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Abstract
Social networks are popular platforms for interaction, com-
munication and collaboration between friends. Researchers
have recently proposed an emerging class of applications
that leverage relationships from social networks to improve
security and performance in applications such as email, web
browsing and overlay routing. While these applications of-
ten cite social network connectivity statistics to supporttheir
designs, researchers in psychology and sociology have re-
peatedly cast doubt on the practice of inferring meaningful
relationships from social network connections alone. This
leads to the question:Are social links valid indicators of real
user interaction? If not, then how can we quantify these fac-
tors to form a more accurate model for evaluating socially-
enhanced applications? In this paper, we address this ques-
tion through a detailed study of user interactions in the
Facebook social network. We propose the use ofinteraction
graphs to impart meaning to online social links by quanti-
fying user interactions. We analyze interaction graphs de-
rived from Facebook user traces and show that they exhibit
significantly lower levels of the “small-world” properties
shown in their social graph counterparts. This means that
these graphs have fewer “supernodes” with extremely high
degree, and overall network diameter increases significantly
as a result. To quantify the impact of our observations, we
use both types of graphs to validate two well-known social-
based applications (RE [Garriss 2006] and SybilGuard [Yu
2006]). The results reveal new insights into both systems,
and confirm our hypothesis that studies of social applica-
tions should use real indicators of user interactions in lieu of
social graphs.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed Applications

General Terms Measurement, Performance
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1. Introduction
Social networks are popular infrastructures for communica-
tion, interaction, and information sharing on the Internet.
Popular social networks such as MySpace and Facebook
provide communication, storage and social applications for
hundreds of millions of users. Users join, establishsocial
links to friends, and leverage their social links to share con-
tent, organize events, and search for specific users or shared
resources. These social networks provide platforms for or-
ganizing events, user to user communication, and are among
the Internet’s most popular destinations.

Recent work has seen the emergence of a class of socially-
enhanced applications that leverage relationships from so-
cial networks to improve security and performance of net-
work applications, including spam email mitigation [Garriss
2006], Internet search [Mislove 2006], and defense against
Sybil attacks [Yu 2006]. In each case, meaningful, interac-
tive relationships with friends are critical to improving trust
and reliability in the system.

Unfortunately, these applications assume that all online
social links denote a uniform level of real-world interper-
sonal association, an assumption disproven by social sci-
ence. Specifically, social psychologists have long observed
the prevalence of low-interaction social relationships such
as Milgram’s “Familiar Stranger” [Milgram 1977]. Recent
research on social computing shows that users of social net-
works often use public display of connections to represent
status and identity [Donath 2004], further supporting the hy-
pothesis that social links often connect acquaintances with
no level of mutual trust or shared interests.

This leads to the question:Are social links valid indi-
cators of real user interaction? If not, then what can we
use to form a more accurate model for evaluating socially-
enhanced applications? In this paper, we address this ques-
tion through a detailed study of user interaction events in
Facebook, the most popular social network in the US with
over 110 million active users. We download more than 10
million user profiles from Facebook, and examine records of
user interactions to analyze interaction patterns across large
user groups. Our results show that user interactions do in
fact deviate significantly from social link patterns, in terms
of factors such as time in the network, method of interaction,
and types of users involved.



We make three key contributions through our study. First,
we present, to the best of our knowledge, the first large-
scale study of the Facebook social network. Unlike Orkut,
YouTube or Flickr, Facebook’s strong focus on user privacy
has generally prevented researchers from “crawling” their
network of user profiles. We present detailed analysis of our
data set with particular emphasis on user interactions (Sec-
tion 4), and show that users tend to interact mostly with a
small subset of friends, often having no interactions with
up to 50% of their Facebook friends. This casts doubt on
the practice of extracting meaningful relationships from so-
cial graphs, and suggests an alternative model for validating
user relationships in social networks. Second, we propose
the interaction graph (Section 5), a model for representing
user relationships based on user interactions. An interaction
graph contains all nodes from its social graph counterpart,
but only a subset of the links. A social link exists in an in-
teraction graph if and only if its connected users have in-
teracted directly through communication or an application.
We construct interaction graphs from our Facebook data and
compare their salient properties, such as clustering coeffi-
cient and average path lengths, to their social graph counter-
parts. We observe that interaction graphs demonstrate sig-
nificantly different properties from those in standard social
graphs, including larger network diameters, lower clustering
coefficients, and higher assortativity.

Finally, we examine in Section 6 the impact of using dif-
ferent graph models in evaluating socially-enhanced appli-
cations. We conduct simulated experiments of the Reliable
Email [Garriss 2006] and SybilGuard [Yu 2006] systems on
both social and interaction graphs derived from our Face-
book data. Our results demonstrate that differences in the
two graph models translate into significantly different appli-
cation performance results.

2. The Facebook Social Network
Before describing our methodology and results, we first pro-
vide background information on Facebook’s social network.
With over 150 million active users (as of February 2009),
Facebook is the largest social network in the world, and the
number one photo sharing site on the Internet [Facebook
2008]. Facebook allows users to set up personal profiles that
include basic information such as name, birthday, marital
status, and personal interests. Users establish bidirectional
social links by “friending” other users. Each user is limited
to a maximum of 5,000 total friends.

Each profile includes a message board called the “Wall”
that serves as the primary asynchronous messaging mecha-
nism between friends. Users can upload photos, which must
be grouped into albums, and can mark or “tag” their friends
in them. Comments can also be left on photos. All Wall posts
and photo comments are labeled with the name of the user
who performed the action and the date/time of submission.
Another useful feature is the Mini-Feed, a detailed log of

each user’s actions on Facebook over time. It allows each
user’s friends to see at a glance what he or she has been
doing on Facebook, including activity in applications and
interactions with common friends. Other events include new
Wall posts, photo uploads and comments profile updates, and
status changes. The Mini-Feed is ordered by date, and only
displays the 100 most recent actions.

Unlike other social networking websites in which all
users exist in a global search-space, Facebook is designed
around the concept of “networks” that organizes users into
membership-based groups. Each network can represent an
educational institution (university or high school), a com-
pany or organization (called work networks), or a geographic
(regional network) location. Facebook authenticates mem-
bership in college and work networks by verifying that users
have a valid e-mail address from the associated educational
or corporate domain. Users can authenticate membership in
high school networks through confirmation by an existing
member. In contrast, no authentication is required for re-
gional networks. Users can belong to multiple school and
work networks, but only one regional network, which they
can change twice every sixty days.

A user’s network membership determines what informa-
tion they can access and how their information is accessed
by others. By default, a user’s profile, including birthday,
address, contact information, Mini-Feed, Wall posts, photos,
and photo comments are viewable by anyone in a shared net-
work. Users can modify privacy settings to restrict access
to only friends, friends-of-friends, lists of friends, no one,
or all. Although membership in networks is not required,
Facebook’s default privacy settings encourage membership
by making it very difficult for non-members to access infor-
mation inside a network.

3. Data Set and Collection Methodology
In this section, we briefly describe our methodology for col-
lecting our Facebook data set. We also present experimental
validation of the completeness of our network crawl and de-
scribe the types of user interaction data that form the basis
for our later examination of interaction graphs.

Data Collection Process. As we mentioned, Facebook
is divided into networks that represent schools, institutions,
and geographic regions. Membership in regional networks
is unauthenticated and open to all users. Since the majority
of Facebook users belong to at least one regional network,
and most users do not modify their default privacy settings,
a large portion of Facebook’s user profiles can be accessed
by crawling regional networks. As of Spring 2008, Facebook
hosted 67 million user profiles, 66.3% of whom (44.3 mil-
lion) belonged to a regional network. Statistics for regional
networks have since been removed.

While other studies of social networks rely on statistical
sampling techniques [Mislove 2007] to approximate graph
coverage of large social networks, Facebook’s partitioning



of the user population into networks means that subsets of
the social graph can be completely crawled in an iterative
fashion. Our primary data set is composed of profile, Wall
and photo data crawled from the 22 largest regional networks
on Facebook between March and May of 2008. We list these
networks and their key characteristics in Table 1. For user
interaction activity at finer time granularities, we also per-
formed daily crawls of the San Francisco regional network
in October of 2008 to gather data specifically on the Mini-
Feed.

To crawl Facebook, we implemented a distributed, multi-
threaded crawler using Python with support for remote
method invocation (RMI) [Boe 2008]. Facebook provides
a feature to show 10 randomly selected users from a given
regional network; we performed repeated queries to this ser-
vice to gather 50 user IDs to “seed” our breadth-first searches
of social links on each network. Two dual-core Xeon servers
were generally able to complete each crawl in under 24
hours, while averaging roughly 10 MB/s of download traf-
fic. Our completed data set is approximately 500 GB in size,
and includes full profiles of more than 10 million Facebook
users.

Completeness of Graph Coverage. Prior research on
online social networks indicates that the majority of user ac-
counts in the social graph are part of a single, large, weakly
connected component (WCC) [Mislove 2007]. Since social
links on Facebook are undirected, breadth first crawling of
social links should be able to generate complete coverage of
the WCC, assuming that at least one of the initial seeds of
the crawl is linked to the WCC. The only inaccessible user
accounts should be ones that lie outside the regional network
of the crawl, have changed their default privacy settings, or
are not connected to the WCC.

To validate our data collection procedure and ensure that
our crawls are reaching every available user in the WCC,
we performed five simultaneous crawls of the San Fran-
sisco regional network. Each crawl was seeded with a dif-
ferent number of user IDs, starting with 50 and going up to
5000. The difference in the number of users discovered by
the most and least revealing crawls was only 242 users out
of approximately 169,000 total (a difference of only 0.1%).
Keep in mind that Facebook is a dynamic system and the
graph topology may be changing during a crawl, and thereby
can influence crawl results. We have performed near-time re-
peated crawls of our data, which uncovered an extremely low
amount of variation. Furthermore, the 242 variable users dis-
play uniformly low node degrees of 2 or less, indicating that
they are outliers to the WCC that were only discovered due
to the addition of more seeds to the crawl. This experiment
verifies that our methodology effectively reaches all nodes
in the large WCC in each network within a negligibly small
margin of error. This testing procedure is the same one used
in [Mislove 2007] to verify their crawling methodology.

Description of Collected Data. We collected the full user
profile of each user visited during our crawls. In addition
to this, we also collected full transcripts of Wall posts and
photo comments for each user. For the remainder of this pa-
per, we will refer to Wall posts and photo comments collec-
tively as “interactions.”

While Facebook profiles do not include a “Date Joined”
field, we can estimate this join date by examining each
user’s earliest Wall post. The Wall is both ubiquitous and
the most popular application on Facebook, and a user’s first
Wall post is generally a welcome message from a Facebook
friend. Thus we believe a user’s earliest Wall post corre-
sponds closely with their join date. We also collected photo
tags and comments associated with each user’s photo al-
bums, since this is another prevalent form of Facebook in-
teraction, and gives us insight into users who share physical
proximity as well as online friendships.

While the Wall and photo comments are in no way a com-
plete record of user interactions, they are the oldest and most
prevalent publicly viewable Facebook applications. Our re-
cent data sets from crawls of user Mini-Feeds show that they
are also the two most popular of the built-in suite of Face-
book applications by a large margin. Most of the other ap-
plications are recent additions to Facebook, and cannot shed
light on user interactions from Facebook’s earlier history.
For example, the Wall was added to Facebook profiles in
September 2004, while the Notes application was not intro-
duced until August 2006.

To obtain interaction data on Facebook at a more fine-
grained level, we performed crawls of Mini-Feed data from
the San Francisco regional network. Unlike Wall posts and
photo comments, which are stored indefinitely, the Mini-
Feed only reports the last 100 actions taken by each user.
Thus, we repeated our crawl of San Francisco daily in the
month of October to ensure that we build up a complete
record of each user’s actions on a day-to-day basis. Given
time and manpower constraints, performing daily crawls
of all our sampled networks for Mini-Feed data was not
feasible, so we focused solely on the relatively small San
Francisco network (∼400K users).

4. Analysis of Social Graphs
In this section, we present high level measurement and anal-
ysis results on our Facebook data set. First, we analyze gen-
eral properties of our Facebook population, including user
connectivity in the social graph and growth characteristics
over time. We use these results to compare the Facebook
user population to that of other known social networks, as
well as accepted models such as small-world and scale-free
networks. Second, we take a closer look at the different types
of user interactions on Facebook, including how interac-
tions vary across time, applications, and different segments
of the user population. Finally, we present an analysis of de-
tailed user activities through crawls of user Mini-Feed from



Network Users Crawled (%) Links (%) Rad. Diam. PathLen. C. Coef. Assort.
London, UK 1,241K (50.8) 30,725K (26.5) 11 15 5.09 0.170 0.23
Australia 1,215K (61.3) 121,271K (71.4) 10 14 5.13 0.175 0.17
Turkey 1,030K (55.5) 42,799K (56.7) 13 17 5.10 0.133 0.06
France 728K (59.3) 11,219K (34.6) 10 13 5.21 0.172 0.11
Toronto, ON 483K (41.9) 11,812K (21.9) 10 13 4.53 0.158 0.21
Sweden 575K (68.3) 17,287K (44.8) 8 11 4.55 0.157 0.18
New York, NY 378K (45.0) 7,225K (15.7) 11 14 4.80 0.146 0.18
Colombia 565K (71.7) 10,242K (31.7) 9 12 4.94 0.136 0.08
Manchester, UK 395K (55.5) 11,120K (35.2) 11 15 4.79 0.195 0.21
Vancouver, BC 314K (45.1) 35,518K (59.3) 9 14 4.71 0.170 0.23
Total/Average [Std. Dev.]: 10,697K (56.3) 408,265K (43.3) 9.8 [1.34] 13.4 [1.84] 4.8 [0.41] 0.164 0.17[0.07]
Orkut [Mislove 2007] 1,846K (26.9) 22,613K 6 9 4.25 0.171 0.072

Table 1. High level statistics and social graph measurements for theten largest regional networks in our Facebook data set.
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Figure 1. Comparing social degree in Facebook to those of
Orkut, YouTube and LiveJournal.
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Figure 2. Clustering coefficient of Facebook users as a
function of social degree.

the San Francisco network, paying special attention to so-
cial network growth and interactions over fine-grained time
scales.

4.1 Social Network Analysis

Through our measurements, we were able to crawl roughly
10 million users from the 22 largest regional networks on
Facebook, which represents 56% of the total user population
of those networks. The remaining 44% of users could not
be crawled due to aforementioned issues, such as restrictive
privacy policies or disconnection from the WCC of the net-
work. Our complete data set includes just over 940 million
social links and 24 million interaction events. Table 1 lists
statistics on the ten most populous networks that we crawled,
as well as the totals for our entire data set.

Social Degree Analysis. In Figure 1, we compare the
social degree (i.e. number of friends) of Facebook users
against prior results obtained for three other social networks:
Orkut, YouTube and LiveJournal [Mislove 2007]. Connec-
tivity among Facebook users most closely resembles those
of users in Orkut, likely because both are sites primarily fo-
cused on social networking. In contrast, YouTube and Live-
Journal are content distribution sites with social compo-
nents, and exhibit much lower social connectivity. Facebook

users are more connected than Orkut users: 37% of Face-
book users have more than 100 friends, compared to 20%
for Orkut.

As expected of a social network, social degrees on Face-
book scale based on a power-law distribution [Barabasi
1999]. Using the method described in [Clauset 2009], we
compute that the power-law curve fitting the social degree
CDF presented in Figure 1 has an alpha value of 1.5, with
fitting error of 0.554. This is identical to the alpha value de-
rived for the Orkut data in [Mislove 2007], although their
fitting error was slightly higher at 0.6.

Social Graph Analysis. To evaluate specific graph prop-
erties that have an important bearing on social network anal-
ysis, we construct a social graph for each crawled regional
network. Some of the social links in our data set were not fol-
lowed, because they point to users that are either not mem-
bers of the specified regional network, or have modified their
default privacy settings. Since we do not have complete so-
cial linkage information on these users, we limit our social
graphs to only include links for which users at both end-
points were fully visible during our crawls. This prevents
incomplete information on some users from biasing our re-
sults. As shown in Table 1, 43% of all social links observed
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during our crawl remained in our social graphs after apply-
ing this limiting operation.

For each regional social graph, we display the radius, di-
ameter, and average path length in Table 1. Radius and di-
ameter are calculated using the eccentricity of each node in
the social graph. Eccentricity is defined as the maximum dis-
tance between a node and any other node in the graph. Ra-
dius is defined as the minimum of all eccentricities, while
diameter is the maximum. Average path length is simply the
average of all-pairs-shortest-paths on the social graph. Note
that given the size of our social graphs, calculating all-pairs-
shortest-paths is computationally infeasible. Our radius, di-
ameter, and average path lengths are estimates based on de-
termining the eccentricity of 1000 random nodes in each
graph. The radius should be viewed as an upper bound and
the diameter as a lower bound.

The average path length is 6 or lower for all 22 regional
networks, lending credence to the six-degrees of separation
hypothesis for social networks [Milgram 1967]. The radius
and diameter of each graph is low when compared to other
large network graphs, such as the World Wide Web [Broder
2000], but similar to the values presented for other social
networks [Mislove 2007].

Clustering Coefficient Measurements. Clustering coef-
ficient is a measure to determine whether social graphs con-
form to the small-world principle [Watts 1998]. It is defined
on an undirected graph as the ratio of the number of links
that exist between a node’s immediate neighborhood and
the maximum number of links that could exist. For a node
with N neighbors andE edges between those neighbors, the
clustering coefficient is(2E)/(N(N −1)). Intuitively, a high
clustering coefficient means that nodes tend to form tightly
connected, localized cliques with their immediate neighbors.

Table 1 shows that Facebook social graphs have average
clustering coefficients (column label C. Coef) between 0.133
and 0.211, with the average over all 22 regional networks
being 0.167. This compares favorably with the average clus-
tering coefficient of 0.171 for Orkut. Graphs with average
clustering coefficients in this range exhibit higher levelsof

local clustering than either random graphs or random power-
law graphs, which indicates a tightly clustered fringe thatis
characteristic of social networks [Mislove 2007].

Figure 2 shows how average clustering coefficient varies
with social degree on Facebook. Users with lower social
degrees have high clustering coefficients, again providing
evidence for high levels of clustering at the edge of the social
graph. This fact, combined with the relatively low average
path lengths and network diameters in our data, is a strong
indication that Facebook is a small-world network [Watts
1998].

Assortativity Measurements. The assortativity coeffi-
cient, r, of a graph measures the probability for nodes in a
graph to link to other nodes of similar degree. It is calcu-
lated as the Pearson correlation coefficient of the degrees of
node pairs for all edges in a graph, and returns results in the
range−1≤ r ≤ 1. Assortativity greater than zero indicates
that nodes tend to connect with other nodes of similar de-
gree, while assortativity less than zero indicates that nodes
connect to others with dissimilar degrees. The assortativ-
ity coefficients for our Facebook graphs, shown in Table 1,
are uniformly positive, implying that connections between
high degree nodes in our graphs are numerous. This well-
connected core of high degree nodes form the backbone of
small-world networks, enabling the highly clustered nodesat
the edge of the network (see Figure 2) to achieve low average
path lengths to all other nodes. Our assortativity coefficient
values closely resemble the those for other large social net-
works [Mislove 2007, Newman 2003].

Growth of Facebook over Time. Since users typically
receive a Wall message shortly after joining Facebook, we
use the earliest Wall post from each profile as a conserva-
tive estimate of each profile’s creation date. From this data,
we plot the historical growth of the user population in our
sample set. The results plotted in Figure 3 confirm prior
measurements of Facebook growth [Sweney 2008]. Note
that Facebook opened its services to the general public in
September 2006 (month 24), which explains the observed
subsequent exponential growth in network size. We can also
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Figure 5. Normalized Wall post distribution of the users
with top total Wall interaction.
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Figure 6. Normalized photo comments distribution of the
users with top total photo interaction.

derive from this graph the distribution of Facebook users’
“profile age,” the time they have been on Facebook. We
see that an overwhelming majority (>80%) of profiles are
“young profiles” that joined Facebook after it went public in
2006.

4.2 User Interaction Analysis

The goal of our analysis of Facebook user interactions is
to understand how many social links are actually indicative
of active interactions between the connected users. Delving
into this issue raises several specific questions that we will
address here. First, is the level of interactions even across
the user population, or is it heavily skewed towards a few
highly-active users? Second, is the distribution of a user’s
interactions across its friends affected by how active the user
is? And finally, how does the interaction of users change
over their lifetime, and do interactions exhibit any periodic
patterns over time? We punctuate our analysis of user in-
teractions on Facebook by looking at short-timescale, fine-
grained measurements from our Mini-Feed data collected
from the San Francisco regional network.

Interaction Distribution Among Friends. We first ex-
amine the difference in size between interaction graphs and
social graphs for users in our data set. We compute for each
user a distribution of the user’s interaction events across
the user’s social links. We then select several points from
each distribution (70%, 90%, 100%) and aggregate across all
users the percentage of friends these events involved. The re-
sult is a cumulative fraction function plotted in Figure 4. This
is essentially a CDF showing corresponding points from
each user’s CDF. We see that for the vast majority of users
(∼ 90%), 20% of their friends account for 70% of all interac-
tions. The 100% fraction line shows that nearly all users can
attribute all of their interactions to only 60% of their friends.
This proves that for most users, the large majority of inter-
actions occur only across a small subset of their social links.
This confirms our original hypothesis, that only a subset of
social links actually represent interactive relationships.

We also want to understand if user interaction patterns
are dependent on specific applications, and how interaction
patterns vary between power users and less active users.
Figures 5 and 6 organize users into user groups of Top 50%,
Top 10% and Top 1% by their total level of activity, and show
the distribution of incoming Wall posts and photo comments
among friends for users within each group. The distribution
of Wall posts in Figure 5 shows that the same distribution
holds across all Wall users regardless of their overall activity
level. In contrast, distribution of photo comments in Figure 6
varies significantly. The most active users only receive photo
comments from a small segment (<15%) of their friends,
while the majority of users receive comments from a third as
many (∼5%) of their friends.

The low percentage of friends that comment on photos
is notable because photo comments generally occur when
friends are tagged in the same picture, implying a level of
physical proximity in addition to social closeness. In our
data set, 57% of users self-identify with the photo albums
they upload by tagging themselves in one or more photos.
This fact lends credence to our argument that photo tags ac-
curately capture real life social situations. The photo com-
ment results indicate that users, even highly social ones,
show significant skew towards interacting with, and sharing
physical proximity with a small subset of their friends.

Distribution of Total Interactions. Next, we wanted
to look at how interaction activity was spread out across
different kinds of Facebook users. We plot Figure 7 to further
understand the contribution of highly interactive users tothe
overall interaction in the network. For both Wall posts and
photo comments, we plot the contribution of different users
sorted by each user’s interaction in that application. We see
that the top 1% of the most active Wall post users account
for 20% of all Wall posts and the top 1% of photo comment
users account for nearly 40% of all photo comments. Clearly,
the bulk of all Facebook interactive events are generated by
a small, highly active subset of users, while a majority of
users are significantly less active. This result lends credence
to our assertion that not all social links are equally useful
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Figure 7. The contribution of different users to total inter-
actions in Facebook.
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Figure 8. Plot of top % of users ordered by social degree
and the interaction contributed by them.

when analyzing social networks, since only a small fraction
of users are actively engaged with the network. This also
identifies a core set of “power users” of Facebook, who could
be identified to leverage their active opinions, ad-clicks,and
web usage patterns.

Our next step is to quantify the correlation between users
with high social degree and user activity. Figure 8 shows
that there is a strong correlation between the two: half of all
interactions are generated by the 10% most well-connected
users. Nearly all interactions can be attributed to only the
top 50% of users. This result confirms that a correlation
between social degree and interactivity does exist, which
is an important first step to validating our formulation of
interaction graphs in Section 5.

Interaction Distribution Across User Lifetime. There
is recent speculation that the popularity of social networks is
in decline [Sweney 2008, Worthen 2008], perhaps due to the
initial novelty of these sites wearing off. This potentially im-
pacts our proposed use of interaction data to augment social
graphs: if user activity wanes, then its relevance for assess-
ing social link quality may drop as the information becomes
less timely and relevant. Using our records of user interac-
tions over time, we study the gradual growth or decline in
interaction events after users join Facebook.

Figure 9 shows users’ average number of interactions at
different points in their lifetime. We divide the users in the
22 regional networks into 2 groups: the 10% oldest and the
10% newest users. Both user groups show very high average
interaction rates in their first days in Facebook, supporting
the hypothesis that users are most active when they first join.
For the 10% oldest users (average lifetime of 20 months),
we see a net increase in interaction rates over time, which
we attribute to the “network effect” caused by more friends
joining the network over time (see Figure 3). Newer users
(average lifetime of 3 weeks) show a different trend, where
interactions drop to nearly nothing as the initial novelty of
the site wears off. There are two possible interpretations
of this. One view is that the oldest users were the original
users who participated in Facebook’s growth, and therefore

are self-selected to users highly interested in social networks
(and Facebook in particular). An alternative interpretation is
that many of those users who lose interest in Facebook over
time closed their accounts, leaving only active Facebook
users from that time period.

4.3 Mini-feed Analysis

Two perspectives are missing from our Wall and photo user
interaction data. First, these application events do not tell us
about the formation of new friend links, one of the dominant
activities for Facebook users. In addition, our data set does
not describe user interactions in other applications outside
of Wall and photos. To rectify this, we perform crawls of
user “Mini-Feeds,” a continually refreshed list of all1 user
events, including “friend add” events and activity in other
applications.

Figure 10 shows the percentage of user Mini-Feed ac-
tions each day broken down by category. The most numer-
ous event type is the formation of new social links (adding
friends), which accounts for∼45% of daily events. Com-
ment activity, which encompasses both Wall posts and photo
comments, only accounts for∼10% of daily activity. Ap-
plication platform events, which includes events generated
from all other applications, only accounts for slightly more
than 10%. Clearly, the majority of Facebook events are for-
mation of new friend links, which seems to indicate that the
social graph is growing at a faster rate than users are able to
communicate with one another. This lends further credence
to our argument that average users do not interact with most
of the their “Facebook friends.”

5. Analysis of Interaction Graphs
Using data from our Facebook crawls, we show in Section 4
that not all social links represent active social relationships.
The distribution of each user’s interactions is skewed heavily
towards a fraction of his or her friends. In addition, interac-
tions across the entirety of Facebook are themselves concen-

1 Events can be manually deleted by the owner, or suppressed through
explicit changes to privacy settings.
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trated within a subset of Facebook users. These results imply
that social links, and the social graphs they form, are not ac-
curate indicators of social relationships between users. This
has profound implications on the emerging class of applica-
tions that leverage social graphs.

We propose a new model that more accurately represents
social relationships between users by taking into account
real user interactions. We call this new model aninteraction
graph. We begin this section by formally defining interac-
tion graphs. Next, we implement them on our Facebook data
set and explore how the time variant nature of user interac-
tions affects the composition of interaction graphs. Finally,
we analyze the salient properties of interaction graphs and
compare them to those of the Facebook social graph.

5.1 Definition of Interaction Graphs

To better differentiate between users’ active friends and
those they merely associate with by name, we introduce
the concept of anInteraction Graph. An interaction graph is
parameterized by an two constantsn andt, wheren defines
a minimum number of interaction events, andt stipulates
a window of time during which interactions must have oc-
curred. Taken together,n andt delineate an interaction rate
threshold. This leads us to define an interaction graph as the
subset of the social graph where for each link, interactivity

between the link’s endpoints is greater than the rate stipu-
lated byn andt. A user’sInteraction Degree is the number
of friends who interact with the user at a rate greater than
the parameterized minimum.

Since a single interaction can be viewed as unidirectional,
interaction graphs can contain both directed and undirected
edges. It is reasonable to represent interactions in an undi-
rected graph, however, if it can be shown that, for a given
data set, per-user interaction in- and out-degrees are similar
in value. We discuss this issue in greater detail as it applies
to our Facebook data in Section 5.2.

Our formulation of interaction graphs use an unweighted
graph. It is feasible, however, to reparameterize the interac-
tion graph such that the interaction threshold no longer func-
tions as a culling value, but instead imparts a weight to each
edge in the interaction graph. We do not attempt to derive
a weight scheme for interaction graphs analyzed in this pa-
per, but leave exploration of this facet of interaction graphs
to future work.

An implicit assumption underlying our formulation of
interaction graphs is that the majority of user interaction
events occur across social links. Facebook only allows social
friends to post Wall and photo comments, thus this assump-
tion holds true for our data set. However, it is conceivable
to envision other social networks that do not share these re-
strictions. In this case it might be beneficial not to define
interaction graphs as a subset of the social graph, but instead
a wholly new graph based solely on interaction data.

5.2 Interaction Graphs on Facebook

To reasonably model directed Facebook interaction events as
an undirected interaction graph, we must first demonstrate
that pairwise sets of social friends perform reciprocal inter-
actions with each other. Intuitively, this means that ifx writes
ony’s Wall, y will respond in kind, thus satisfying our condi-
tions for an undirected link. Evaluating each user’s incoming
and outgoing interactions is challenging, because Facebook
data only records incoming events for a specific user,i.e. the
eventx writes ony’s Wall is only recorded ony’s Wall, not
x. Since we are limited to users within specific regional net-
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works who have not modified their default privacy settings,
we do not have access to 100% of the user population. This
means we cannot match up all directed interaction events
across users. A simple alternative is to examine only users
whose friends are also completely contained in our user pop-
ulation. Unfortunately, the high degree of social connectiv-
ity in Facebook meant this applied to only about 400K users
(4%) in our dataset.

A more reasonable way to study interaction reciprocation
on Facebook is to only sample interactions that occur over
social links that connect two users in our user population,
i.e. ignore interactions with users outside our data set. Rather
than filtering on users as in the previous approach, this per-
forms filtering on individual social links. Assuming that user
interactions do not change significantly due to user privacy
settings and geolocation, these sampled results should be
representative.

After this sampling, Figure 11 shows the length of the set
resulting from the symmetric set difference of each user’s
incoming and outgoing interaction partners plotted as a CDF.
We refer to this metric asdeviation. Intuitively, the deviation
for each user counts the number of directed interactions
that were not reciprocated with a direct reply, thus forming
a solely directed interaction link. For 65% of the users,
all interactions are reciprocated, meaning that all of these
interactions can be modeled as undirected links. Based on
these results, we believe it is acceptable to model interaction
graphs on Facebook using undirected edges, since this model
suits the interactivity patterns of the majority of users.

We now discuss the interaction rate parametersn andt.
The simplest formulation of these parameters is to consider
all interactions over the entire lifetime of Facebook (t =2004
to the present,n ≥ 1). We will refer to the interaction graph
corresponding to this parameterization as thefull interaction
graph. We also consider additional interaction graphs that
restrict t and increasen beyond 1. This allows time and
rate thresholds to be applied to generate interaction graphs
appropriate for specific applications that have heterogeneous
definitions of interactivity.

Figure 12 shows the size of the weakly-connected com-
ponents for interaction graphs ast andn change. This figure
is based on data for the year 2007, i.e. 2 months refers to
interactions occurring between November 1 and December
31, 2007. As expected, largert and lowern are less restric-
tive on links, therefore allowing for more nodes to remain
connected. Based on Figure 12, we chose several key inter-
action graphs for further study, including those withn ≥ 1 at
the 1 year, 6 months, and 2 months time periods. These three
graphs each contain WCCs that contain a majority of all
nodes, and are amenable to graph analysis. For the remain-
der of this paper, we will only consider interaction graphs
for which n ≥ 1.

5.3 Comparison of Social and Interaction Graphs

We now take a closer look at interaction graphs and com-
pare them to full social graphs. We look at graph connectiv-
ity and examine properties for power-law networks, small-
world clustering, and scale-free networks.

Social vs. Interaction Degree. Figure 13 displays the
correlation between social degree and interaction degree for
the full interaction graph. The error bars indicate the stan-
dard deviation for each plotted point. Even with this “least-
restricted” interaction graph, it is clear that interaction de-
gree does not scale equally with social degree. If all Face-
book users interacted with each of their friends at least once
then this plot would follow a 45 degree line. This is not the
case, confirming once again the disparity between friend re-
lationships and active, social relationships.

Interaction Degree Analysis. Figure 15 plots the degree
CDFs of the four interaction graphs and the Facebook so-
cial graph. The interaction graphs exhibit a larger percentage
of users with zero friends, and reach 100% degree coverage
more rapidly than the social graph. This is explained by the
uneven distribution of interactions between users’ friends.
Referring back to Figure 4, we showed that interactions are
skewed towards a fraction of each user’s friends. This means
many links are removed from the social graph during con-
version into an interaction graph. This means many weakly
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connected users in the social graph have zero interaction de-
gree, while highly connected users in the social graph are
significantly less connected in the interaction graph.

Despite these differences, the interaction graphs still ex-
hibit power-law scaling. Figure 14 (a) shows the alpha val-
ues for the four interaction graphs compared to the social
network. The error bars above the histogram are the fitting
error of the estimator [Clauset 2009]. The fitting error for the
interaction graphs are lower than that for the social graph,
indicating that the interaction graphs exhibit more precise
power-law scaling. As the link structure of the interaction
graphs gets restricted, alpha rises, corresponding to an in-
creased slope in the fitting line. This property is visualized
in Figure 15 as a lower number of high degree nodes in the
most constrained interaction graphs. These results are fur-
ther validated by studies on LiveJournal that have uncov-
ered degree distribution and power-law scaling characteris-
tics very similar to those depicted here for Facebook inter-
action graphs [Mislove 2007].

Interaction Graph Analysis. Figure 14 (b) shows the
average radius, diameter, and path lengths for all of the inter-
action graphs, as well as for the social network. These mea-
sures all display the same upward trend as the interaction
graphs become more restricted. This makes intuitive sense:
as the average number of links per node and the number
of high-degree “super-nodes” decreases (see Figure 15) the
overall level of connectivity in the graph drops. This causes

average path lengths to rise, affecting all three of the mea-
sures presented in Figure 14 (b).

Clustering Coefficient Measurements. Besides aver-
age path length, another metric intrinsically linked to node
connectivity is the clustering coefficient. Figure 14 (c)
shows that average clustering coefficient drops as interac-
tion graphs become more restricted. This is another ramifi-
cation of link removal, as fewer links leads to less clustering
between nodes. Figure 16 depicts average clustering coeffi-
cients as a function of interaction degree. As with the Face-
book social graph, there is more clustering among nodes
with lower degrees. However, the overall amount of cluster-
ing is reduced by over 50% across all interaction graphs.

Taken together, the reduced clustering coefficients and
the higher path lengths that characterize Facebook inter-
action graphs indicates that they exhibit significantly less
small-world clustering. In order for the interaction graphs to
cease being small-world, the average clustering coefficient
would have to approach levels exhibited by a random graph
with an equal number of nodes and edges. This number can
be estimated by calculatingK/N, whereK is average node
degree andN is the total number of nodes [Watts 1998]. For
the Facebook social graph,K = 76.54. We can estimate from
this that an equivalent random graph would have an aver-
age clustering coefficient of 7.15∗10−6. K is smaller for our
interaction graphs, therefore the estimated clustering coeffi-
cient for equivalent random graphs will be smaller as well.
These estimated figures are orders of magnitude smaller than



the actual clustering coefficients observed in our social and
interaction graphs, thus confirming that they both remain
small-world.

The conclusion that Facebook interaction graphs exhibit
less small-world behavior than the Facebook social graph
has important implications for all social applications that
rely on this property of social networks in order to function,
as we will show in Section 6.

Assortativity Measurements. Figure 14 (d) shows the
relative assortativity coefficients for all social and interac-
tion graphs. Assortativity measures the likelihood of nodes
to link to other nodes of similar degree. Since interaction
graphs restrict the number of links high degree nodes have,
this causes the degree distribution of interaction graphs to
become more homogeneous. This is reflected by the assor-
tativity coefficient, which rises commensurately as the inter-
action graphs grow more restricted.

6. Applying Interaction Graphs
When social graphs are used to drive simulations of socially-
enhanced applications, changes in user connectivity patterns
can produce significantly different results for the evaluated
application. Given the lack of publicly available social net-
work topological datasets, many current proposals either use
statistical models of social networks based on prior measure-
ment studies [Yu 2006, Watts 1998, Marti 2004], or boot-
strap social networks using traces of emails [Garriss 2006].

The hypothesis of our work is that validation of socially-
enhanced applications require a model that takes interac-
tions between users into account. To validate how much
impact the choice of user model can make on socially en-
hanced applications, we implement simulations of two well-
known socially-enhanced distributed systems [Yu 2006, Gar-
riss 2006], and compare the effectiveness of each system on
real social graphs, and real interaction graphs derived from
our Facebook measurements.

6.1 RE: Reliable Email

“RE” [Garriss 2006] is a white-listing system for email
based on social links that allows emails between friends
and Friends-of-Friends (FoFs) to bypass standard spam fil-
ters. Socially-connected users provide secure attestations for
each others’ email messages while keeping users’ contacts
private. RE works automatically based on social connectiv-
ity data: no per sender or per email classification is requested
from users.

Expected Impact The presence of small-world cluster-
ing and scale-free behavior in social graphs translate directly
into short average path lengths between nodes. For RE, this
means that the set of friends and FoFs that will be white-
listed for any given user is very large. In this situation, a
single user who sends out spam email is likely to be able to
successfully target a very large group of recipients via the
social network. Keep in mind that a spammer in this context

could be an openly malicious, rogue user, or a legitimate user
whose account has been compromised. In contrast, RE that
leverages interaction graphs should not experience as high
a proliferation of spam, given an equal number of spam-
mers. The reduced presence of small-world clustering in in-
teraction graphs, coupled with lower average node degrees,
causes average path lengths to grow as compared to social
networks (see Figure 14 (b)). This should have a damping
effect on the size of friend and FoF populations, and conse-
quently limit spam penetration.

Results. We present experimental evaluation of RE here.
For social graph and interaction graphs, we randomly choose
a percentage of nodes to act as spammers. In the RE system,
all friends and FoFs of the spammer will automatically re-
ceive the spam due to white-listing. All experiments were
repeated ten times and the results averaged.

This experiment leads to Figure 17, which plots the per-
centage of users in each graph receiving spam versus the per-
centage of users who are spamming. On the social network
spam penetration quickly reaches 90% of users, covering the
majority of users in the WCC. In contrast spam penetration
is reduced by 40% over the social graph when the number of
spammers is low, and 20% when the number of spammers is
high when RE is run on the interaction graphs.

6.2 SybilGuard

A Sybil attack [Douceur 2002] occurs when a single attacker
creates a large number of online identities, which when col-
luding together, allows the attacker to gain significant ad-
vantage in a distributed system. Sybil identities can work to-
gether to distort reputation values, out-vote legitimate nodes
in consensus systems, or corrupt data in distributed storage
systems.

SybilGuard [Yu 2006; 2008]2 proposes using social net-
work structure to detect Sybil identities in an online com-
munity to protect distributed applications. It relies on the
fact that it is difficult to make multiple social connections
between Sybil identities and legitimate users. The result is
that Sybil identities form a well-connected subgraph that has
only a limited number of connection edges (calledattack
edges) to the legitimate network.

Each node in the social network creates a persistent rout-
ing table that maps each incoming edge to an outgoing edge
in an unique one-to-one mapping. To determine whether to
accept a “suspect” nodes as a real user, a “verifier” nodev
creates a “random route” ofw hops, where a random route
is a deterministic route formed by following the stored rout-
ing table entries atw consecutive nodes. A similarw hop
random route is initiated ats, andv acceptss if the two ran-
dom routes intersect. Note that asw increases, the number of
Sybils is the network allowed under the SybilGuard protocol
also increase. Thus, it is beneficial forw to be small.

2 Although SybilLimit is an advanced proposal, SybilGuard isa simple
version that we believe is sufficient for our purpose.
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Figure 18. Percentage of path intersections for Sybil-
Guard [Yu 2006] as random walk length increases.

Expected Impact The success of SybilGuard relies
on the premise that Sybil identities cannot easily establish
trusted social relationships with legitimate users, and hence
have few “attack edges” in the social network. In particu-
lar, SybilGuard requires connected users to exchange en-
cryption keys. We believe that typical social connections in
social graphs do not represent this level of trust. Given our
results that demonstrate most Facebook friends pairs do not
even interact, it seems unreasonable to assume that most
friend pairs have the requisit level of trust to exchange se-
cure keys. Instead, we expect that our interaction graph is
a closer approximation to the representation of trusted links
that SybilGuard would observe in reality.

Results For our experiments, we implement the Sybil-
Guard algorithm on both our social graph and interaction
graphs and measure the percentage of paths that successfully
intersect asw increases. For each graph and each value ofw
we chose 25000 random pairs of nodes to perform intersec-
tion tests on.

The reduction of highly connected super nodes in the
interaction graph means that random walks (and random
routes) are less likely to connect. Figure 18 shows that for the
Facebook social graph, the probability for all paths to inter-
sect approaches 100% atw = 1200. For interaction graphs,
the percentage of intersecting paths never reaches 100%
since a large fraction of random walks never intersect. Sybil-
Guard, as a result, is less effective on a graph that models
user trust (interaction graph) than on a normal social graph.

Graph Total Loops (%)
Social 951 (3.8)
Full Interaction 3196 (12.8)
1 Year I.Graph 4726 (18.9)
6 Month I.Graph 4953 (19.8)
2 Month I.Graph 5782 (23.1)

Table 2. Self-Looping Statistics for SybilGuard

A major factor affecting the performance of the Sybil-
Guard algorithm is the prevelence of self-loops in the ran-
dom walks. Any walk that returns to the origin point before

goingw steps is useless for the purposes of performing in-
tersection tests. Table 2 shows the total number of self-loops
encountered during all experimental runs on each graph. The
drop in efficacy observed in Figure 18 is directly correlated
to the increase in self-looping from 3.8% on the social graph
to an upwards of 20% on interactions graphs.

7. Related Work
The body of research geared towards real-world social webs
and physical networks has only recently begun to be lever-
aged to understand online social networks. One of the orig-
inal papers to study the emerging social network phenom-
ena focused on the Club Nexus website of Stanford Uni-
versity [Adamic 2003]. More recently traces from CyWorld,
MySpace and Orkut have been profiled [Ahn 2007], as have
YouTube, Flickr, LiveJournal, and (again) Orkut [Mislove
2007]. Yet another study focused on profiling social network
evolution on Flickr and Yahoo! 360 [Kumar 2006]. Finally,
a recent measurement study analyzed the growth of Flickr
social network using a three month crawl data [Mislove
2008]. These studies confirm that online social networks
obey power-law scaling characteristics [Barabasi 1999] and
exhibit high clustering coefficients, firmly establishing them
as small-world networks [Amaral 2000].

Recent studies analyzed the online communication pat-
terns among the users in a large IM trace [Leskovec 2008],
and in an online social network [Chun 2008]. The IM
study [Leskovec 2008] also reported a relatively higher value
of average path length for the graph formed from user inter-
actions. However, the IM interaction graph is more resilient
to node removal than the interaction graphs in Facebook,
as indicated by our assortativity values. Like our study, the
CyWorld interaction study [Chun 2008] showed that Cy-
World user interactions are bi-directional. User interaction
behavior differs significantly from our study, however. Cy-
World users with less than 200 friends interact only with a
small subset of friends and users with more than 200 friends
interact evenly. In addition, both activity and social graphs
are similar in CyWorld and exhibit multi-scaling behavior.



This multi-scaling is unique to CyWorld; all other social net-
works analyzed so far, including Facebook, exhibit simple
power-law connectivity scaling [Mislove 2007, Ahn 2007,
Leskovec 2008].

8. Conclusion
This paper aims to answer the question:Are social links
valid indicators of real user interaction? To do this, we
gathered extensive data from crawls of the Facebook social
network, including social and interaction statistics on more
than 10 million users. We show that interaction activity on
Facebook is significantly skewed towards a small portion
of each user’s social links. This finding casts doubt on the
assumption that all social links imply equally meaningful
friend relationships.

We introduce theinteraction graph as a more accurate
representation of meaningful peer connectivity on social
networks. Analysis of interaction graphs derived from our
Facebook data reveal different characteristics than the corre-
sponding social graph. Most notably, interaction graphs ex-
hibit an absence of small-world clustering. We also observe
much lower average node degrees in the interaction graph as
compared to the Facebook social graph. This confirms the
intuition that human interactions are limited by constraints
such as time, and brings into question the practice of eval-
uating social networks in distributed systems directly using
social connectivity graphs.

Our study concludes with experiments to evaluate the ef-
fects of interaction graphs on two well known social applica-
tions. The performance of RE [Garriss 2006] improves with
the use of interaction graphs, as the streamlined link struc-
ture helps control spam proliferation. In the case of Sybil-
guard [Yu 2006], the system becomes less able to effec-
tively classify nodes once its assumptions about graph struc-
ture are violated. These experiments strongly suggest that
social-based applications should be designed with interac-
tions graphs in mind, so that they reflect real user activity
rather than social linkage alone.
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