Preserving Privacy in Location-based Mobile Social
Applications

Krishna P. N. Puttaswamy and Ben Y. Zhao
Computer Science Department, U. C. Santa Barbara

ABSTRACT

Location-based social applications (LBSAS) rely on theatmn
coordinates of the users to provide services. Today, simamgs
using these applications act as simple clients and sendseutaca-
tions to untrusted third-party servers. These servers thevappli-
cation logic to provide the service, and in the process colige
amounts of user location information over time. This deskgw-
ever, is shown to be susceptible to large-scale user priv@cyro-
mises even if several location cloaking techniques are eyepl
In this position paper, we argue that the LBSAs should adapipa
proach where the untrusted third-party servers are tresittgaly as
encrypted data stores, and the application functionaktyroved
to the client devices. The location coordinates are enedypthen
shared, and can be decrypted only by the users that the data is
tended for. This approach significantly improves user iocapri-
vacy. We argue that this approach not only improves priviaatit
is also flexible enough to support a wide variety of locatiased
applications used today. In this paper, we identify the keydb
ing blocks necessary to construct the applications in {his@ach,
give examples of using the building blocks by constructiegesal
applications, and outline the privacy properties providhgdthis
approach. We believe our approach provides a practicahalige
design for LBSAs that is deployable today.

1. INTRODUCTION

With the proliferation of the Internet-enabled smartplmhecation-
based mobile social applications (LBSAs) have seen wideash
adoption. These applications empower mobile users withribw/l-
edge of their vicinity, which significantly improves useogductiv-
ity in a variety of contexts ranging from work and persontd to
health and travel. For example, these applications enafaes uo
meet with friends in the surroundings [18,20,21], selestagrants
and stores that have good reviews from friends [13], helpcsel
routes based on traffic information, place reminders fenits [27],
download content faster [2] (in collaboration with friehdsvices),
among others. LBSAs are used by millions of users today fid, a
the tremendous penetration of mobile devices will only éase
this number. While the benefits from these applications nake

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

HotMobile'10, February 22-23, 2010, Annapolis, Maryland

Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

compelling case for users to share their location, locgigvacy
is a primary concern in doing so.

Location information in the wrong hands severely hurts siser
Real world examples exist where mobile users are harmedabiy st
ers economically [23], physically [11], and legally [7], byacking
users with such location information. Recent studies haesva
that trivial algorithms can expose sensitive locationssera such
as home and office locations even using anonymized GPS traces
collected by location-based services [10, 14]. Such astaak also
identify users’ visits to hospitals, clubs, or other emhasing lo-
cations [23]. Further, it is possible to discover real idtéad of
users (in addition to pseudonyms, username, etc.) usirggsev
white page lookups [16] in collaboration with anonymized S5P
traces. Advanced attacks allow attackers to infer usersieraf
transport (bus, car, foot), and predict the route taken leysugd],
etc. Finally, these attacks are successful even on applisathat
sporadically send location information to servers [17H despite
several existing defenses based on spatial and tempoaietpof
user location [12].

We observe that the key reason that makes the location-based
social applications (LBSAs) vulnerable to such large-sgaivacy
loss is that they all inherently depend on user locationdioates,
which users entrust to applications running on untrusted-{rarty
servers in plain-text. These servers consume this locatidnpro-
vide application-specific services to the users. However|dca-
tion coordinates reveal sensitive location informatiooLetusers,
and the untrusted servers can easily leak this data in langeiats
due to software bugs, operator errors or due to active &taloks
compromising location privacy of thousands of usarsnasseThe
presence of numerous untrusted servers in the wild, offetifier-
ent services, further increases the risks of losing lonadata.

In this paper, we propose a design for building LBSAs that pro
vides a low-cost, practical, and deployable alternativexisting
design all the while providing strong user location privacyhe
key insight behind this design is to treat the server as alsiem
crypted data store, and move the application functionatityhe
client smartphones. All the location information shareehisrypted
and the lack of plain location information on the storageeseim-
proves user privacy. This approach easily works on todayars
phones because the servers running LBSAs today provide thei
service by running simple operations such as certain ds¢aba
hashtable lookups, performing simple computations on dice-|
tion data, and sending the results to be displayed on thetsli€or
example, in a nearby restaurant review application, theeseéakes
the user location, finds restaurants that are in the vicioftyhe
user’s location, queries the reviews of these restaurantssends
the results back to the users for display. In our proposedoagp,
the data storage and lookup operations happen on encryptad d

e el @

App. Server

App. Server

Figure 1. Comparison of the existing and proposed architectures of
location-based mobile social applications. (a) In today’s architecture,
several untrusted third-party servers obtain user location data and of-
fer different services totheusers. (b) In our proposed architecture, the
functionality ismoved to the client devices, and a simple shared storage
with a narrow interface isused to build a wide variety of applications.

but still remain on the storage server. The clients recdieecen-
crypted results, decrypt and display the results to thesus€he
clients only incur an additional cost of decrypting the reeé con-
tent, and performing simple calculations on the decryptad.dBy
using light-weight cryptographic schemes, we can easilyarbe
functionality to the smartphones and provide services evhile-
serving privacy.

In our approach, the users build an offline social network wit
their friends by exchanging cryptographic keys and stothese
keys on their mobile devices. Whenever users need to exehang
certain application-specific data, they do so by alwaysgtitrg
it with the keys already exchanged with their friends. Thpliap
cations running on the client devices consume this encaygiééa,
and deliver the functionality that the users need. Figureotiges
a comparison of the existing and the proposed architectures

To understand if this approach is flexible to support a vardét
LBSAs, this paper is geared towards identifying the butditocks
and the minimal storage server interface necessary inppi®ach.
This is in fact the primary contribution of this paper. We éaden-
tified two simple building blocks (called proofs) and a narisior-
age server interface. The two proofs are: friendship prooid
transaction proofs. Friendship proofs cryptographicaliiest the
social connection (or friendship) between two users, amilaily,
transaction proofs cryptographically attest certain dpgtaerated
by a user. Using these proofs, any user in the network cafyveri
if a piece of data was generated by a friend, and if so dechgpt t
data. But no other user other than a friend will be able to bee t
contents. Finally, the interface exposed by the storageser nar-
row enough that we can reason about the privacy guarantegs, a
yet they are flexible enough to build several LBSAs. As a tesul
single storage server can support many different LBSAs.

The rest of the paper is structured as follows. We first discri
several motivating applications in Section 2 that higHligifferent
usage scenarios and properties of these LBSAs. In Sectioe 3,
describe our goals, assumptions, and the threat model ndbdi
paper. Next, in Section 4, we present the two key buildingkdo
and the interface the server exposes. We also present the aka
these building blocks by sketching the implementation afroati-
vating applications (in Section 2). We then present anahénaly-
sis of the privacy guarantees provided by our approach itiBes.
Finally, we survey the related work in Section 6 and conclude

2. MOTIVATING APPLICATIONS

Here we describe several motivating LBSAs and look at the-ope
ations performed by the applications. These applicatioasho-
sen such that they stress on different scenarios under wisieh
location information is used. We highlight these uniqueperties
of the applications, and also investigate the possibititynbve the
functionality to the client devices. Later, in Section 4we de-
scribe how to exactly implement these applications usingpoo-
posed building blocks and the storage server interfaces.

2.1 Example Applications

Collaborative Content Downloading. Alice is sitting in a restau-
rant and wants to download a large file from the web. Alice’s mo
bile phone has both WLAN and WWAN interfaces, but she has
Internet connectivity only on WWAN interface (GPRS, 3G,.gtc
which takes a long time to download the file. Using mobile abci
network, however, Alice can easily solve this problem. Akano-
bile phone can talk to other mobile phones in the restauchieick

if any one-hop or two-hop friends are within the WLAN range,
and automatically download parts of the file in parallel gsine
WWAN bandwidth of the friends.

Many such collaborative bandwidth-sharing systems haea be
proposed before [2], but incentives, trust, and securityaia as
main problems in such systems. A peer might download illegal
content from Alice’s mobile phone causing her legal troudslsim-
ply a peer can free-ride on her bandwidth. By selecting é¢dist
friends, several such problems can be averted. This batttwid
sharing scenario can similarly extends to sharing WiFisspeints
with friends in need of Internet access, sharing computkesyaith
other mobile peers to help them process compute-intenaskst
(decrypting and decoding a real-time video [25]), etc.

Social Recommendations. Several location-based recommen-
dation systems can be built using the information availabléne
social circle. Suppose that Alice finished her dinner at sates
rant, and wants to recommend this restaurant or certairsjtem
just wants to convey her opinion on the restaurant to hendise
Alice can convey her opinions by leaving her opinion at anliapp
cation server. When her friends are around this restaumadtare
deciding on a restaurant for dinner, their mobile phonesaan
tain Alice’s recommendations and help them choose theuesta
Along similar lines, this scenario may be extended to previet-
ommendations for other shopping sites and for items wittgitea

Local Businesses. It is very common to use mobile devices
to gain information about the businesses in a larger neigjiuoal
around a user’s location. Here, the user may first want to gain
overview of the businesses in the vicinity, and then latemzan
on a few selected sites and view their friends’ opinions abitese
sites. Similarly, users may want to leave their opinion ortao$
sites in the vicinity or the entire neighborhood. The sanmefion-
alities are also expected in the scenario where a user isva had

is interested in knowing the businesses in a specific neitjicoal.
Location-based Reminders. Users can leave reminders for their
friends at interested locations using this applicationsheWéver
the users that the reminders are intended for are near thgdnc
of the reminder, their mobile phone alerts the users abauteh
minders. For example, users may leave reminders for friends
updated location/time of a party, leave shopping list refais for
friends (family members, roommates, or for themselves) gea
cery stores. Similarly, users can keep track of and analyeg t
exercise/running habits over a period of time by leavinginelers
on their running tracks.

Friend Locator. Users interested in keeping track of the current

location of their friends or interested in knowing if any dietr
friends are in the vicinity so that they can meet up, can uie th
application. Several such applications exist tddaynd users share
their location information with the servers to do this. Thever
computes the distance between the users and alerts peopte wh
their friends are within a certain distance.

2.2 Propertiesof the Example Applications

The applications above highlight different aspects of LBSk
the collaborative downloading application, finding trustevices
among the nearby mobiles is critical. In the recommendatag
plication, finding information about a specific site is theds, but
finding information about a larger vicinity of the user is floeus
in the local businesses application. The reminders apjaicéirst
downloads data and later fires events when user visits Spsités,
thus focusing on dynamically associating events with a’si$er
cation. Finally, the friend locator application stressethton the
location and on the social dimensions of the users. As atrélal
all provide a good mix of the different types of LBSAs usedaypd

Operations Invoked by the Example Applications. Also notice
that the operations in the above applications that martiptite |o-
cation information are very few and are of low cost. For exianp
the reminder and the friend locator applications just neecbin-
pare two location coordinates and check if they are withiaréain
distance. Similarly, most applications above just needrg@iaize
the data associated with locations in the order of the lonatby
just comparing them. As a result, these operations can hly eas
moved to the mobile smartphones, and yet maintain the fatt-fu
tionality of the applications.

3. GOALS,SYSTEM AND THREAT MODEL

Here we describe the goals of our design, the scenarios sur sy
tem targets, and the threat model we consider in this paper.

3.1 System Goals

We aim to achieve the following key goals in our design. (a) Ou
design shoulghreserve location privacgf the users while the users
use the applications. To preserve privacy, all data sharedri de-
sign is encrypted, and only the user’s friends will be ablégorypt
auser’s (location) data. (b) Our design shouldléxible to support
a variety of location-based social applications. We dermatesthis
flexibility by using our proposed design to sketch the imeaia-
tion of several different types of location-based appiaat. (c)
We aim to keep the desigsimple and practicato spur its adap-
tion. We leverage widely-used symmetric cryptography tepkéne
overhead on the mobiles low, and we expose simple hashikéle-
interfaces to make using our system easy for programmers. Fi
nally, (d) our design should havew deployment overheaghd be
deployable today. To ease the deployment, we keep our design
line with the storage and computation services providedistiag
cloud computing facilities. We describe how our design casilg
leverage these cloud services to build scalable LBSAs tuick

3.2 System Model

Since location-based applications typically involve Sielpokup
operations combined with limited computation, as mentibhe-
fore, we believe that moving the functionality of these &l
tions to the mobile smartphones is practical. For exampleone
3G comes with a 412MHz processor and 512MB of RAM, which
is sufficient to perform the computation of all common LBSAs.
While the responsibility of decrypting and consuming fdehdata

Lwww.loopt.com

@ ¢ FProof

W

Figure 2: Depiction of proof exchanges. (1) Friends exchange friend-
ship proofs and store them on their devices. (2) Users create and store
transaction proofson theserver that arelater retrieved by their friends.

Server

is on the smartphones, the server-side is still respongiblstor-

ing users’ data, backing them up, and serving data to useas in
available manner. Since much of these storage tasks are @omm
to several application servers, we observe that they caadily ef-
floaded to cloud storage providers such as Amazon Simplagsor
Servicé by the application servers potentially running on Ama-
zon EC3. Given that the resource cost on these providers is quite
low, and the fact that the applications only need to pay fdy on
the resources they use, this provides a low-cost altemaiihus

we assume for the rest of the paper that the storage is on these
cloud providers. Furthermore, the application owners eamover

the deployment cost they incur either directly from the LBS#ers
(fees), or by presenting ads to the users while serving dateem.

3.3 Threat Mode

In order to understand the worst case guarantees providedrby
system, we assume a strong attacker model in this paper. We as
sume that the third-party storage server is untrusted. Assalty
we investigate the user privacy lost even when the datadstme
the server is leaked to an attacker. In practice, howeves,igha
very strong assumption about the attacker’s capabilityiiguour
privacy analysis, in Section 5, we also consider an evemg#io
attacker with power to compromise and monitor the storageese
for extended period of time, present our solutions agalmistdt-
tacker and the associated privacy vs. performance traeoff

We assume that the users do not collude with the storagerserve
to break other users’ privacy. This assumption fits a soa# n
worked system given that users mainly consume and provitte da
from and to their friends that they trust. In addition, weLase that
each user has a user-generated public-private key parmatprkey
is kept secret, while the public key is shared), and that Herql
devices have a localization technology (GPS, for instatiwa)can
tell them their location in terms of longitude-latitude was. The
users’ mobile devices are trusted, and if a user's mobilécdeg
compromised, we assume that the user detects it and notéies h
friends of the device compromise and invalidates the oldipub
key.

4. BUILDING BLOCKSAND THEIR USAGE

Now we present the details of the key building blocks in our
design (proofs), the interface the storage server needspiose
to support the types of applications described before, avallyi
present the usage of these building blocks by sketching dhe c
struction of the motivating applications in Section 2.

4.1 Friendship Proof

Friendship proof (FProof) is a cryptographic attestatibat ta
user A gives to her friendB (FProofs_.). The userB can store

2http://aws.amazon.com/s3/
3http://aws.amazon.com/ec2/

API Call
putFriendInfo(friendld, value)
getFriendInfo(friendld)
putLocationInfo((x, y), value)
getLocationInfo((x, y))

Purpose of the Call
Put some data abofriendld
Get data aboutiendld
Put data about the locatidr, v)
Get data about the locatidn, y)

Table 1. Thestorage server APIsand their functions.

this attestation on her device and cryptographically priovany
other participant in the system thatis her friend. These proofs
are unidirectional, andd should obtain a similar proof fronB
(FProofz_, 4). The users store all their proofs from their friends in
their mobile device and carry it around to benefit from theofsp
as shown in Figure 2.

Given the sensitive nature of the proofs, and untrustedreatiu
the storage servers, proofs are exchanged via a secureetn

of LBSAs. Next we describe these functions in detail.

FriendIinfo get and put Calls. These calls enable users to share
application-specific data in encrypted form (as transagbimofs)
with their friends. The keyriendld is the public key of the user
that is putting the data, and the puts are authenticateddasttinage
server. Anyone in the network that knows a user’s public kay c
get the contents from that storage server. However, sinketioa
friends know the public key of a user, and the session keyssacg
to decrypt the transaction proofs obtained frogesFriendinfq all
non-friend users essentially get data that they cannotratadel.
LocationInfo get and put Calls. These calls are used for shar-
ing information about a site in the geographic locatiomy) — the
longitude-latitude value obtained from a user's GPS. Tteecsiuld
be anything from a restaurant to a store or a school/depattriibe
datais stored as a transaction proof generated by the usen e
user stores the proof, the exact valueafy) is also stored within

tween friends. One example is to exchange the proofs when two the proof. The server stores the data corresponding to a Give)

friends meet each other. Friends’ mobile devices can coruaten
via a wireless interface and exchange these proofs usingpa cr
tographically secure handshake. Secure email is anotlaenr
channel for exchange.

The proof that an useA gives to an usef3 is construed by
putting together certain pieces of information, and sigrifre hash
of the content withA’s private key. The information consists of:
A’s public key, B’s public key, time of issue, and’s symmetric
session key. In short, a friendship proof (FProof) is carctad as
follows: Let,

Content=<PubKeys, PubKeys, SKeya, timestamp-. Then,
FProofs_. 5 =<Content,PrivKey (Hash(Content)}.
The session key (SKey that A puts in the proof is a symmetric

in a bucket with a key that is approximately close (say witain
block radius from the given value). A new bucket is createshi
such bucket does not exist. Storing the data at approxinaiee
of (x,y) is useful for several reasons: (a) To account for the lo-
calization errors inherent in several positioning systeams (b)
To also enable applications that query for data related tergine
neighborhood (similar to range queries in databases). |&imi
the get call returns all the information stored in the buaiesest
to the input ¢, y) value. When multiple buckets are close to the
user, data from all of them are returned. The server can wseae
approaches to approximate the coordinates, such as pdidia
region into blocks and assigning one bucket per block, etc.
Decrypting the data obtained from tlgetLocationlInfocall is

key thatA uses to encrypt all the data she stores on the storage different from that of thegetFriendinfocall. In the version of the

server (see transaction proofs next)gives the same session key to
all her friends, and hence any data generated logn be decrypted
by all her friends. Using a symmetric key to encrypt all theada
the system makes the system very efficient, even on mobileatev

call in Table 1, the user that obtains the data will have totary
decrypt all the proofs she obtains with all her friends’ keyadid
decryption can be tested by comparing the signature storétki
proof. Section 5 discusses the privacy vs. performanceféslin

The friendship proof described here can be extended totattes the design of this call in more detail.

friends multiple hops away as follows. Suppaesexchanges proofs
with a direct friendC, after exchanging proofs with another friend
B. During that time,A can also share the proof FPrgof 4 with

C. C can then use the two proofs, FPrgof 4 and FProaofi—. ¢, to
prove their two-hop friendship t® and obtain a new proof from
B to attest to their two-hop friendship. This way users caeitev
age the data generated by two-hop friends in the social mkpivo
addition to the data from the direct friends.

4.2 Transaction Proof

Transaction proof cryptographically attests that a pigdafor-
mation belongs to a user. This proof includes the user’s agess

Finally, we implement several optimizations to the callghe
Table 1: (a) Each get call takes in an array of input valuesd&up
multiple keys at once to avoid multiple round-trip times) fblast
access time parameter is included to tell the server to aasiding
duplicate proofs and send only the new proofs since the fipeci
time. We do not show these optimizations in the Table to kbep t
description simple.

Summary. To summarize, friendship proofs are exchanged
once between friends via a secure channel. The transactofsp
are stored on the storage server based on the applicatieatsn
and the proofs contain application-specific data encrypii¢hithe
user’'s symmetric key. These applications store the datonéa

(msg) for her friends. This message could be simply the siser’ of the put calls, and fetch the appropriate data from the store via

current location coordinate, or a user's opinion about timmet

getcalls. Applications then decrypt the received data andoperf

she had at a restaurant, or any message that she thinks reight b application-specific computation on the data before disptathe

helpful to her friends. The contents of the message is agimic-
dependent, and the message (msg) is encrypted with the sss¥’
sion key when it is stored on the storage server. Users geramnd
leave these transaction proofs on the server, as shown ime~g&y
and later any of their friends can access them. A transaptioof
(TProof) from a user is constructed as follows: Let,
Content=<Sess (PubKey,, timestamp, msg}. Then,

TProofs =<Content, PrivKey (Hash(Content)}.

4.3 Interfaces Exposed by the Storage Server

results to the users.

4.4 Building Applicationswith the Proofs

Here we demonstrate the usage of the proofs and the serger int
faces by building the motivating apps. we described in $adi

In the collaborative downloading application, nearby asatly
need to use their friendship proofs to check their sociakipniy.
All one-hop friends are known a priori, and any pair of usas c
easily check if they are two-hop friends by just intersegtiheir
friends list. Once trusted one-hop or two-hop friends aseali-

Table 1 lists the interfaces exposed by the storage server. W ered, the mobiles can continue to download files. To preshee

argue that these function calls are flexible to support a wédliety

confidentiality of the users’ social circles during two-hfsend

discovery, privacy preserving matching techniques carsee (8].

In the recommendations and the local businesses applisatio
the mobiles need to use both the proofs. When a user wants-to re
ommend a site, the user generates a transaction proof aed #to
on the server using putLocationInfocall with the site’s coordi-
nates. Later, a friend user in the vicinity can dgedlLocationInfo
call with the location’s coordinates, decrypt the friengstommen-
dations out of all the proofs returned, and view the recondagan
for the sites in the vicinity that she cares about. Sinceptiteoca-
tionInfo call stores the data in a bucket that is approximately close
to the input {,), all proofs intended for the locations in the same
vicinity end up in the same bucket. This enables users (ainthe
tended location, or remotely browsing say from home) to iobta
information about the vicinity of the specified location. n&ily,
the applications on the client devices can make additioaiéd by
providing the longitude-latitude values that are closehtodurrent
location of a user to view a larger neighborhood when necgssa

In the reminders application, the user creating the renmigde-
erates a transaction proof and stores it on the serveputkriend-
Info. Later, her friends download the reminders g&tFriendinfo
Only the friend user to whom the reminder is intended stdnes t
reminder in the device and the rest of them discard it. Théicpp
tion on the mobile remembers this reminder and generatekeen a
for the receiver when she is near the reminder location.

Finally, to implement the friend locator, each user pecaty
stores her current location (in a transaction proof) viutEriend-
Info call, and each user’s mobile periodically obtains the liocat
of all friends viagetFriendInfq computes the distance between the
friends on the mobile and plots it on a map.

5. PRIVACY ANALYSISAND TRADEOFFS

In this section we describe the intuition behind the privgagr-
antees provided by our design. We first describe the preeoti
the server interface, and then look at the impact of comsmi
several end-points in the system.

5.1 Server Interface Privacy and Tradeoffs

Now we look at the privacy and the performance properties of
the interfaces in Table 1, and potential ways to strengthemt

FriendInfo get and put Calls. These calls provide strong privacy
guarantees. Only the friend users with appropriate keyslearypt
the data of a user. Since these calls are targeted for a spesdi,
they are also efficient — transmit exactly the data that isested.

LocationInfo get and put Calls. There is a clear performance
vs. privacy tradeoff in designing thgetLocationInfocall. In the
getLocationInfointerface in Table 1, the user needs to decrypt all
the proofs she obtains from the call to see which ones betohgrt
friends. One potential way to improve the performance isatp t
each proof stored via putLocationlnfocall with an Id (or public
key) of the user that generated the proof. However, this leayly
leaks location privacy of users in case the server’s daislea

An approach to achieve both performance and privacy in #iis ¢
is to tag the proofs with an userld that changes periodidallg
known pattern (known only to friends). For example, usersea
change a salt in their friendship proofs and periodicallgrde the
tags associated with the new proofs storedpitlocationinfous-
ing random numbers generated from this salt. This enatikrsds
to query a specific user’s data at a given location using tteese
but the server will not be able to relate the different taghéosame
user. Thus, users do not lose privacy and yet the returnatisean
be filtered by users. Due to the involved nature of this solytive
did not present it in Table 1.

An additional dimension to further filter the returned résus
by associating tags related to the locations themselvegs Jach
as the site type — restaurants, gas station, etc. We |leaaisdeft
this for future work.

5.2 Impact of Several Potential Attacks

Compromised Client. A compromised client can leak the lo-
cation privacy of all her friends. Thus, informing friendscom-
promised key/device is critical. Revoking keys, unfortiehg is an
expensive operation in several crypto systems. As a reseltec-
ommend that the users protect access to their keys via pasggh
to reduce the chance of key compromises even if the clienteev
is compromised or lost.

Compromised Third-party Storage Server (Stronger Threzdél).

If the data on the server is leaked to an attacker not in thelsuet-
work, the user privacy is still preserved as no data can beypiez
by the attacker, and hence the attacker cannot associaseawith
a location. However, if the attacker were to monitor the maty
connections on the compromised server passively, therttdekar
might be able to associate the, ;) locations in theputLocation-
Info call with information gleamed from the connection [15] such
as the client’s browser, SSID, IP address, among others emceh
potentially associate a location with an user. Howeveselatacks
can be averted by scrubbing the connection off such infaomat
with privacy proxies such as Privoxy. In addition, using @ymaous
routing [5] can further enhance privacy against such asta&ut
unfortunately, using heavy-weight anonymous routing néples
incur significant performance (bandwidth/latency) pgnalh the
clients. Given that certain reputed storage servers (ssiémeazon
S3) are less likely to be compromisadd passively monitored for
long time, we believe that heavy-weight techniques are roes-
sary for reputed storage servers by default.

DoS Attacks on the Server. Like any other shared storage server,
our design is also vulnerable to DoS and pollution attacksit B
existing mechanisms to combat these attacks also work for us

6. RELATED WORK

Mechanisms to Preserve Location Privacy. A well-known
mechanism used to improve user location privacy is spacidl a
temporal cloaking [12], wherein the location and time senthie
server is approximated instead of sending the real value.ifth-
ition is that this prevents accurate identification of theakion of
the users, and thus improves privacy. This approach, howewes
the accuracy and timeliness of the responses from the semver
most importantly, there are several simple attacks on thesgha-
nisms [10, 14, 16] that can still break user privacy.

Pseudonyms and silent times [15] are other solutions peabos
to improve location privacy. They argue for changing theickeyv
identifier frequently, and not transmitting signals for doperiods
at regular intervals, thus hurting functionality and diseecting
users from applications. The primary problem with majoatyhe
solutions proposed to date is that they build on the modelrevhe
the third-party servers are entrusted with location datddm text.
Compromising such a server easily leads to large-scalagyrieaks.

Novel Applications and Location Privacy. AnonySense [5] re-
cently proposed using an anonymous routing overlay to prese
user location privacy. While this system supported a lichiteer-
face only to upload non-real-time data to the servers, aéwagch-
anisms used in this system are complementary to our work here
Several researchers have looked at building specific mebHe
cial applications while preserving user privacy. Smoke8aor[6]
is designed to share presence information only with trusssis,

and missed connections [19] looks at connecting userslibatd a
physical location without compromising their privacy at teerver.
We share the privacy goal with these papers, but we are ditggnp
to build a framework for supporting a variety of applicason

The friendship proof construction is similar to that of ltoa
proofs proposed in [22], and the social attestations pregpos[28].
The primary difference is that social attestations are @isesocial
access control of data in Lockr [28], and location proofs] [2&
mainly focused on enabling novel class of applications.

Encryption to Improve Privacy. Similar to our approach, Per-
sona [3] encrypts all data shared among users in a sociabrietw
While we focus on location privacy and using symmetric coypt
for efficiency on mobile devices, Persona focuses on onlixéb
networks and on providing fine-grained privacy controls $ers.
Hence Persona uses attribute-based encryption which gméisi
cantly heavy-weight for mobile devices.

Decentralized Social Networks. VIS [4] argued for a decentral-
ized approach to build mobile social applications using jsot@
clouds. Similarly, PrPI [24] built a decentralized soci&twork
where users store their data in personal Butlers. PrP| usesal
language called Socialite to execute queries over thisillised
network of Butlers. This language ensures that user accesst
policies are honored, and hence preserves user privacyheblet
proposals, however, the cost of owning and operating thigme
tralized network is an hindrance to widespread deployment.

Social and Policy Changes. A recent paper [26] argued for
social and policy changes in addition to technical changesa-
vide user privacy in mobile environments. It argued for aeys
architecture that includes strict access control poljdesa visual-
ization tools for users to understand the full impact of dstared
on privacy, and allow for users to change the access coruticigs
when they wish. Incorporating our mechanisms into thisiéech
ture would further improve user privacy.

7. FUTURE WORK AND CONCLUSIONS

We argued in this paper that location-based mobile sociali-ap
cations (LBSAs) need to take an approach where the apicati
intelligence is moved to the clients and the servers simptyaa
rendezvous points to share encrypted data. We provide reséde
to show that this approach is flexible enough to implementisdv
widely-used applications, and yet preserves locatiorepyivof the
users — a property lacking in today’s systems.

Our current design is tailored for location-based socigliap-
tions. We can further extend and apply our design to othelests)
including non-social applications. This would improve #pplica-
bility of our work significantly: (i) Several more applicatis can
adapt our approach, and (ii) Even users of social applicattan
benefit by using data from non-friends, which is especiafig-u
ful for users with only a handful of friends. The key challeng
in extending our approach to non-social applications isygiion

key management. Key management is currently done by ths user

based on their offline social network, which is lacking in remtial
applications. Thus we need to develop novel mechanismsstasu
to securely discover the keys used to encrypt the data orethers
without revealing the key to the server itself.

In addition to resolving the above-mentioned challenge avee
also working on implementing and deploying the applicaide-
scribed in this paper on mobile devices. We intend to reporwr
experience regarding the performance, energy-efficiaveyhead,
and usability of our proposed approach in the future.

8. REFERENCES

[1] Mobile LBS on the move, Oct. 20081t t p: / / www.
emar ket er. com Articl e. aspx?R=1006609.

[2] ANANTHANARAYANAN , G.,ET AL. Combine: leveraging
the power of wireless peers through collaborative
downloading. InProc. of MohiSy$2007).

[3] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE,
B., AND STARIN, D. Persona: An online social network
with user defined privacy. IRroc. of SIGCOMM?2009).

[4] CACERES R.,ET AL. Virtual individual servers as
privacy-preserving proxies for mobile devices Rroc. of
MobiHeld (2009).

[5] CORNELIUS, C.,ET AL. AnonySense: Privacy-aware
people-centric sensing. Proc. of MobiSy$2008).

[6] Cox, L. P., DaLTON, A., AND MARUPADI, V.
Smokescreen: Flexible privacy controls for presenceispar
In Proc. of MobiSy$2007).

[7] DALY NEWS. How cell phone helped cops nail key murder
suspect secret 'pings’ that gave bouncer away, Mar. 2006.

[8] FREEDMAN, M. J.,AND NicoLOSI, A. Efficient private
techniques for verifying social proximity. I PTPS(2007).

[9] FROEHLICH, J.,AND KRUMM, J. Route prediction from trip
observationsSociety of Automotive Engined&008).

[10] GOLLE, P.,AND PARTRIDGE, K. On the anonymity of
home/work location pairs. IRroc. of Pervasivé2009).

[11] GRACE, F. Stalker victims should check for gps, Feb. 2003.

[12] GRUTESER M., AND GRUNWALD, D. Anonymous usage of

location-based services through spatial and temporal

cloaking. InProc. of MobiSy42003).

HENDRICKSON, M. The state of location-based social

networking, Sept. 2008.

HoH, B., ET AL. Enhancing security and privacy in

traffic-monitoring systems. IEEEE Pervasive Computing

Magazine(2006).

[15] JANG, T., WANG, H. J.,AND Hu, Y.-C. Preserving

location privacy in wireless lans. Froc. of MobiSy$2007).

KRuUMM, J. Inference attacks on location tracksPiroc. of

Pervasivg(2007).

KRUMM, J. A survey of computational location privacy.

Personal and Ubiquitous Computirfg008).

L1, K. A., ET AL. Peopletones: a system for the detection

and notification of buddy proximity on mobile phones. In

Proc. of MobiSy$2008).

MANWEILER, J.,AND OTHERS, R. We saw each other on

the subway: Secure, anonymous proximity-based missed

connections. IiProc. of HotMobile(2009).

MiLuzzo, E.,ET AL. Sensing meets mobile social

networks: the design, implementation and evaluation of the

cenceme application. IRroc of SenSy£008).

MOTANI, M., SRINIVASAN, V., AND NUGGEHALLI, P. S.

Peoplenet: engineering a wireless virtual social netwiork.

Proc. of MobiCom(2005).

[22] SAROIU, S.,AND WOLMAN, A. Enabling new mobile
applications with location proofs. IHotmobile(2009).

[23] ScHiLIT, B., HONG, J.,AND GRUTESER M. Wireless
location privacy protection.

[24] SEONG, S.-W.,ET AL. The architecture and implementation
of a decentralized social networking platform. Tech. rep.,
Stanford, October 2009.

[25] SHEN, G., LI, Y., AND ZHANG, Y. Mobius: enable
together-viewing video experience across two mobile
devices. IrProc. of MobiSy42007).

[26] SHILTON, K., ET AL. Designing the personal data stream:
Enabling participatory privacy in mobile personal sensing
In TPRC(20009).

[27] SoHN, T.,ET AL. Place-its: A study of location-based
reminders on mobile phones. Rroc. of Ubicomp(2005).

[28] TOOTOONCHIAN, A., GoLLu, K. K., SAROIU, S.,
GANJALL, Y., AND WOLMAN, A. Lockr: social access
control for web 2.0. IrProceedings of WOS[2008).

[13]
[14]

[16]
[17]
[18]

[19]

[20]

[21]

