and then redirect to the object. Despite the integra-
tion of DSR [23] source routes, the resulting query redirection,
multihop overlay routing, and DSR route maintenance traffic
can impose significant overhead on the wireless nodes.

The approaches in [20] and [17] embed service records
inside ZRP [24] route advertisements and ODMRP [25] multi-
cast advertisements, respectively. Nodes are required to know
the service to UUID mapping or the service to multicast group
mapping, a priori. These mechanisms work for discovering
small sets of well-defined services but are ill-suited for the
general problem of data location, where a priori mappings
are not possible. In addition, the UUID approach limits the
number of data objects searchable (at most 16 in [20]), and
the proactive nature of local ZRP advertisements increases

the cost of distributing service records. In contrast, our work
specifically addresses the challenge of representing a large
collection of data objects, while our integration with AODV
means service summaries are distributed on-demand. The
choice of an on-demand routing protocol works well for
mobile wireless networks [26].

Finally, the Geography-based Content Location Protocol
(GCLP) [27] is a push-based technique where nodes periodi-
cally publish object information by forwarding the information
in four directions across the network. Nodes on the publish
path cache these records. Other nodes perform object location
by forwarding a query in all four directions. Nodes at the
intersection of the publish and query paths use their local
caches to resolve queries. We compare our work against GCLP
because it is one of the most popular and efficient of the
existing approaches.

III. DESIGN

We now describe the Integrated Data Location Protocol
(IDLP). To support data location while minimizing commu-
nication overhead, IDLP embeds location information com-
pressed as data signatures into routing control messages in the
network. Nodes store data signatures along with routing entries
in the routing table and use them to resolve data location
queries.

A. Data Location and Routing Integration

Multihop wireless networks present a dynamic environment
characterized by nodes joining/leaving the network, node
mobility, changes in the topology and variable link quality.
Note that this is a fundamentally different problem from data
location on static networks, where approaches such as directed
diffusion [28] can optimize routes to data over time. These
properties make wireless routing an inherently expensive pro-
cess. Popular reactive routing protocols such as AODV [29]
and DSR [23] require a network-wide flood of a route request
message to discover routes to an unknown node.

As a baseline strawman approach to data location in a
multihop wireless network, we consider the simple solution of
broadcasting the query across the network (similar to a route
request message). With this query flooding approach, we can
simultaneously build a route and resolve a query. This simple
solution is guaranteed to work and has the same cost as a
single route discovery operation. Thus, any new solution must
resolve queries at a lower cost.

This is a difficult challenge for application-level solutions.
A single extra application-level hop could require a new route
discovery, resulting in a network-wide broadcast. The resulting
traffic would impose more overhead than the strawman solu-
tion described above. For example, a client using a directory-
based approach must send a message to the directory server,
then possibly contact another server for the actual object
or information. Each of these steps may result in a route
discovery cycle and thus may be more expensive than a com-
plete query using query flooding. Even with caching enabled
at the directory server, client mobility is likely to change

routes to the directory server, triggering further route discovery
events. Similarly, query resolution using structured peer-to-
peer overlays [22], [30] involves multiple hops on the overlay
network. Each overlay hop may result in a new route discovery
operation and thus may be more expensive than a complete
query using query flooding. In general, all application level
approaches that assume stable network routing will likely incur
much higher messaging overhead compared to the naı̈ve query
flooding approach.

Therefore, an efficient data location system must be aware
of the availability of routing state at the network level. This
calls for a cross-layer approach that integrates data location
and wireless routing. IDLP integrates a data location compo-
nent into the routing protocol by piggybacking data location
information onto routing control messages. Routing control
messages are used as vehicles to disseminate the data loca-
tion information of each node into the network, eliminating
the need for explicit publish messages. Client nodes resolve
queries by accessing the data location information in their
routing tables.

B. Compact Data Signatures

The integration of data location into the wireless routing
level requires a compact representation of data objects that
imposes the minimum amount of storage and communication
overhead. The data representation must be able to efficiently
encode the presence of multiple data objects per node, and not
impose a significant overhead as the number of objects grow
in the wireless network.

Given the stringent storage and communication constraints
of wireless networks, we choose to support only data location
via a unique name, rather than more multi-field queries such
as those supported by LDAP [1] or the Berkeley SDS [6].
For application of IDLP to service discovery, we assume the
presence of a canonical ontology that maps generic terms
into a single name. For example, queries for “fire fighter”
or “fireman” would map into “fireman.” Such an ontology
mapping can be provided by the wireless service provider
at the application level. In addition, location-based modifiers
such as “find the nearest X” can be resolved by augmenting
query results with GPS positioning information.

The key challenge is to find a scalable, compact represen-
tation of data object names. In a network where each wireless
node can offer multiple data objects or locate multiple services,
we need a mechanism whose overhead increases in size with
the number of nodes in the network, not the number of objects
per node. Each node can then serve a number of objects or
services using metadata of a constant size, or a unique data
signature that represents the contents of the directory listing.

Bloom filters [7] provide an ideal solution for our needs.
They compress a set of elements into a fixed size string
and support set membership queries on the string. Generating
and querying Bloom filters are efficient operations, and the
resulting string can be extremely compact. Bloom filters allow
lossy compression, and provides a tunable knob in the tradeoff
between filter size and query resolution accuracy. In IDLP,

0 0 0 0 0 0 0 0 01 1 1 1 1

BF Length

hashhash (’’FirstAid Station’’)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0
0

(’’Fireman’’) = { 1 5 8 } { 5 10 12 } =

Fig. 1. Hashing multiple object names into a single Bloom filter.

we encode multiple objects on a single node into one Bloom
filter, and piggyback it onto routing control messages for
dissemination.

Before we discuss the use of Bloom filters in IDLP, we first
outline their operation. A Bloom filter [7], [8] is a method
of representing a set A = {a1, a2, . . . , an} of n elements
to support set membership queries, i.e., to check whether an
element ax is a member of A. The Bloom filter consists of a
vector v of m bits and a set of k independent hash functions,
h1, h2, . . . , hk, each with an output range {1, . . . , m}.

The construction of a Bloom filter that represents the set
A is done as follows: For each element a ∈ A, the bits at
positions h1(a), h2(a), . . . , hk(a) in v are set to one. Thus a
bit at position n in the Bloom filter is set if there is at least
one element ax in A such that ∃i, 1 ≤ i ≤ k, hi(ax) = n.
All other bit positions are set to zero. We show an example of
Bloom filter construction in Figure 1 where k = 3, m = 16.

Given a Bloom filter B, we can check for the existence of an
object b by examining the value of the bits in the Bloom filter
at positions h1(b), h2(b), . . . , hk(b). If any of the bits is set to
zero, then b is definitely not present in the set represented by
B. On the other hand, if all the bits are set to one, then it is
probable that the object b exists in the set represented by B.
However, it is possible that even with all the respective bits
set, the object may not be present in the set, an occurrence of
a false positive. The false positive rate can be controlled as per
the requirements of the application by choosing the appropriate
number of hash functions k, the size of the Bloom filter m,
and taking into account the average number of objects used
in the construction of each Bloom filter.

Note that we are choosing larger Bloom filter sizes to mini-
mize the occurrence of false positives in data signatures. With
an appropriate choice of k and m, Bloom filters can provide
“near-lossless” compression. Therefore, our compression gain
from Bloom filters is not from lossy compression, instead
we exploit Bloom filters mainly as a compact representation
of a dynamic dataset. Since it is not possible a priori to
know the number of objects in the network or to assign
them sequential identifiers, the Bloom filter signatures act as
a compact naming scheme to accommodate a dynamically
changing set of objects.

In Section IV, we analyze the effects of the Bloom filter
parameters on the performance of IDLP and list the values of
k and m used in our implementation of the protocol. We now
describe the use of Bloom filters in IDLP and the propagation
of the Bloom filters in the network.

C. IDLP Operation

IDLP resides above the routing protocol in the protocol
stack of each node in the network. The protocol accepts and
handles object location queries from a querying application.
Queries from the application are assumed to be a unique string
identifier for the object, i.e. a file name, URL or service name.
IDLP is also responsible for responding to object location
queries from peer nodes in the network.

a) Data Signature Initialization: At each node, the ini-
tialization phase of the protocol involves the construction of
the data signature that represents a summary of the set of
objects shared by the node. The data signature is constructed
using the object identifiers of all the shared objects. The iden-
tifiers of the shared objects can be filenames, URLs, or service
names. These identifiers form the set elements a1, a2, . . . , an

of the Bloom filter construction described in Section III-B.
This data signature is then passed to the underlying routing
protocol. The routing protocol incorporates the data signature
in its control messages, thus propagating it throughout the
network. While IDLP is compatible with any reactive wireless
routing protocol, we chose AODV [29] as the underlying
protocol for our experiments in this paper.

Figure 1 shows an example of the construction of a data
signature of a node that has two objects “Fireman” and
“FirstAid Station.” In this example the node uses a 16 bit
Bloom filter and three hash functions. The bit positions for
each object are calculated and then combined to produce the
data signature for the node.

b) Data Signature Propagation: To illustrate the propa-
gation of IDLP data signatures, we assume a scenario using
AODV as the wireless routing protocol. A typical AODV
routing table entry has the following structure: <destination
addr, next hop addr, route metric (hop count), sequence #,
interface ID>. We augment the entry with an additional
field associated with each entry: the destination node’s IDLP
signature.

Route discovery in AODV is based on a network-wide
broadcast of the Route Request (RREQ) message, initiated by
the source node. In IDLP, the RREQ message includes the data
signature of the originating node. All the nodes in the network
receive this message and cache the routing information and
data signature for the source node. When the destination
receives this RREQ message, it responds with a Route Reply
(RREP) message that includes its own IDLP data signature.
This RREP message is unicast along the reverse path of the
route. All nodes along this path record the routing information
and the destination node’s IDLP data signature. Thus, in
a network with many active flows, each node has several
routing entries with the corresponding data signatures for those
destinations. In addition, if AODV’s HELLO messages are
enabled, each node’s routing table contains route entries and
IDLP signatures for all of its neighbors. This process of route
discovery through the RREQ, RREP, and HELLO messages
facilitates the propagation of the IDLP data signature in the
network without the need for explicit control messaging.

c) Location Query Resolution: We now outline the se-
quence of events and actions associated with resolving an
Object Location Query. Assume that a node is trying to
locate an object with identifier O. IDLP then calculates the
bit positions p1 = h1(O), p2 = h2(O), . . . , pk = hk(O)
in a Bloom filter for this object. Note that hash functions
h1, h2, . . . , hk are the same globally known hash functions
used to generate the data signature during initialization. IDLP
then searches the current AODV routing table and selects
all the nodes whose data signatures have the bit positions
p1,p2, . . . , pk set to 1. These nodes form the global candidate
list and represent the set of all the nodes that may have the
object O.

From this global candidate list, we designate a subset
of nodes as candidate nodes. We describe the criteria for
candidate node selection in Section III-D. The local node then
sends a unicast query message for object O simultaneously
to each candidate node. Upon receiving the query message,
each node sends a response to the querying node about the
availability of the object. In other words, nodes that have
the requested object respond positively and others respond
negatively.

If no positive response is received at the querying node
within a timeout period, a network-wide broadcast query is
initiated. On receiving this broadcast query message for the
first time, a node that has the requested object sends a unicast
response to the originating node as described above. If it
does not have the object, the node forwards the message
to its neighbors. Duplicate copies of the broadcast query
message are discarded. A querying node that receives multiple
positive responses, during either the unicast query phase or
the broadcast query phase, can choose among the responses
to select the closest node.

Figure 2 depicts a scenario that illustrates the query process.
Consider a disaster area with an ad hoc network that uses
IDLP to provide a location-aware search facility. As shown
in the figure, the ad hoc network is comprised of several
geographically distributed wireless routers. Assume that the
wireless routers employ IDLP with an eight bit-two hash
function Bloom filter. A rescue worker, connected to router
M , wishes to locate a medicine kit closest to him and sends
the corresponding query to M . On receiving this query, M
computes the bit positions for “Medicine Kit” and examines
its routing table to select the candidate nodes. Router M
determines that routers G, P and B are the closest routers
that may have a medicine kit nearby. It then unicasts queries
to each of these nodes. Routers G and P respond positively
with information about the medicine kits close to them. Router
G, with the smaller hop count, is chosen as the closest router2.
Note that B is an example of a false positive. In addition, since
there is an upper bound on the number of unicast queries sent,
some matching entries (such as H) will be omitted.

2In this example, we assume that the network distance (hop count) is a good
indicator of the geographic distance. In a practical deployment, additional
information such as GPS coordinates of individual routers can be used to
select the closest router.

Positive
False

match?
Bloom filter

Unicast Query

Unicast Query

Unicast Query

 = 01000010
Bloom filter(Medicine Kit)

Wireless Router

Medicine Kit

Food Packets

Transport

Shelter

AK

J

E

C

H

BD

M

Route Table Lookup

Hop CountNext Hop

Route Table at Node M

Dest

A

J

K

P

G

F

B

H

00110000

00110110

01110010

01100110

01111000

01110011

01000010

A01000001

J
A

J

G

G

J

J

Data Signature

1

1

2

2

1

2

4

5

G

Query (Medicine Kit)

F

P

Fire Fighter

Fig. 2. A rescue worker connected to wireless node M contacts M with a query for the nearest medicine kit. M uses IDLP to resolve the query, finds four
matching entries, and issues unicast messages to three of them. Map courtesy of http://maps.google.com.

D. Candidate Node Selection Metrics

Candidate nodes are selected from the routing table to re-
ceive the simultaneous unicast queries. The purpose of sending
unicast queries is to minimize the network overhead associated
with a network-wide broadcast. If a route to a node that has
the object is already known, that node is queried, thereby
preventing a new broadcast route discovery. Additionally, the
selection of more candidate nodes helps reduce the effect of
false positives on the query resolution process. By sending
unicast queries to more nodes, the probability of failure of the
unicast query phase is significantly reduced. However, a large
number of unicast messages may cause the same overhead as
a single broadcast message. In Section IV, we investigate the
the choice of number of simultaneous unicasts and its impact
on the overhead in the network.

The selection of the candidate nodes from the global can-
didate list is based on the following parameters: hop count of
the routing entry, and the timestamp of the routing entry. To
ensure the locality property of the search, the candidate nodes
are selected based on their distance from the querying node.
Thus, the hop-count field in the routing table entry is used to
select candidate nodes with the least hop-count values. The
timestamp on the routing entry is used as the secondary key
to select the more recent routing entry when two nodes are at
the same hop count distance from the querying node.

E. Node and Object Churn

Node churn refers to the phenomenon of nodes joining
and leaving the network. IDLP leverages the behavior of the
routing protocol to handle the node churn in the network.
The routing protocol is aware of nodes that leave/join the
network and correspondingly updates the routing table. This
continuous process of table updates maintains the latest view
of the network and up-to-date data signatures. IDLP is thus
able to function well even in a dynamic network.

Object churn refers to a change in the set of shared objects.
When the set of objects shared at a node changes, its IDLP data
signature also changes. IDLP pushes updated data signatures
to the routing protocol for inclusion with future messages. In
addition, the IDLP node proactively sends the updated data
signature to other nodes in the network that have a route to it.

The forwarding mechanism for this message is similar to the
propagation of link break (Route Error) messages in AODV
and has smaller overhead compared to a network-wide flood of
the update message. We limit the rate of proactive publishing
in order to aggregate multiple objects churns at a node and
reduce the network overhead.

IV. SIMULATION PERFORMANCE

We evaluate IDLP on the Qualnet simulation platform [31]
under a variety of system parameters and environmental con-
ditions. We begin this section by describing the parameters
and metrics chosen to evaluate IDLP. Next, we discuss the
exploration of tradeoffs to determine our system parameters,
and we evaluate the impact of environmental factors on
IDLP. Finally, we compare the performance and overhead of
IDLP with the Geography-based Content Location Protocol
(GCLP) [27] and the simple query and flood approaches.

A. Parameters and Metrics

Simulations were carried out with 100 nodes in a network
area of 2000m X 2000m with IEEE 802.11b as the MAC
layer. The transmit power, receiver sensitivity and thermal
noise factor were chosen so as to achieve a reliable packet
reception range of about 200 meters. The network was static
except during the experiments that explicitly consider mobility.
AODV was used as the routing protocol. The Bloom filter hash
functions chosen were MD5, SHA1 and SHA2563. Tunable
system parameters include:

Object distribution: Object names are chosen from a list of
1,000,000 unique Internet URLs. Randomly selected objects
are distributed across nodes. The number of objects per node
varies from 10 to 300, and the replication factor per object
(number of replicas in the network) varies from 1 to 20.

Maximum number of simultaneous unicasts (η): As the
number of simultaneous unicasts increases, redundancy is
introduced to accommodate the false positives generated by

3The optimal number of hash functions, k, to minimize false positives is
≈ ln 2∗ m

n
, where m is the number of Bloom filter bits and n the number of

inserted elements [8]. The parameter n is not known in advance. We therefore
fix the number of hash functions to be three for our analysis. We choose these
hash functions to achieve an even distribution of output across the result space.
The functions do not have to be cryptographically secure.

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300
 0

 0.2

 0.4

 0.6

 0.8

 1
M

es
sa

ge
 o

ve
rh

ea
d

pe
r

qu
er

y
(b

its
)

B
ro

ad
ca

st
 fr

ac
tio

n
pe

r
qu

er
y

Number of objects per node

m=64
m=256
m=512

m=1024

Fig. 3. Impact of Bloom filter length m on per-query communication
overhead.

the Bloom filter. We refer to the maximum number of allowed
simultaneous unicasts as η. Increasing η increases the unicast
overhead and reduces the fraction of queries that require a
broadcast for resolution.

Bloom filter length (m): The length of the Bloom filter,
m, determines the false positive rate. We must choose an
appropriate value of m to support a specific number of
objects per node. A large Bloom filter length results in higher
unicast success rates but incurs greater store and dissemination
overheads.

Routing state: IDLP disseminates data signatures through
route control messages. The amount of background traffic in
the system affects the amount of routing state present on the
nodes, and consequently the likelihood of finding a match from
local routing entries. For our analysis, we assume a traffic
model where at any given time, 50% of the nodes have an
active flow to another random node in the network.

We evaluate IDLP by examining both its performance and
its overhead on the system. The metrics for evaluation include:

Query overhead: Queries are generated for all the objects
in the network, and query source nodes are chosen randomly
in the network. Message overhead per query is the average
per node overhead introduced by a query. The per node
overhead represents the network-wide overhead averaged out
per node. The message overhead includes the overhead caused
by unicasts and broadcasts. Broadcast fraction per query
represents the fraction of the total queries that result in a
broadcast.

Publish overhead: Publish overhead is the amount of mes-
saging overhead in bits per second required to distribute object
information in the network. We evaluate the publish overhead
generated by IDLP.

End-to-end delay: End-to-end delay is the amount of delay
encountered from the time of query initiation to the time of
indication of a success or failure. The end-to-end delay should
be within acceptable limits for a data location system to be
deployable.

B. Performance Tradeoffs

The choice of the Bloom filter length, m, and the maximum
number of simultaneous unicasts, η, impact the performance

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10M
es

sa
ge

 o
ve

rh
ea

d
pe

r
qu

er
y

(b
its

)

Maximum number of simultaneous unicasts

25 Objects/Node
50 Objects/Node
75 Objects/Node

100 Objects/Node

Fig. 4. Impact of the maximum number of simultaneous unicasts (η).

of IDLP. We first examine the impact of m and η, keeping all
other system parameters fixed. Simulations were conducted
with the system parameters specified in Section IV-A. The
object replication factor is five.

1) Bloom Filter Length: Figure 3 shows a plot of the
message overhead per query with the number of objects per
node for different Bloom filter lengths. The connected data
points on the curve represent the average broadcast overhead
incurred per node per query. The vertical line for each data
point on the curve represents the corresponding average per
node unicast overhead per query. The top of each line thus
represents the total per node overhead introduced by a query.
The y-axis on the right shows the broadcast fraction per query
corresponding to each data point on the curve.

We observe from the graph that the unicast overhead forms
a small fraction of the total overhead per query. Total message
overhead depends largely on the fraction of queries that result
in broadcast. The broadcast fraction remains below 20% in
the region of low false positive rate. This region can be seen
in the Figure 3 to be up to 50 objects with a 512 bit Bloom
filter length and up to 150 objects with a 1024 bit Bloom filter
length.

It is interesting to observe that the broadcast fraction per
query does not reach zero even when the false positive rate
is close to zero. The 16% minimum broadcast is due to the
absence of complete routing information at the nodes. This
minimum broadcast fraction depends on the amount of rout-
ing information in the network. Additionally, the maximum
broadcast fraction per query does not reach 100% even when
the false positive rate is close to 100%. This is because the
selection of nodes for unicast in this region is random and a
fraction of the unicast queries succeed with random selection
of nodes.

The publish overhead is independent of the number of
objects in the network and depends on the Bloom filter length
(m) and the traffic in the network. For the traffic model used
in the simulations, and assuming the average length of a flow
is roughly one minute, we determined that a 512 bit Bloom
filter results in a publish overhead of roughly 2 kbps across
the network and can support 50–75 objects with 80–90% of
the queries successfully resolved through unicasts. A 1024 bit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

B
ro

ad
ca

st
 fr

ac
tio

n
pe

r
qu

er
y

Number of replicas per object

25 Objects/Node
50 Objects/Node
75 Objects/Node

100 Objects/Node

Fig. 5. Impact of the object replication factor on fraction of queries requiring
broadcasts.

Bloom filter results in a publish overhead of about 4 kbps
and can support 150–175 objects per node with 80–90% of
the queries resolved with unicasts. Clearly there is a trade-off
between the overhead and the supportable number of objects
per node in the network. We expect about 50–75 objects for
our target application scenario and hence choose m=512 for
the remaining analysis.

2) Maximum Number of Unicasts: We now examine the
impact of the maximum number of simultaneous unicasts (η).
Figure 4 plots the message overhead per query with η. The
data points represent the average broadcast overhead per query
while the vertical line represents unicast overhead per query.
It is seen that the broadcast overhead per query decreases as η
increases. When η is low, the fraction of queries that result in
broadcast is high. Additionally, when the number of objects
per node is low, the false positive rate is lower and hence the
broadcast overhead for 25 objects/node is less than for larger
number of objects. As we increase the maximum number of
simultaneous unicasts, the false positives of individual unicasts
are covered with redundant unicasts and hence all the curves
reach a common low broadcast overhead per query.

The unicast overhead shown by the length of the vertical
lines indicates that the unicast overhead increases as η in-
creases. However, note that when the false positive rate is
higher (100 objects/node), the increase in the unicast overhead
is much larger as η increases. This shows the importance of
appropriate selection of Bloom filter length. The maximum
unicast overhead is limited by the amount of routing informa-
tion available at the nodes.

It is thus clear that a low value of η (<2) can cause a large
fraction of the queries to result in broadcast. We observe from
the graph that about three unicasts can compensate for the
false positives created by the Bloom filter. Hence we choose
η = 3 for further analysis of IDLP.

C. External Factors

We now examine the impact of the environment driven
factors such as the object replication, user traffic and mobility
on the performance of IDLP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40

B
ro

ad
ca

st
 fr

ac
tio

n
pe

r
qu

er
y

Number of routing entries per node

25 Objects/Node
50 Objects/Node
75 Objects/Node

100 Objects/Node

Fig. 6. Impact of per-node routing state.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20
B

ro
ad

ca
st

 fr
ac

tio
n

pe
r

qu
er

y

Number of replicas per object

Max node speed 0 m/s
Max node speed 5 m/s

Max node speed 10 m/s
Max node speed 15 m/s

Fig. 7. Impact of mobility.

1) Impact of Object Replication: Figure 5 shows that there
is an exponential decrease in the broadcast query fraction with
increased replication of objects in the network. More replicas
in the network result in an increased chance of a routing entry
to a node containing the object. In addition, the fraction of
entries in the routing table that contain the object increases.
When the replication is sufficiently large (>10), the false
positive rate has little effect on the fraction of queries that
result in broadcast. A large fraction of the queries (≈ 95%)
succeed during the unicast phase.

2) Impact of User Traffic: Since the amount of user traffic
determines the routing information available at nodes in the
network, we evaluate IDLP with the routing state per node.
Figure 6 represents the effect of routing state per node on
the fraction of the queries resulting in broadcasts. When the
false positive rate is low (25 and 50 objects per node in the
graph), additional routes at a node result in a greater fraction
of the queries succeeding during the unicast phase. However,
at a higher false positive rate (100 objects per node), the
probability of choosing the false positive entries increases
and hence the existence of more routing information has little
effect on the fraction of queries that succeed during the unicast
phase. This shows the importance of choosing an appropriate
value of m to suit the application requirements. A 512 bit
Bloom filter can support about 50-75 objects per node.

3) Impact of Mobility: We performed mobility experiments
using the random waypoint model in Qualnet with different

 0

 500

 1000

 1500

 2000

 0 5 10 15 20M
es

sa
ge

 o
ve

rh
ea

d
pe

r
qu

er
y

(b
its

)

Number of replicas per object

IDLP
GCLP

GCLP++
Query flood

(a) Query overhead.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l q

ue
rie

s

Number of replicas per object

IDLP
GCLP

GCLP++
Query flood

(b) Success rate.

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50

P
ub

lis
h

ov
er

he
ad

 (
bp

s)

Objects per node

GCLP (No replicas)
GCLP (10 replicas)
GCLP (20 replicas)
IDLP (Any replicas)

(c) Publish overhead.

Fig. 8. Comparing IDLP against GCLP and Query flooding.

maximum node speeds. While the random waypoint model is
not ideal, it serves our purpose because we are only concerned
with the impact of broken links and routes on the performance
of IDLP.

Figure 7 shows the broadcast fraction per query with
different maximum node speeds. We observe that mobility
degrades performance at lower object replication factors. With
more replicas, redundancy from multiple simultaneous uni-
casts mask the impact of broken routes at certain nodes,
ensuring that they do not negatively impact the overall unicast
performance.

Since IDLP leverages routing control messages for data
signature propagation, the publish overhead increases propor-
tionally with control messages and has been excluded from
discussion here. We found the overall success rate in the
presence of mobility to be close to 100%.

D. Comparing IDLP to GCLP and Query Flooding

We now compare IDLP with the Geography-based Content
Location Protocol (GCLP) [27] described in Section II and
a simple flood technique. GCLP is a push-based technique
proposed for multihop networks, where data records and
queries are forwarded across the network in each of the four
compass directions. Nodes at the intersection of the publish
and query paths use cached data to resolve queries. Because
IDLP and GCLP share the same objectives, we compare their
performance. Note that GCLP only returns the location of the
object while IDLP forwards messages to the object’s location.
To compare the overhead fairly between the protocols, we
assume that GCLP uses an idealized routing protocol, and
hence only incurs an additional message overhead to traverse
the shortest path between the client node and the object
location. Since GCLP does not ensure a query success rate
close to 100%, we extend GCLP to resort to a broadcast
search upon failure to locate an object. This is represented
as GCLP++ in our performance comparison results.

Figure 8(a) shows a comparison of per node message
overhead per query between IDLP, GCLP, GCLP++ and Query
flood approaches. Query flood invokes a network-wide flood
for each object query and hence is likely to generate higher
overhead. It is interesting to observe that the performance
of Query flood degrades as the number of object replicas
increases. This is due to a surge in the reply overhead. GCLP
shows a low query overhead even with few object replicas.

2n
d

Fl
oo

r

3r
d

Fl
oo

r

1s
t F

lo
or

Fig. 9. UCSB MeshNet Testbed.

However, Figure 8(b) shows that GCLP has a relatively low
success rate when there are few object replicas in the network.
GCLP++, IDLP and Query flood all achieve a success rate of
close to 100%. IDLP achieves query success rate comparable
to GCLP++ without periodically publishing object availability
data across the network.

Finally, Figure 8(c) compares object publication overhead
for GCLP and IDLP on a per-node basis. IDLP’s overhead
is independent of the number of objects per node. When the
number of objects per node is 50, IDLP provides a factor
of 25 improvement in publish overhead over GCLP. The
object publish overhead with GCLP increases linearly with the
number of objects. GCLP thus works best when the number
of objects per node is small. IDLP can support more objects
per node with an appropriate selection of Bloom filter length.
It is thus suitable for both service discovery and data location
with a greater number of objects per node in the network.

V. EVALUATION ON THE UCSB MESHNET

To understand IDLP performance in a real network, we
implement IDLP and deploy it over the UCSB MeshNet
Testbed4. The testbed consists of 25 nodes distributed over five
floors of the Engineering I building on the UC Santa Barbara
campus. Figure 9 shows an approximate representation of
the physical layout of the 16 nodes used for evaluating
IDLP. There are two types of nodes in the network: Linksys
WRT54G routers and small form-factor Intel Celeron-based
X86 boxes running Linux. Each WRT54G node consists of
two Linksys WRT54G wireless devices connected together.

4http://moment.cs.ucsb.edu/meshnet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l q

ue
rie

s

Number of objects per node

Unicast (512 bit BF)
Unicast (1024 bit BF)

Overall (512 bit BF)
Overall (1024 bit BF)

(a) Without retries.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l q

ue
rie

s

Number of objects per node

Unicast (512 bit BF)
Unicast (1024 bit BF)

Overall (512 bit BF)
Overall (1024 bit BF)

(b) With retries.

Fig. 10. Unicast success rate and overall success rate of queries with number of objects in the network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l q

ue
rie

s

Number of replicas per object

Unicast (50 Objects/Node)
Overall (50 Objects/Node)

Unicast (100 Objects/Node)
Overall (100 Objects/Node)

Fig. 11. Unicast success rate and overall success rate with object replication.

One device serves as a mesh node running AODV, while the
other is used for out-of-band management of the node. Each
X86 box is equipped with a PCMCIA 802.11b radio and a
wired Ethernet interface. The IEEE 802.11b radio is used for
the AODV mesh and the Ethernet interface is used for out-of-
band management.

The link quality between each pair of connected nodes was
measured using the ETX [32] metric. The link delivery ratio
within the network varies from 10% to 95%. The diameter of
the testbed is six hops.

A. Deployment Challenges

We first evaluate IDLP over Kernel AODV [33] deployed
on the MeshNet testbed. The initial results obtained were not
promising. The unicast success rate of IDLP with 10 objects
per node and 512 bit Bloom filter was 43% and the overall
success rate was 52%. Detailed investigation showed that the
data delivery rate averaged across all node pairs was ≈ 50%.
This poor performance had two primary causes: the presence
of unidirectional links in the testbed and the choice of shortest
hop paths by AODV. While previous research has shown the
existence of unidirectional links in real testbeds [34], the
presence of different node types exacerbates this problem in
our testbed. 70% of all unidirectional links were links between

Linksys WRT54G routers and X86 boxes5. The Kernel AODV
implementation does not incorporate the black list feature [29]
for handling unidirectional links. Thus unidirectional links had
a serious impact on the performance of IDLP. This problem
manifests during data signature publication in one direction,
because the publishing node may be unreachable in the other
direction. The other cause of poor performance was the use of
hop count as the routing metric by AODV. Researchers have
shown the shortest hop count metric to perform poorly for data
delivery [35]. This adversely affected the query success rate
with IDLP.

Once our investigation revealed these performance factors,
we decided to use an ETX-based enhancement proposed
for AODV called AODV-ST [36]. AODV-ST maintains bidi-
rectional link connectivity information at each node. Route
selection relies on this information and the most reliable path
is chosen for data delivery. AODV-ST thus addresses both
our issues of unidirectional links and poor path reliability and
permits us to accurately evaluate IDLP.

B. Evaluation of IDLP

We now evaluate IDLP over AODV-ST in the MeshNet
testbed. We first examine the impact of the number of objects
in the network on the overhead and the query success rate. The
system parameters chosen are as follows: η = 2, replication
factor is one, and 50% of the nodes have a flow to another
random node in the network.

We first look at the success rate of IDLP. Figure 10(a)
shows the unicast success rate and the overall success rate
obtained with 512 bit and 1024 bit Bloom filters. The unicast
success rate represents the fraction of the total queries that
were successfully resolved through unicasts alone. The unicast
success rate with both 512 bit and 1024 bit Bloom filters in
the region of low false positives (≈ 0%) is close to 75%.
The overall success rate is about 80%. In contrast, simulation
results show a unicast success rate of ≈ 80% and a overall
success rate of ≈ 100% in the same region. This disparity
is due to simplistic assumptions in the simulator that do not
incorporate the lossy variations of the wireless medium.

5The transmission power on these devices was set at the same level.

We next add redundancy in the system to isolate the effect of
packet loss. Upon failure to locate an object during either the
unicast or the broadcast phase of IDLP, we retry the query. The
results from these experiments are shown in Figure 10(b). The
unicast success rate increases from 75% to 80% and the overall
success rate increases from 80% to 95%. The overall success
rate remains around 95%, indicating that multiple retries are
required to completely isolate the broadcast loss. It is clear
redundancy is needed to cope with the packet loss in the
wireless medium.

Figure 11 shows the impact of replication on the success
rate of the queries. Higher replication adds redundancy in the
system and also increases the chance of a routing table match
for the data signature. The system achieves close to 100%
success with a replication factor of two. The impact of other
system parameters were found to follow the trends observed
in simulation and have been excluded due to space constraints.

Finally, we evaluated the end-to-end delay per query and
found that it is always less than 500 milliseconds on the
MeshNet. This is well within tolerable limits for a data
location system.

VI. CONCLUSION

Adoption of location-aware network services such as dis-
aster recovery requires an efficient data location mechanism
for multihop wireless networks. We propose IDLP, a light-
weight, bandwidth-friendly data location layer for multihop
wireless networks. Through integration of data location and
wireless routing, IDLP reduces control protocol overhead and
efficiently handles topology changes. The usage of Bloom
filters as compact data signatures enables IDLP to support
data location for a large number of objects. Simulation results
show that piggybacking signatures on routing control messages
optimizes control protocol overhead and retains a high search
accuracy. Measurement results of IDLP on a testbed show that
IDLP provides a high query success rate while incurring low
communication overhead and end-to-end delay.

ACKNOWLEDGEMENTS

This work was supported in part by NSF Career award CNS-
0347886 and NSF Career award CNS-0546216.

REFERENCES

[1] T. A. Howes, “The Lightweight Directory Access Protocol: X.500 Lite,”
U. of Michigan, Tech. Rep. 95-8, Jul 1995.

[2] Sun Microsystems, “Jini (TM) Architecture Specification v2.0,” Jun
2003.

[3] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service Location
Protocol, Version 2,” IETF RFC 2608, Jun 1999.

[4] P. V. Mockapetris and K. Dunlap, “Development of the Domain Name
System,” in Proc. of SIGCOMM, Stanford, CA, Aug 1988.

[5] M. V. Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum, “Locating
Objects in Wide-Area Systems,” IEEE Communications Magazine, pp.
104–109, Jan 1998.

[6] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz,
“An Architecture for a Secure Service Discovery Service,” in Proc. of
MobiCom, Seattle, WA, Aug 1999.

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Journal of the ACM, vol. 13, no. 7, pp. 422–426, Jul 1970.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary Cache: A Scal-
able Wide-Area Web Cache Sharing Protocol,” IEEE/ACM Transactions
in Networking, vol. 8, no. 3, pp. 281–293, Jun 2000.

[9] S. C. Rhea and J. Kubiatowicz, “Probabilistic Location and Routing,”
in Proc. of INFOCOM, Hilton, NY, Jun 2002.

[10] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “GSD: A Novel Group-
based Service Discovery Protocol for MANETs,” in Proc. of MWCN,
Stockholm, Sweden, Sep 2002.

[11] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark - A Service Discovery
and Delivery Protocol for Ad-hoc Networks,” in Proc. of WCNC, New
Orleans, LA, Mar 2003.

[12] M. Nidd, “Service Discovery in DEAPspace,” IEEE Personal Commu-
nications, vol. 8, no. 4, pp. 39–45, Aug 2001.

[13] O. Ratsimor, D. Chakraborty, A. Joshi, and T. Finin, “Allia: Alliance-
based Service Discovery for Ad-Hoc Environments,” in Proc. of ACM
Mobile Commerce Workshop, Atlanta, GA, Sep 2002.

[14] U. C. Kozat and L. Tassiulas, “Network Layer Support for Service
Discovery in Mobile Ad Hoc Networks,” in Proc. of INFOCOM, San
Francisco, CA, Mar 2003.

[15] H. Pucha, S. M. Das, and Y. C. Hu, “Ekta: An Efficient DHT Substrate
for Distributed Applications in Mobile Ad Hoc Networks,” in Proc. of
WMCSA, English Lake District, UK, Dec 2004.

[16] F. Sailhan and V. Issarny, “Scalable Service Discovery in MANET,” in
Proc. of IEEE PerCom, Kauai Island, HI, Mar 2005.

[17] L. Cheng, “Service Advertisement and Discovery in Mobile Ad Hoc
Networks,” in Proc. of Workshop on Ad Hoc Communications and
Collaboration in Ubiquitous Computing Environments, New Orleans,
LA, Nov 2002.

[18] R. Koodli and C. E. Perkins, “Service Discovery in On-Demand Ad Hoc
Networks,” IETF Internet Draft (expired), 2002.

[19] A. Varshavsky, B. Reid, and E. de Lara, “A Cross-Layer Approach
to Service Discovery and Selection in MANETs,” in Proc. of MASS,
Washington, DC, Nov 2005.

[20] C. N. Ververidis and G. C. Polyzos, “Routing Layer Support for Service
Discovery in Mobile Ad Hoc Networks,” in Proc. of IEEE PerCom,
Kauai Island, HI, Mar 2005.

[21] “KaZaA Media Desktop,” http://www.kazaa.com, 2005.
[22] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large-scale Peer-to-peer Systems,” in Proc.
of Middleware, Heidelberg, Germany, Nov 2001.

[23] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” Mobile Computing, vol. 353, pp. 153–181, 1996.

[24] Z. J. Haas, “A New Routing Protocol for the Reconfigurable Wireless
Networks,” in Proc. of the IEEE ICUPC, San Diego, CA, Oct 1997.

[25] S. Lee, W. Su, and M. Gerla, “On-Demand Multicast Routing Protocol
in Multihop Wireless Mobile Networks,” Mobile Networks and Appli-
cations, vol. 7, no. 6, pp. 441–453, Dec 2002.

[26] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Proc. of MobiCom, Dallas, TX, Oct 1998.

[27] J. B. Tchakarov and N. H. Vaidya, “Efficient Content Location in
Wireless Ad Hoc Networks,” in Proc. of MDM, Berkeley, CA, Jan 2004.

[28] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,”
in Proc. of MobiCom, Boston, MA, Aug 2000.

[29] C. Perkins, E. M. Belding-Royer, and S. Das, “Ad Hoc On-Demand
Distance Vector (AODV) Routing,” IETF RFC 3561, Jul 2003.

[30] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A Global-scale Overlay for Rapid Service
Deployment,” IEEE JSAC, vol. 22, no. 1, pp. 41–53, Jan. 2004.

[31] Scalable Network Technologies. (2005) Qualnet Network Simulator,
version 3.8. http://www.scalable-networks.com.

[32] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-
Throughput Path Metric for Multi-hop Wireless Routing,” in Proc. of
MobiCom, San Diego, CA, Oct 2003.

[33] L. Klein-Berndt, “NIST Kernel AODV Implementation,” http://w3.antd.
nist.gov/wctg/aodv kernel/, 2005.

[34] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker, “Geographic Routing
Made Practical,” in Proc. of NSDI, Boston, MA, May 2005.

[35] R. Draves, J. Padhye, and B. Zill, “Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks,” in Proc. of MobiCom, Philadelphia, PA, Oct
2004.

[36] K. Ramachandran, M. Buddhikot, G. Chandranmenon, S. Miller,
E. Belding-Royer, and K. Almeroth, “On the Design and Implementation
of Infrastructure Mesh Networks,” in Proc. of WiMesh, Santa Clara, CA,
Sep 2005.

