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ABSTRACT

Measurement studies of online social networks show that all social
links are not equal, and the strength of each link is best character-
ized by the frequency of interactions between the linked users. To
date, few studies have been able to examine detailed interaction da-
ta over time, and studied the problem of modeling user interaction-
s. A generative model can shed light on the fundamental processes
that underlie user interactions.

In this paper, we analyze the first complete record of full inter-
action and network dynamics in a large online social network. Our
dataset covers all wall posts, new user events, and new social link
events during the first full year of Renren, the largest social net-
work in China, including 623K new users, 8.2 million new links,
and 29 million wall posts. Our analysis provides surprising insights
into the evolution of user interactions over time. We find that user-
s invite new friends to interact at a nearly constant rate, prefer to
interact with friends with whom they share significant overlaps in
social circles, and most social links drop in interaction frequency
over time. We also validate our findings on Facebook, and show
that they do generalize across OSNs.

We use our insights to derive a generative model of social inter-
actions that accurately captures both our new results and previous-
ly observed network properties. Our model captures the inherently
heterogeneous strengths of social links, and has broad implications
on the design of social network algorithms such as friend recom-
mendation, information diffusion and viral marketing.

1. INTRODUCTION
Without a doubt, online social networks (OSNs) have had an

enormous impact on the lives of millions of people, and changed
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the way people communicate and interact online. For scientists in
both engineering and social disciplines, OSNs offer a digital rep-
resentation of human social behavior that is both overly-simplified
and yet tantalizingly concrete, in the form of abstract social graphs
that capture social network activity.

The last few years has seen the arrival of several measurement
studies of user relationships and activities on popular OSNs, in-
cluding Facebook [9, 25, 26], Twitter [7, 13], LinkedIn [18], Ren-
ren [15, 28] and others [5, 8, 22]. A common observation made
across many platforms is that the presence of a social link con-
necting two users is a poor estimate of the “relationship strength”
between them. Instead, many have proposed using the number or
frequency of interactions on these networks to capture the strength
of a social link [11, 27].

Despite this realization, we are still far from a real understanding
of the processes that underlie user interactions. To capture strength
of social links, recent studies proposed the use of weighted “inter-
action graphs” where each link is labeled with some measure of
interaction frequency [8, 15, 26]. But these studies focus on a stat-
ic view of interactions, and therefore only capture a small piece of
the picture. Prior study [25] examined changing dynamics of user
interactions on Facebook users, but was limited to a sample set of
60,000 users crawled from a single geographic network.

A deeper understanding of user interactions requires the formu-
lation of a generative model, which can intuitively capture the pro-
cesses that drive user interaction events. No generative graph mod-
el exists to explain properties observed in measured traces of user
interactions, or to construct realistic arbitrary-sized user interaction
traces. Not only would such a model advance our understanding of
social networks, it would be immensely useful to a number of social
network applications. For example, it can be used to make more ac-
curate predictions in the link prediction problem [2], to reorder or
filter user news feeds by accurately predicting the likelihood of spe-
cific user interactions, or improve resource planning by predicting
about how data access patterns between users change over time.

In this paper, we seek to fill this void by building a model based
on two large detailed traces of user interactions on Renren and
Facebook. Our Renren trace covers over a year in length, and con-
tains data on the creation of 600+K users, 8+Million new links, and
29+ Million interaction events. The Facebook dataset is a 1.6M n-
ode sample that includes 49M edges and 16M interactions. The
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core contribution of this paper is a new generative model that com-
bines the growth of social links with the generation of user interac-
tion events on those links. We use analysis of empirical data to un-
derstand and model the growth processes that lead to the observed
network structure and link strength distributions.

We present detailed analysis of our growth data, and extract three
processes that drive dynamics of social interaction during the net-
work formation:

Forgetting process: A particular pair of users slowly decrease
their interaction frequency over time. The potential reason is that
users tend to forget each other as they cannot meet face to face on
a regular basis, leading to the closeness between friends declined
rapidly over time.

Reinforcement process: For each pair of users, the probability
of continued interactions displays a memory reinforcement (inerti-
a). In particular, the more two nodes interact with each other, the
more it demonstrates a close relationship between them . Thus, the
user are more likely to reinforce this relationship to counteract the
forgetting process.

Exploration process: In order to replace existing ones which
are no longer attractive, users continuously explore new interac-
tion relationships at a nearly constant rate, irrespective of their age
or degree. We find that users prefer to interact with friends with
whom they share significant overlap in social circles (homophily).
This reveals a positive correlation between social structure and in-
teraction as complementary indicators of social closeness between
individuals.

The above processes captures the fundamental fact that the inter-
action relationships require that we invest time to keep them alive,
especially once it becomes physically difficult for friends to meet
face to face on a regular basis.

Combining our new observations with previously studied pro-
cesses of these networks, we propose a generative model for social
and interaction networks. Our model is important for understand-
ing how the pairwise user interaction and social network evolve
together. It explains why the number of people a user communi-
cate with does not scale linearly with the number of friends users
declare, and also explains along which friendship links that inter-
actions are more likely to occur. The model is directly useful in
the future interaction prediction (e.g., by taking a current existing
network and further evolving it) and in the design of algorithms
incorporating social influence and homophily effects (e.g., by lo-
cating and highlighting stronger relationship).

In addition, our model can be used to construct interaction traces
that can represent the full spectrum of relationship strengths (from
weak to strong), which has not been captured by models before.
This is an important application because real-world network dataset-
s are often proprietary and hard to obtain. Controlling network pa-
rameters allows the generation of datasets with different properties
which can be used for thorough exploration and evaluation of net-
work analysis algorithms.

Our contributions include the following: First, we discover a
number of new interrelated processes drive the evolution of social
interactions. Second, we propose a co-evolution model that pre-
cisely captures both social link formation and user interactions af-
terwards. Finally, we provide a thorough evaluation of our model,
showing that it produces realistic network evolution following the
true evolution of network properties.

The remainder of this paper is organized as follows. Section 2
provides background and related work on the growth of social net-
work and user interaction. Section 3 provides insights into the in-
teraction evolution by observing Renren social network. Section 4

Renren Facebook
# of nodes 623,511 1,600,214
# of edges 8,266,149 48,949,304

Mean node degree 13.2 27.3
Mean path length 4.2 5.0

Mean clustering coefficient 0.18 0.19

Table 1: Properties of Renren and Facebook network

provides our evolution model that captures both social network and
user interaction. Section 5 evaluates the accuracy of our model, and
we finally conclude in Section 6.

2. PRELIMINARIES
In this section, we provide background on work related to the

growth of OSNs, and then introduce our datasets.

2.1 Related Work
Previous studies on social network evolution mainly focus on

friendship relations, and attempt to discover the underlying pro-
cesses that produce properties observed in real networks. For ex-
ample, the preferential attachment model [3] captures power-law
degree distributions. The forest fire model [19] captures the den-
sification and shrinking diameters over time. A recently proposed,
microscopic evolution model [18] provides insights into the node
and edge arrival processes, and confirms preferential attachment
and triangle closure features. Similar conclusions were reached by
studies on Flickr [20] and a social network aggregator [10]. Zhao et
al. [31] study the early evolution of the Renren social network, and
analyze its network dynamics at different granularities to determine
their influence on individual users.

Another set of works begin to investigate the effect of node at-
tributes on social network evolution. For example, Allamanis et
al. [1] examine influence of spatial factors on the temporal evolu-
tion of online social ties. Gong et al. [12] study the influence of four
attributes including school, major, employer and city. They found
users share attributes are more likely to be connected, augmenting
structure-based triangle closing.

However, these works on evolutionary process or growth models
treat all friendship links as equal. In fact, a recent study [11] has
demonstrated the strength of links varies widely, ranging from user-
s’ best friends to acquaintances. To differentiate links, interaction
data has been utilized in predicting relationship strength [11,16,27].

While the recent studies [8, 21, 26] brought great insights into
the structural difference between the interaction network the social
network, little attention has been paid to the temporal evolution
of pairwise user interactions. The study [25] examined user in-
teractions dynamics on Facebook users, but no generative model
has been developed to reveal the underlying processes driving us-
er interaction dynamics. With respect to these results, our work
provides a more systematic understanding of the evolution of user
interaction behavior.

Prior works [4, 29] provide some models of traffic networks,
whereas others [24,30] present a model for face-to-face interactions
of users. Although these models generate interaction network, they
are not suitable in the context of today’s OSNs due to different un-
derlying dynamics and network properties. Our work attempts to
fill this void.

2.2 Social Dynamics and Interaction Data
To construct the interaction evolution model, the dataset should

contain the information on both topology and interaction dynamics.
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Renren Facebook
Period 2005.11∼2006.12 2008.1∼2009.6

# of wall posts along edges 23,000,141 16,313,273
# of interactions 7,697,270 3,233,780

# of users having interactions 420,978 324,430
# of edge having interactions 2,623,040 1,695,448

Table 2: Summary of Renren and Facebook interaction data

However, to our knowledge, there are no publicly available datasets
satisfying this requirement. To fill this lack, this paper presents two
datasets: 1

Renren Dataset. With 120 million users, Renren is the largest
and oldest online social network in China, and provides function-
ality and features similar to Facebook. Like Facebook, Renren first
started in 2005 as a social network for college students in China,
then saw its user population grow exponentially once it opened its
doors to the non-student population. Like Facebook, Renren user-
s maintain personal profiles and establish bidirectional friendship
links with others. Below we use the term edge to mean a friendship
link.

To study user interactions, Renren provides us two ground-truth
datasets. The first dataset encompasses the timestamped creation
events of all users and edges in the first year of Renren’s growth.
The dataset starts on Nov. 21, 2005 (when the first edge was creat-
ed) and ends on Dec. 30, 2006. In all, it includes the creation times
of 623,511 nodes and 8,266,149 edges. Table 1 shows the statistics
of the social graph formed at the end of 2006.

The second dataset includes all 29,506,068 wall posts that oc-
curred in our measurement period. To guarantee user privacy, we
only get the anonymized IDs of sender and receiver for each wall
post, without knowing the content. Since our goal is to characterize
edge strength based on user interactions, we ignore the wall posts
not along edges (e.g., greeting messages between strangers). As
a result, we focus on the remaining 23,000,141 wall posts created
along edge, representing the friendship maintenance effort of users
(accounting for nearly 80% of the total wall posts).

Facebook Dataset. Our Facebook dataset comes from a com-
plete crawl of a large regional network conducted in 2009 [26].
This crawl visited the 1.6M users in the region with default pri-
vacy settings (roughly half of the total population of the region).
Each user’s friend list and all interactions in the user’s news feed
between Jan. 1, 2008 and Jun. 30, 2009 were downloaded. These
interactions cover a broad range of activities, with the most popular
by far being wall posts and photo tags. Each interaction includes
ther sender, receiver, and a timestamp. Table 1 lists the statistics of
the dataset.

Unfortunately, the Facebook data is not as comprehensive as the
Renren data. The Facebook data does not include creation times-
tamps of social links, thus we only focus on analyzing user interac-
tion patterns on Facebook, not graph structural dynamics. Further-
more, the Facebook data includes social links and interactions with
users outside the target regional network. Because these users were
not crawled, our data on them is incomplete. Thus, in our analysis
we focus exclusively on social links and interactions between users
in the region.

Other Types of Interactions. Although our datasets focus on
Wall posts and photo comments, modern OSNs may have many
additional types of interactions, e.g. retweets, shares, etc. When

1Available at http://net.pku.edu.cn\%7ezzh/data.

our datasets were collected, Wall posts and photo comments were
the most popular types of interactions on Renren and Facebook by
a large margin, which is why we focus on them [26]. However, our
model is general enough to incorporate other types of interactions.

2.3 Definitions and Dataset Cleaning
To better measure mutual relationship (tie strength) between user-

s, we refer to a pair of reciprocal wall posts (or photo comments) as
an interaction. For example, if node u sends m messages to v but
receives n messages from v, the number of interactions between
them is min (m,n). The wall posts that have not been replied are
pruned. This definition means that u and v cannot be supposed to
have strong mutual relationship if one sends many messages to the
other but rarely receives replies (e.g., u trusts user v, but not nec-
essarily vice versa). So we use the the number of interactions as
a conservative estimate on the edge strength, instead of the total
number of wall posts over the edge.

The interaction definition allows us to represent the interaction
network evolution as a series of undirected, edge-weighted graphs
G1, . . . , GT , so that a snapshot Gt consists of the nodes, edges,
and interactions that have arrived by time t. The term interaction

edge represents the friendship edge along which at least one inter-
action is generated. We say a node u creates an interaction edge
with a node v when u interacts with v for the first time, and we say
v becomes one of u’s interaction partners. We use the timestamp of
an interaction as the creation time of the corresponding interaction
edge.

Table 2 summarizes our Renren and Facebook interaction dataset-
s. We see that Facebook users produce less than half as many inter-
actions as Renren users, and fewer users and social edges are inter-
active. The reduced interactivity of Facebook users versus Renren
users is very clear in our analysis in Section 3. However, as we
will show, interactions on both OSNs still exhibit the same overall
trends. Table 2 also shows that interaction edges only cover 32%
and 3% of social edges on Renren and Facebook, respectively. This
means that users only interact with a small subset of their friends.

3. ANALYSIS OF USER INTERACTIONS
In this section, we analyze the Renren and Facebook interaction

data to uncover temporal patterns of user interactions. In particular,
we want to answer three questions: First, at what rate do users
choose new friends to interact with? Second, how do users choose
which particular friend to begin interacting with? Finally, once a
pair of users begin to interact, what are the temporal dynamics of
the relationship? We shall leverage the answers to these questions
to motivate the design of our generative model of user interactions.

3.1 Interaction Partners Addition
The first question we address is: what is the rate at which users

add new interaction partners? Prior works [3, 18, 20] demonstrate
that users accelerate the creation of social relations as their node
degree (or age) increases, i.e., “rich-get-richer” type. Since users
get friends more quickly, we want to examine whether they also ad-
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Figure 1: The average rate of adding new friends into interac-

tion for nodes of different age.
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Figure 4: The average node-interaction frequency over time.

d interaction partners in an accelerate manner. Intuitively, making
friends in an OSN is very easy, since the click of “add as friend”
button does not need any energy cost. In contrast, interaction rela-
tionship requires more effort to create and maintain, e.g., a certain
amount of time and energy used for reading and writing wall posts.
Such energy cost will limit the rate at which users add new inter-
action partners, since they only have a finite amount of resources
(e.g., time and energy).

To test this hypothesis, we examine the growth pattern of interac-
tion edges. We define node interaction rate λu(a) as the ratio of the
number of interaction edges nu(a) that a node u has created to its
current age au, i.e., λu(a) = nu(a)/au. Interaction rate measures
the speed at which users begin interacting with new friends. To
examine the temporal pattern of interaction edge initiations, λ(a),
we calculate the average interaction rate of nodes achieving age a
during our measurement period:

λ(a) =

∑T
t=1

∑
u∈St(a)

λu(a)/|St(a)|

T
(1)

where St(a) = {u|t − t0 = a} is the set of nodes achieving age a
at time t. Here, t0 is the arrival time of node.

As shown in Fig. 1, users in both Renren and Facebook are more
interactive immediately after they join. However, the effect quickly
wears off. For example, in Renren, the λ(a) converges to a con-
stant after only a week. The Pearson correlation coefficient be-
tween λ(a) and node age is only −0.102, showing interaction rate
is nearly independent of node age. This observation means that a
node invites new interaction partners at a constant speed due to the
interaction cost and limited time resource.

3.2 Interaction Partners Selection
The next question we address is: which friends do users select

as interaction partners, given that only a small fraction of friends
interact. Intuitively, strong relations are more likely to develop be-
tween socially similar people (i.e. homophily effects). We hypoth-
esize that sharing common neighbors may have a strong impact on
interaction partner selection.

To test this hypothesis, we unroll the evolution of the Renren net-
work. Fig. 2 plots the fractions of friendship edge and interaction
edge creation events occurring between users with mutual friends
on each day. About 63% of interaction edge creation events occur
between friends with mutual neighbors, as compared with 47% of
friendship edge creation events. Thus, the common friend factor
has a stronger influence on the creation of interaction relationship
than on friendship.

After confirming the influence of common neighbors, we aim to
understand the way that it affects how interaction targets are select-
ed. Consider the case when a source node u initiates interaction
with a friend v by sending the first wall post. We define com as the
number of common neighbors and overlap as the Jaccard coeffi-
cient between u and v (i.e., Γu∩Γv

Γu∪Γv
where Γu and Γv are the sets of

users connect to u and v, respectively). We examine the following
alternatives for choosing node v: i) com: proportional to the num-
ber of common neighbors; ii) overlap: proportional to the Jaccard
coefficient.

We apply the maximum likelihood principle to examine which
model better explains the observed interaction data. Estimating
the likelihood of a model M involves considering each interaction
edge st = (u, v) and computing the likelihood PM (st) that the
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source u chooses v according to the model. In our case, PM (st) =

cv/
∑d

i=1 ci where cv (or ci) is the numbers of common neighbors
or neighborhood overlap between u and v (or ith friend of node
u). The likelihood PM that model M reproduces actual interaction
edges across the graph is given by the product of the individual like-
lihoods: PM =

∏
t PM (st). We use the log-likelihood logPM for

better numerical accuracy.
We compute the log-likelihood of com and overlap on each

day. Fig. 3 shows the likelihood improvement of com and overlap
over the random target selection, respectively. The overlapmod-
el shows improvement of 12.5%, compared to 8.5% for the com
model. This result demonstrates that interactions are more likely
to occur between friends with high neighborhood overlap, and that
this effect is sustained over time, as the OSN matures.

Because the Facebook dataset does not include social link cre-
ation times, we cannot analyzing the correlation between social
graph structure and user interaction over time. Instead, we analyze
the neighborhood overlap between interactive (or non-interactive)
friends on Facebook. We find that interactive friends have 0.085
neighborhood overlap on average, versus only 0.065 on average
for non-interactive friends. The relatively low overlap numbers on
Facebook are not surprising given that mean degree on Facebook
is more than double mean degree on Renren (see Table 2). This
result also demonstrates that users tend to initiate interactions with
friends with high neighborhood overlap.

3.3 Interaction Generation and Distribution
The final question we ask is: how do users generate new interac-

tions across existing interaction edges? We begin by analyzing the
interaction creation process in absolute time, focusing on the speed
that nodes generate interactions over their interaction edges.

We define the node-interaction frequency, as its total number
of interactions averaged over time. Fig. 4 plots the average node-
interaction frequency on each day of our dataset. In Renren, we see
that the frequency increases early in its existence, but converges
to a constant after day 230. Note that most users (and thus interac-
tions) arrive after day 230 since Renren grows exponentially (as we
shown later in Fig. 7). Our Facebook data was collected after the
OSN had matured, and Fig. 4 shows that node interaction frequen-
cy is essentially constant. This result implies that an user spends a
constant amount of time per day on interaction.

Next, we examine how users distribute new interactions over
their existing interaction partners. We analyze the interaction dis-
tribution from two perspectives: first, what is the effect of intensity,
i.e. is their correlation between the number of times friends have in-
teracted in the past, and the number of times they will interact in the

future? Fig. 5 plots η(n), the average number of new interactions
between friends that already have n interactions:

η(n) =

∑T
t=0

∑
e∈Sn(t) Ie(t)/|Sn(t)|

T
(2)

where Sn(t) = {e|
∑t−1

k=0 Ie(k) = n} is the set of interaction
edges that already have n interaction before time t. We observe that
η(n) is proportional to the number of past interactions across the
edge in both networks. Intuitively, this means that the interactions
between friends reinforce their relationship, leading to more future
interactions.

Second, what is the effect of time, i.e. do friends tend to interact
more or less over time? Fig. 6 plots η(a), the average number of
new interactions created along edges of age a:

η(a) =

∑T
t=0

∑
e∈Sa(t)

Ie(t)/|Sa(t)|

T
(3)

where Sa(t) = {e|t − t0(e) = a} is the set of interaction edges
with age a at time t, and Ie(t) is the number of new interaction-
s generated along edge e at time t. We see that η(a) is inversely
proportional to edge age a in both networks. Intuitively, this means
that a given pair of users tends to interact less over time. One pos-
sible explanation for this is users tend to forget each other as they
cannot meet face to face on a regular basis, leading to the closeness
between friends declined rapidly over time.

4. A SOCIAL CO-EVOLUTION MODEL
In this section, we introduce our generative model for creating

interaction graphs that takes into account the coupled evolution in
time of topology and user interaction. The model is based on the
insights about user interactions derived in the previous section. In-
tuitively, a co-evolution model has two complementary processes:
one concerned with forming social links (the social graph model),
while the other generates interactions along the links (the interac-

tion model). Although many social graph models exist [1, 3, 12,18,
19], these models do not include an interaction model.

4.1 Social Link Generation
Before we introduce our interaction model, we need to first choose

an underlying social graph model to build upon. Rather than at-
tempting to invent and justify a new social graph model, we choose
to use the microscopic evolution model [18] for social link genera-
tion, which is based on observing the temporal properties of large
social networks.
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Algorithm 1 Social Co-evolution model.

1: Node set V = ∅
2: for each time step t ∈ T do
3: Node arrival. V = V ∪ Vt,new

4: for each new node u ∈ Vt,new do
5: Lifetime sampling
6: First social linking
7: end for
8: for each living node u ∈ Vt do
9: if u wakes up then

10: Social linking
11: Sleep time sampling
12: end if
13: if rand() ≤ γu then
14: if rand() ≤ p then
15: Requests a friend v it has not interacted with
16: else
17: for each its interaction partner v do
18: Update the weight wuv ← nuv/a

τ
uv

19: end for
20: Pick an existing partner v with prob. ∝ wuv

21: Generate an interaction with v
22: end if
23: end if
24: end for
25: end for

The main ideas behind the microscopic evolution model are that
nodes join the social network following a node arrival function, and
each node has a lifetime l, during which it wakes up multiple times
and creates new edges by closing triads two random steps away (i.e.

befriending friends of friends). The key functions and parameters
needed for the microscopic evolution model are:

Node arrival. New nodes Vt,new arrive at time t according to a
pre-defined arrival function N(.).

Lifetime sampling. At arrival time t, node u samples lifetime a
from λe−λa, and becomes inactive after time t + a. Let Vt be the
set of active nodes at time t.

First social linking: Node u declares its first friend v based on
the preferential attachment model (e.g. connecting to v with prob-
ability proportional to v’s degree).

Sleep time sampling: After creating an edge, node u goes to
sleep for δ time steps, where δ is sampled from a power law with
exponential cut-off distribution given by p(δ) = 1

Z
δ−αe−β·degree(u)·δ.

Social linking: When node u wakes up, it creates a new edge by
befriending a two-hop neighbor (a friend of a friend).

These are the set of parameters needed for the microscopic evo-
lution model: N(.) is the node arrival function, λ is the parameter
of the exponential distribution of the lifetime, and α, β are the pa-
rameters of the power law with exponential cut-off distribution for
the node sleep time gap. Further details of the model can be found
in the paper [18].

4.2 User Interaction Generation
Besides befriending with others, nodes also request a certain

number of friends to interact with, and distribute interactions over
their interaction friends. Based on the insights on user interac-
tion behavior, we now introduce our interaction model. Algorith-
m 1 presents our co-evolution model. Its interaction evolution part
mainly consists of the following processes:

Intuitively, not all the users are simultaneously present in system.
Thus we assume that users can be in an active or an inactive state.
If an user is active, she interacts with her friends; otherwise she
simply rests without interacting. According to empirical observa-
tions (e.g., constant interaction frequency), we assume that, at each

time step, one inactive user can become active with a probability r,
while one active user can become inactive with probability 1−r. In
practice this means that the user activity pattern, while stochastic,
will display some regularity in time, interaction events following
each other on average at 1/r steps, very long inter-event times are
exponentially rare.

Once an user u is active, she would selects a target node v from
her friends to make an interaction event, which increases the num-
ber of their interactions by one. The empirical observations show
that an user invites new friends to interact at a constant rate, irre-
spective of node age or social degree. Therefore, we assume that,
once a node is active, she selects the interaction target either from
friends without any interaction with her yet or from existing inter-
action partners with probabilities p or 1 − p, respectively. In other
words, users are free to establish new interaction relationships with
their social friends, and they are also responsible for maintaining
existing interaction relationships with their partners, the degree of
which is controlled by p.

In the case of selecting the target from its existing partners, inter-
actions are biased by the interpersonal attraction built up over time.
The more interest she raises in a partner, the more likely she will
interact with this partner (inertia). Based on the empirical obser-
vations (e.g., effects of intensity and time), we measure the appeal
ηuv of a partner v to an user u by ηuv = nuv/a

τ
uv , where nuv is

the current number of interactions between users u and v, auv is the
current age of this interaction relationship and τ is the decay factor.
Thus, if an user u chooses to interact with an existing partner, she
will choose the partner v with a probability proportional to ηuv .
In the other case, the probability to choose a friend as the target
is proportional to their neighborhood overlap (homophily).2 The
new target node would be added into the set of existing interaction
partners.

The interaction model captures the fundamental fact that the in-
teraction relationships require that we invest time to keep them
alive, especially once it becomes physically difficult for friends to
meet face to face on a regular basis. In particular, each user has
a forgetting behavior: the attraction between a pair of users de-
clined rapidly when they lose contact (captured by the decay factor
τ ). Interestingly, our model on online relationships is consistent
with the ecology model on real-life relationships. Prior work [6]
investigated four annual surveys of colleague relationships for 345
bankers in a large financial organization, and found that the live-
ness of relationships decay over time and decay is also a power
function of time. To counteract the effects of forgetting, each user
exhibits a reinforcing behavior: she wants to keep the important re-
lationships alive. Thus, with limited time to use, she biases towards
relationships of more interactions. Also, each user has a exploring

behavior: she continuously explores new interaction relationships
(captured by the probability p), in order to replace existing ones
which are no longer attractive.

4.3 Extension of the Model
The activation probability r represents user activeness in the so-

cial interaction. To this end, we have assumed that all users have
the same tendency to be active, that is, the activation probability r
does not depend on the user who is interacting. Real social system-
s display however additional complexity since the social behavior
of individuals may vary significantly across the population. For
example, individuals vary widely in the total time spent accessing
OSNs [5], and may devote different amount of energy to interac-
tion.

2One could further explore other social similarities, such as profile
and geographic similarities, in choosing the new partner.
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Figure 7: Nodes arrival over time, beginning Nov. 21, 2005.
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times.

A natural extension of the model presented above consists there-
fore of making the probability r dependent on the user who is in-
teracting. To this aim, we assign to each user u a parameter ri that
characterizes his/her propensity to form social interactions. In real
networks this propensity will depend on the features of the users. In
the model we assume that this propensity, that we call “sociability”,
is a quenched random variable randomly chosen from a prefixed
distribution ζ(r) characterizing the system’s heterogeneity, which
is assigned to each agent at the start of the dynamical evolution and
remains constant.

4.4 Desired Property
Before we evaluate our co-evolution model on real data, we first

seek to demonstrate its theoretical soundness. To evaluate this, we
focus on the relationship between social degree and interaction de-
gree. Several studies of different social networks have all observed
that the number of people a user communicates with (their interac-
tion degree) does not scale linearly with social degree [14, 25, 26].
This means the social graph grows at a faster rate than the inter-
action graph. Given how universal this property is, the question
becomes does our model successfully capture this phenomenon?

In on our co-evolution model, the growth of social degree and in-
teraction degree are governed by different processes. Specifically,
interaction edges are created at a constant rate, whereas the creation
rate of friendship edges accelerates with social degree (i.e. the edge
gap gets shorter). Thus, as the graph grows, the former quickly falls
behind the latter, leading to a non-linear relationship.

We now formalize this relationship. Recall the friendship edge
creation process: given the edge gap distribution p(δ|d;α, β) =
1
Z
δ−αe−βdδ , a node creates the first edge and sleeps δ(1) time

units sampled from p(δ|d = 1;α, β), creates the second edge and
sleeps for δ(2) time units sampled from p(δ|d = 2;α, β), and so
on. Thus, the time duration T needed by a user to achieve degree
D is:

T =
D∑

d=1

δ(d) (4)

To get the edge gap δ(d), we first compute the normalizing con-
stant Z for the edge gap:

Z =

∫ ∞

0

δ−αe−βdδdδ =
Γ(1− α)

(βd)1−α
(5)

With the expression of constant Z, we obtain the expected time
gap for a node to create its dth edge:

E[δ|d;α, β] =

∫ ∞

0

1

Z
δ−αe−βdδdδ =

Γ(2− α)

Γ(1− α)
(βd)−1 (6)

Equation (6) shows that the gap gets shorter as the node’s degree
increases (i.e. E(δ) ∝ 1/d), manifesting the “rich-get-richer” phe-
nomenon. On the other hand, the node creates interaction edges at
a constant rate r. Hence, the average interaction degree K the node
accumulates during T is:

K = r
D∑

d=1

E[δ|d;α, β] = r
D∑

d=1

Γ(2− α)

Γ(1− α)
(βd)−1 = Θ(lnD)

(7)
Therefore, the co-evolution model produces a logarithmic rela-

tionship between average interaction degree K and social degree
D.

5. MODEL EVALUATION
We now perform simulations based on our Renren dataset to val-

idate the accuracy of our model. We focus on the Renren dataset
because it is complete, unlike the Facebook data which is missing
edge creation times. We fit the parameters of our interaction mod-
el to the interactions that occurred during the first 320 days of our
Renren dataset. This time period corresponds to half of the overall
nodes joining the social graph. Later, we evaluate the ability of the
interaction models to generate synthetic data that captures the inter-
action characteristics of the full 385-day Renren graph. We observe
that the co-evolution model accurately captures the characteristics
of the 385-day Renren data, even when it is only trained on half the
dataset.

5.1 Social Graph Parameter Fitting
We analyze the Renren network to get the values for model pa-

rameters. The social graph model [18] needs the following param-
eters to generate the underlying social graph:

Node arrival function N(.): We start by modeling the node ar-
rival process. Fig. 7 measures the number of nodes in the network
N(t) on each day t. We see that Renren gets a burst of growth
around day 200 (June 4, 2006) due to launching a network cam-
paign at some biggest universities in Beijing. And after that, the
network maintains the stable growth from day 287 (the end of Au-
gust, 2006). We focus on the stable growth stage since it cap-
tures the arrival of most nodes, and fit the node arrival process by
exponent function N(t) = a exp (bt), where a = 13, 200 and
b = 0.01. Thus, Renren grows exponentially over much of our net-
work. The parameter λ for node lifetime distribution: We define
node arrival as the time when a node creates its first social edge,
and departure if the node does not create an edge for 100 days. N-
ode lifetime is the time between node arrival and departure. Fig. 8
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shows the distribution of node lifetimes before day 230. Although
about 10% nodes create an edge and never return, the lifetime of
most nodes is fit by an exponential distribution with shape parame-
ter λ = 0.004.

Parameters α, β of the sleep time gap distribution: The micro-
scopic evolution model [18] defines edge gap δ as the time elapsing
between the edge initiations from a node. In our case, we modify
the model slightly since our dataset does not record which node
initiates edge creation. Specifically, in our case, when edge (u, v)
is created, both u and v perform sleep sampling according to their
respective degrees. Although we modify the edge gap definition,
we find that the edge gap distribution pg can still be modeled by
a power law with exponential cutoff: pg(δ) ∝ δ−α exp(−βdδ).
Fig. 9 confirms this model by showing the gap distributions and
corresponding fittings (α = 1.735, β = 0.0008) for nodes with
different degree d.

5.2 Interaction Parameter Fitting
On the other hand, the interaction model needs the following pa-

rameters to generate interactions over the underlying social graph.
Decay factor τ : We compute η(a), the interaction frequency for

edges of age a, with equation (3) (note that T is limited to 320),
and get the exponent τ = 0.4.

Exploring probability p: We compute p by ratio of the existing
interaction edges to the number of existing interactions by the end
of training data (day 320), and get p = 0.32.

Activation probability r: In our evaluation, we use the hetero-
geneous model, which assumes that the activation probability r of
an individual is randomly chosen from a prefixed distribution ζ(r).
We compute the hourly activation probability r of an individual us-

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

Hourly interaction probability

C
D

F

Measured data1

Log−normal fit

Figure 11: The distribution of edge interaction probability at

an hourly time step.

Algorithm 2 Social Naïve model.

1: Node set V = ∅
2: for each time step t ∈ T do
3: Node arrival. V = V ∪ Vt,new

4: for each new node u ∈ Vt,new do
5: Lifetime sampling
6: First social linking
7: end for
8: for each living node u ∈ Vt do
9: if u wakes up then

10: Social linking (u, v)
11: Sleep time sampling
12: if rand() ≤ θ then
13: Adds v into interaction partner group
14: Samples probability ηuv from P (η)
15: end if
16: end if
17: for each partner v do
18: Generate a new interaction with ηuv
19: end for
20: end for
21: end for

er by the average number of her interactions per hour by the end of
training data. Fig. 10 shows that ζ(r) is a log-normal distribution,

i.e. ζ(r) = 1

rσ
√
2π

e−(ln r−µ)2/2σ2

, with µ = −4.9 and σ = 1.5.

5.3 Baseline Model
We propose a naïve model, which assumes the evolution of social

network structure and user interaction are independent processes,
and a stable interaction probability between a pair of users. This
naïve model serves as a baseline for comparison.

At each time step, an node u creates social links using the mi-
croscopic evolution model (with the parameters outlined above).
Once creating a new link, she selects this friend as interaction part-
ner with a probability θ. At each time step, she interacts with each
of her interaction partners with their own probability ηuv sampled
from a given distribution P (η) characterizing heterogeneous link
strength. Algorithm 2 presents the naïve model in detail.

Using our training data, we get θ = 0.29 as only about 29%
of social edges have interactions. We quantify the hourly interac-
tion probability of a pair of partners by their average number of
interactions per hour by the end of training data. Fig. 11 shows
that P (η) is well-fit by a log-normal distribution, e.g. P (η) =

1

ησ
√
2π

e−(lnη−µ)2/2σ2

, with µ = −6.9 and σ = 1.1.

5.4 Evaluation of Interaction Models
We now evaluate our interaction models. Using the parameter-
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Real Network Co-evolution Model Naïve Model
# of interactions 7,697K 7,979K 11,822K

# of users have interactions 421K 452K 470K
Mean # of interactions/user 18.3 17.7 25.1
# of edge have interactions 2,623K 2,654K 2,285K
Mean # of interactions/edge 2.9 3.0 5.2

Table 3: Statistics of a real network vs. synthetic ones

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000

#
 o

f 
e
d
g
e
s

# of interactions across the edge

True
Naive

Co-evolution

Figure 12: The number of interactions across interaction edges.

0

100

200

300

400

500

600

0 200 400 600 800 1000

A
vg

. 
in

te
ra

ct
io

n
 d

e
g
re

e
 k

Node degree d

True
Naive

Co-evolution
Log fit

Figure 13: The correlation between node degree and interac-

tion degree.

ization outlined above, we generate two social graphs with asso-
ciated interactions (one from the naïve model, one from the co-
evolution model). Each graph is evolved for 385 days, and then
compared to the complete 385 days of ground-truth data from Ren-
ren. We focus on analyzing the interactions generated by the two
models, rather than the social graph generated by the microscopic
evolution model, because the microscopic model has already been
thoroughly evaluated by prior work [18].

We analyze the generated interactions at two levels of granular-
ity. First, we evaluate high-level interaction characteristics (e.g.

total interactions, interactions per user/edge). Second, we examine
the structural features of interaction graphs (e.g. degree distribu-
tion and clustering coefficient). In both cases, the output of the
naïve model serves as a baseline for gauging the improvement of
the co-evolution model.

We now present our evaluation results by comparing both the
high-level characteristics (such as the total number of interaction
edges and interactions) and microscopic structure features (e.g.,
clustering coefficient, degree distribution, and pairwise distance)
of real and synthetic interaction graphs. The performance of the
naïve model serves as a baseline that will help us to confirm the
necessity of each process in the co-evolution model.

Interaction Analysis. Table 3 shows the overall interaction
statistics of the real and synthetic graphs. The output of the co-
evolution model is very close to the true data in every category.
In contrast, the naïve model generates 54% too many interactions
overall and 12% too many users become interactive. By captur-
ing the fraction of interaction edges, the naïve model could roughly
predict the total number of interaction edges, but severely overesti-
mates the total number of interactions due to ignoring the recency
effect in user interactions (i.e., the interaction frequency of user
pairs tends to decrease markedly over time). As a comparison, the
co-evolution model rightly captures the rates that users create both
interaction edges and interactions, thus generating the very similar
statistics to those of the real graph.

Next, we examine the number of interactions across interaction

edges (i.e. link strength) in Fig. 12. Since the naïve model does not
take interaction recency into account (i.e. interactions along an edge
tend to decrease over time), it overestimates link-strengths. In con-
trast, the co-evolution model takes interaction intensity and recency
into account, and thus generates nearly the same link-strength dis-
tribution as the real graph.

Finally, we examine the correlation between social degree and
interaction degree, since this non-linear correlation is an important
observation in many social networks [14, 25, 26]. Fig. 13 shows
the correlation for the Renren network, which exhibits the expect-
ed sub-linear relationship. The naïve model cannot generate this
non-linear correlation. In contrast, the co-evolution model does
generate the expected sub-linear relationship, and fits the ground-
truth Renren data very closely. We further find that the logarithmic
function fits true correlation curve well, validating empirically the
derivation of a logarithmic correlation in Section 4.4.

Interaction Graph Analysis. To further evaluate our interac-
tion models, we construct undirected interaction networks, where
a link exists between a pair of users that interacts at least once (i.e.

interaction edge). We then compare the structural properties of the
385-day Renren interaction network to the synthetic networks from
the naïve and co-evolution models.

Fig. 14 shows the clustering coefficient distribution, degree dis-
tribution, and pairwise distance histogram for the Renren and syn-
thetic interaction networks. We observe that both models produce
accurate interaction degree distributions. However, the co-evolution
model is much more accurate at reproducing accurate clustering
and distance characteristics. The weakness of the naïve model
in these two cases is due to the fact that it ignores the correla-
tion between social structure and interactions. In contrast, the co-
evolution model is designed to capture this correlation, and conse-
quently generates interaction networks that closely match the true
network.

We note that the true network has a slightly higher clustering
coefficient than that generated by the co-evolution model. This in-
dicates that the ground-truth interaction partners are more densely
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Figure 14: Comparison between the real and synthetic Renren interaction graphs.

clustered than that predicted by the model (where the partner selec-
tion is proportional to the neighborhood overlap). To improve the
accuracy of our model with respect to clustering coefficients, we
could add an additional parameter to the model that increases its
bias towards selecting interaction partners with high neighborhood
overlap. However, this additional parameter adds complexity to the
model, and we leave the study of how to tune this new parameter
as future work.

6. CONCLUSION AND DISCUSSION
In this paper, we develop and evaluate a co-evolution model that

generates interactions across social links. The insights behind our
model are derived from large scale datasets from Renren and Face-
book. This data reveals that users invite new friends to interact at
a nearly constant rate, prefer to interact with friends with whom
they share significant overlaps in social circles, and gradually lose
interest in interacting with old friends. We believe that these ob-
servations not only affect the design of network interaction models
but also have broader implications in other areas, such as friend
recommendation, information diffusion, and news feed ranking.

Our co-evolution interaction model captures the important statis-
tical properties of interaction networks, and provides new insights
into the evolution of user interaction during network formation. To
our knowledge, the co-evolution model is the first generative model
for interactions on OSNs, and our evaluation shows that is it very
accurate at capturing the observed properties of real OSN data. Al-
though, we only evaluate our co-evolution interaction model when
paired with the microscopic social graph evolution model, one of
the strengths of our interaction model is that it can be paired with
any underlying model for generating the social graph structure.

Another strength of the co-evolution model is that it is scalable,
because individual nodes act locally (i.e., focusing on their neigh-
bors) and independently (i.e., no coordination of one’s own actions
with those of others). Thus, the model can easily be parallelized,
where each machine is responsible for performing the social link-
ing and interaction processes of a subset of nodes.

Bursty Dynamics. In this paper, our interaction model main-
ly focuses on capturing user behavior in distributing interactions
among friends as OSN structure evolves. However, our model sim-
plifies reality by assuming that each interaction is immediately gen-
erated between a node and her target, so the fine-grained temporal
features of interactions (such as bursty dynamics) are not captured
by the model. One way to mitigate this issue would be to introduce
response delay into the model, e.g., an user could respond only
when she is active. This delay would control the speed at which

nodes respond to interactions; two nodes that both have low delay
would thus generate fast bursts of interactions. Also, response de-
lay could be various from the per edge perspective. Intuitively, this
would capture cases where users quickly respond to interactions
from strong friends, while delaying responses to acquaintances (or
even ignoring these interactions entirely). We leave this extension
of the model as future work.

Future Work. There are several directions to extend the cur-
rent study. First, we can study the interaction graph evolution at the
community level. Seshadhri et al. [17, 23] have proposed scalable
models for reproducing social graphs with community structure.
However, for interaction graphs, one needs to further study the cor-
relation between link weight and community evolution, since links
of various strength might play different roles on the community
formation. Another direction is to accommodate more attributes of
nodes to improve the accuracy of the model. Recent works [1, 12]
begin to examine influence of spatial and profile attributes on the
temporal evolution of friendship links, but how these factors affect
interaction evolution remains unknown.
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