
Preserving Privacy in Location-based Mobile Social
Applications

Krishna P. N. Puttaswamy and Ben Y. Zhao
Computer Science Department, U. C. Santa Barbara

ABSTRACT
Location-based social applications (LBSAs) rely on the location
coordinates of the users to provide services. Today, smartphones
using these applications act as simple clients and send out user loca-
tions to untrusted third-party servers. These servers havethe appli-
cation logic to provide the service, and in the process collect large
amounts of user location information over time. This design, how-
ever, is shown to be susceptible to large-scale user privacycompro-
mises even if several location cloaking techniques are employed.
In this position paper, we argue that the LBSAs should adapt an ap-
proach where the untrusted third-party servers are treatedsimply as
encrypted data stores, and the application functionality be moved
to the client devices. The location coordinates are encrypted, when
shared, and can be decrypted only by the users that the data isin-
tended for. This approach significantly improves user location pri-
vacy. We argue that this approach not only improves privacy,but it
is also flexible enough to support a wide variety of location-based
applications used today. In this paper, we identify the key build-
ing blocks necessary to construct the applications in this approach,
give examples of using the building blocks by constructing several
applications, and outline the privacy properties providedby this
approach. We believe our approach provides a practical alternative
design for LBSAs that is deployable today.

1. INTRODUCTION
With the proliferation of the Internet-enabled smartphones, location-

based mobile social applications (LBSAs) have seen wide-spread
adoption. These applications empower mobile users with theknowl-
edge of their vicinity, which significantly improves user productiv-
ity in a variety of contexts ranging from work and personal life to
health and travel. For example, these applications enable users to
meet with friends in the surroundings [18,20,21], select restaurants
and stores that have good reviews from friends [13], help select
routes based on traffic information, place reminders for friends [27],
download content faster [2] (in collaboration with friends’ devices),
among others. LBSAs are used by millions of users today [1], and
the tremendous penetration of mobile devices will only increase
this number. While the benefits from these applications makea

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotMobile’10,February 22–23, 2010, Annapolis, Maryland
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

compelling case for users to share their location, locationprivacy
is a primary concern in doing so.

Location information in the wrong hands severely hurts users.
Real world examples exist where mobile users are harmed by stalk-
ers economically [23], physically [11], and legally [7], bytracking
users with such location information. Recent studies have shown
that trivial algorithms can expose sensitive locations of users such
as home and office locations even using anonymized GPS traces
collected by location-based services [10,14]. Such attacks can also
identify users’ visits to hospitals, clubs, or other embarrassing lo-
cations [23]. Further, it is possible to discover real identities of
users (in addition to pseudonyms, username, etc.) using reverse
white page lookups [16] in collaboration with anonymized GPS
traces. Advanced attacks allow attackers to infer users’ mode of
transport (bus, car, foot), and predict the route taken by users [9],
etc. Finally, these attacks are successful even on applications that
sporadically send location information to servers [17], and despite
several existing defenses based on spatial and temporal cloaking of
user location [12].

We observe that the key reason that makes the location-based
social applications (LBSAs) vulnerable to such large-scale privacy
loss is that they all inherently depend on user location coordinates,
which users entrust to applications running on untrusted third-party
servers in plain-text. These servers consume this locationand pro-
vide application-specific services to the users. However, the loca-
tion coordinates reveal sensitive location information about users,
and the untrusted servers can easily leak this data in large amounts
due to software bugs, operator errors or due to active attacks, thus
compromising location privacy of thousands of usersen masse. The
presence of numerous untrusted servers in the wild, offering differ-
ent services, further increases the risks of losing location data.

In this paper, we propose a design for building LBSAs that pro-
vides a low-cost, practical, and deployable alternative toexisting
design all the while providing strong user location privacy. The
key insight behind this design is to treat the server as a simple en-
crypted data store, and move the application functionalityto the
client smartphones. All the location information shared isencrypted
and the lack of plain location information on the storage server im-
proves user privacy. This approach easily works on today’s smart-
phones because the servers running LBSAs today provide their
service by running simple operations such as certain database or
hashtable lookups, performing simple computations on the loca-
tion data, and sending the results to be displayed on the clients. For
example, in a nearby restaurant review application, the server takes
the user location, finds restaurants that are in the vicinityof the
user’s location, queries the reviews of these restaurants,and sends
the results back to the users for display. In our proposed approach,
the data storage and lookup operations happen on encrypted data

(b)

App. Server

(a)

App. Server
Commodity Storage

Figure 1: Comparison of the existing and proposed architectures of
location-based mobile social applications. (a) In today’s architecture,
several untrusted third-party servers obtain user location data and of-
fer different services to the users. (b) In our proposed architecture, the
functionality is moved to the client devices, and a simple shared storage
with a narrow interface is used to build a wide variety of applications.

but still remain on the storage server. The clients receive the en-
crypted results, decrypt and display the results to the users. The
clients only incur an additional cost of decrypting the received con-
tent, and performing simple calculations on the decrypted data. By
using light-weight cryptographic schemes, we can easily move the
functionality to the smartphones and provide services while pre-
serving privacy.

In our approach, the users build an offline social network with
their friends by exchanging cryptographic keys and storingthese
keys on their mobile devices. Whenever users need to exchange
certain application-specific data, they do so by always encrypting
it with the keys already exchanged with their friends. The appli-
cations running on the client devices consume this encrypted data,
and deliver the functionality that the users need. Figure 1 provides
a comparison of the existing and the proposed architectures.

To understand if this approach is flexible to support a variety of
LBSAs, this paper is geared towards identifying the building blocks
and the minimal storage server interface necessary in this approach.
This is in fact the primary contribution of this paper. We have iden-
tified two simple building blocks (called proofs) and a narrow stor-
age server interface. The two proofs are: friendship proofsand
transaction proofs. Friendship proofs cryptographicallyattest the
social connection (or friendship) between two users, and similarly,
transaction proofs cryptographically attest certain datagenerated
by a user. Using these proofs, any user in the network can verify
if a piece of data was generated by a friend, and if so decrypt the
data. But no other user other than a friend will be able to see the
contents. Finally, the interface exposed by the storage server is nar-
row enough that we can reason about the privacy guarantees, and
yet they are flexible enough to build several LBSAs. As a result, a
single storage server can support many different LBSAs.

The rest of the paper is structured as follows. We first describe
several motivating applications in Section 2 that highlight different
usage scenarios and properties of these LBSAs. In Section 3,we
describe our goals, assumptions, and the threat model used in this
paper. Next, in Section 4, we present the two key building blocks,
and the interface the server exposes. We also present the usage of
these building blocks by sketching the implementation of our moti-
vating applications (in Section 2). We then present an initial analy-
sis of the privacy guarantees provided by our approach in Section 5.
Finally, we survey the related work in Section 6 and conclude.

2. MOTIVATING APPLICATIONS

Here we describe several motivating LBSAs and look at the oper-
ations performed by the applications. These applications are cho-
sen such that they stress on different scenarios under whichuser
location information is used. We highlight these unique properties
of the applications, and also investigate the possibility to move the
functionality to the client devices. Later, in Section 4.4,we de-
scribe how to exactly implement these applications using our pro-
posed building blocks and the storage server interfaces.

2.1 Example Applications
Collaborative Content Downloading. Alice is sitting in a restau-
rant and wants to download a large file from the web. Alice’s mo-
bile phone has both WLAN and WWAN interfaces, but she has
Internet connectivity only on WWAN interface (GPRS, 3G, etc.),
which takes a long time to download the file. Using mobile social
network, however, Alice can easily solve this problem. Alice’s mo-
bile phone can talk to other mobile phones in the restaurant,check
if any one-hop or two-hop friends are within the WLAN range,
and automatically download parts of the file in parallel using the
WWAN bandwidth of the friends.

Many such collaborative bandwidth-sharing systems have been
proposed before [2], but incentives, trust, and security remain as
main problems in such systems. A peer might download illegal
content from Alice’s mobile phone causing her legal troubleor sim-
ply a peer can free-ride on her bandwidth. By selecting trusted
friends, several such problems can be averted. This bandwidth-
sharing scenario can similarly extends to sharing WiFi access points
with friends in need of Internet access, sharing compute cycles with
other mobile peers to help them process compute-intensive tasks
(decrypting and decoding a real-time video [25]), etc.
Social Recommendations. Several location-based recommen-
dation systems can be built using the information availablein the
social circle. Suppose that Alice finished her dinner at a restau-
rant, and wants to recommend this restaurant or certain items, or
just wants to convey her opinion on the restaurant to her friends.
Alice can convey her opinions by leaving her opinion at an appli-
cation server. When her friends are around this restaurant,and are
deciding on a restaurant for dinner, their mobile phones canob-
tain Alice’s recommendations and help them choose the restaurant.
Along similar lines, this scenario may be extended to provide rec-
ommendations for other shopping sites and for items within asite.
Local Businesses. It is very common to use mobile devices
to gain information about the businesses in a larger neighborhood
around a user’s location. Here, the user may first want to gainan
overview of the businesses in the vicinity, and then later zoom in
on a few selected sites and view their friends’ opinions about these
sites. Similarly, users may want to leave their opinion on a set of
sites in the vicinity or the entire neighborhood. The same function-
alities are also expected in the scenario where a user is at home and
is interested in knowing the businesses in a specific neighborhood.
Location-based Reminders. Users can leave reminders for their
friends at interested locations using this applications. Whenever
the users that the reminders are intended for are near the location
of the reminder, their mobile phone alerts the users about the re-
minders. For example, users may leave reminders for friendson
updated location/time of a party, leave shopping list reminders for
friends (family members, roommates, or for themselves) near gro-
cery stores. Similarly, users can keep track of and analyze their
exercise/running habits over a period of time by leaving reminders
on their running tracks.
Friend Locator. Users interested in keeping track of the current

location of their friends or interested in knowing if any of their
friends are in the vicinity so that they can meet up, can use this
application. Several such applications exist today1, and users share
their location information with the servers to do this. The server
computes the distance between the users and alerts people when
their friends are within a certain distance.

2.2 Properties of the Example Applications
The applications above highlight different aspects of LBSAs. In

the collaborative downloading application, finding trusted devices
among the nearby mobiles is critical. In the recommendations ap-
plication, finding information about a specific site is the focus, but
finding information about a larger vicinity of the user is thefocus
in the local businesses application. The reminders application first
downloads data and later fires events when user visits specific sites,
thus focusing on dynamically associating events with a user’s lo-
cation. Finally, the friend locator application stresses both on the
location and on the social dimensions of the users. As a result, they
all provide a good mix of the different types of LBSAs used today.
Operations Invoked by the Example Applications. Also notice
that the operations in the above applications that manipulate the lo-
cation information are very few and are of low cost. For example,
the reminder and the friend locator applications just need to com-
pare two location coordinates and check if they are within a certain
distance. Similarly, most applications above just need to organize
the data associated with locations in the order of the locations by
just comparing them. As a result, these operations can be easily
moved to the mobile smartphones, and yet maintain the full func-
tionality of the applications.

3. GOALS, SYSTEM AND THREAT MODEL
Here we describe the goals of our design, the scenarios our sys-

tem targets, and the threat model we consider in this paper.

3.1 System Goals
We aim to achieve the following key goals in our design. (a) Our

design shouldpreserve location privacyof the users while the users
use the applications. To preserve privacy, all data shared in our de-
sign is encrypted, and only the user’s friends will be able todecrypt
a user’s (location) data. (b) Our design should beflexible, to support
a variety of location-based social applications. We demonstrate this
flexibility by using our proposed design to sketch the implementa-
tion of several different types of location-based applications. (c)
We aim to keep the designsimple and practicalto spur its adap-
tion. We leverage widely-used symmetric cryptography to keep the
overhead on the mobiles low, and we expose simple hashtable-like
interfaces to make using our system easy for programmers. Fi-
nally, (d) our design should havelow deployment overheadand be
deployable today. To ease the deployment, we keep our designin
line with the storage and computation services provided by existing
cloud computing facilities. We describe how our design can easily
leverage these cloud services to build scalable LBSAs quickly.

3.2 System Model
Since location-based applications typically involve simple lookup

operations combined with limited computation, as mentioned be-
fore, we believe that moving the functionality of these applica-
tions to the mobile smartphones is practical. For example, iPhone
3G comes with a 412MHz processor and 512MB of RAM, which
is sufficient to perform the computation of all common LBSAs.
While the responsibility of decrypting and consuming friends’ data

1www.loopt.com

ServerTProof

FProof

TProof

2
1

Figure 2: Depiction of proof exchanges. (1) Friends exchange friend-
ship proofs and store them on their devices. (2) Users create and store
transaction proofs on the server that are later retrieved by their friends.

is on the smartphones, the server-side is still responsiblefor stor-
ing users’ data, backing them up, and serving data to users inan
available manner. Since much of these storage tasks are common
to several application servers, we observe that they can be easily of-
floaded to cloud storage providers such as Amazon Simple Storage
Service2 by the application servers potentially running on Ama-
zon EC23. Given that the resource cost on these providers is quite
low, and the fact that the applications only need to pay for only
the resources they use, this provides a low-cost alternative. Thus
we assume for the rest of the paper that the storage is on these
cloud providers. Furthermore, the application owners can recover
the deployment cost they incur either directly from the LBSAusers
(fees), or by presenting ads to the users while serving data to them.

3.3 Threat Model
In order to understand the worst case guarantees provided byour

system, we assume a strong attacker model in this paper. We as-
sume that the third-party storage server is untrusted. As a result,
we investigate the user privacy lost even when the data stored on
the server is leaked to an attacker. In practice, however, this is a
very strong assumption about the attacker’s capability. During our
privacy analysis, in Section 5, we also consider an even stronger
attacker with power to compromise and monitor the storage server
for extended period of time, present our solutions against this at-
tacker and the associated privacy vs. performance tradeoffs.

We assume that the users do not collude with the storage server
to break other users’ privacy. This assumption fits a social net-
worked system given that users mainly consume and provide data
from and to their friends that they trust. In addition, we assume that
each user has a user-generated public-private key pair (private key
is kept secret, while the public key is shared), and that the users’
devices have a localization technology (GPS, for instance)that can
tell them their location in terms of longitude-latitude values. The
users’ mobile devices are trusted, and if a user’s mobile device is
compromised, we assume that the user detects it and notifies her
friends of the device compromise and invalidates the old public
key.

4. BUILDING BLOCKS AND THEIR USAGE
Now we present the details of the key building blocks in our

design (proofs), the interface the storage server needs to expose
to support the types of applications described before, and finally
present the usage of these building blocks by sketching the con-
struction of the motivating applications in Section 2.

4.1 Friendship Proof
Friendship proof (FProof) is a cryptographic attestation that a

userA gives to her friendB (FProofA→B). The userB can store
2http://aws.amazon.com/s3/
3http://aws.amazon.com/ec2/

API Call Purpose of the Call
putFriendInfo(friendId, value) Put some data aboutfriendId

getFriendInfo(friendId) Get data aboutfriendId
putLocationInfo((x, y), value) Put data about the location(x, y)

getLocationInfo((x, y)) Get data about the location(x, y)

Table 1: The storage server APIs and their functions.

this attestation on her device and cryptographically proveto any
other participant in the system thatA is her friend. These proofs
are unidirectional, andA should obtain a similar proof fromB
(FProofB→A). The users store all their proofs from their friends in
their mobile device and carry it around to benefit from the proofs,
as shown in Figure 2.

Given the sensitive nature of the proofs, and untrusted nature of
the storage servers, proofs are exchanged via a secure channel be-
tween friends. One example is to exchange the proofs when two
friends meet each other. Friends’ mobile devices can communicate
via a wireless interface and exchange these proofs using a cryp-
tographically secure handshake. Secure email is another example
channel for exchange.

The proof that an userA gives to an userB is construed by
putting together certain pieces of information, and signing the hash
of the content withA’s private key. The information consists of:
A’s public key,B’s public key, time of issue, andA’s symmetric
session key. In short, a friendship proof (FProof) is constructed as
follows: Let,
Content=<PubKeyA, PubKeyB , SKeyA, timestamp>. Then,
FProofA→B =<Content,PrivKeyA(Hash(Content))>.

The session key (SKeyA) thatA puts in the proof is a symmetric
key thatA uses to encrypt all the data she stores on the storage
server (see transaction proofs next).A gives the same session key to
all her friends, and hence any data generated byA can be decrypted
by all her friends. Using a symmetric key to encrypt all the data in
the system makes the system very efficient, even on mobile devices.

The friendship proof described here can be extended to attest
friends multiple hops away as follows. SupposeA exchanges proofs
with a direct friendC, after exchanging proofs with another friend
B. During that time,A can also share the proof FProofB→A with
C. C can then use the two proofs, FProofB→A and FProofA→C , to
prove their two-hop friendship toB and obtain a new proof from
B to attest to their two-hop friendship. This way users can lever-
age the data generated by two-hop friends in the social network, in
addition to the data from the direct friends.

4.2 Transaction Proof
Transaction proof cryptographically attests that a piece of infor-

mation belongs to a user. This proof includes the user’s message
(msg) for her friends. This message could be simply the user’s
current location coordinate, or a user’s opinion about the dinner
she had at a restaurant, or any message that she thinks might be
helpful to her friends. The contents of the message is application-
dependent, and the message (msg) is encrypted with the user’s ses-
sion key when it is stored on the storage server. Users generate and
leave these transaction proofs on the server, as shown in Figure 2,
and later any of their friends can access them. A transactionproof
(TProof) from a userA is constructed as follows: Let,
Content=<SessA(PubKeyA, timestamp, msg)>. Then,
TProofA =<Content, PrivKeyA(Hash(Content))>.

4.3 Interfaces Exposed by the Storage Server
Table 1 lists the interfaces exposed by the storage server. We

argue that these function calls are flexible to support a widevariety

of LBSAs. Next we describe these functions in detail.
FriendInfo get and put Calls. These calls enable users to share
application-specific data in encrypted form (as transaction proofs)
with their friends. The keyfriendId is the public key of the user
that is putting the data, and the puts are authenticated by the storage
server. Anyone in the network that knows a user’s public key can
get the contents from that storage server. However, since only the
friends know the public key of a user, and the session key necessary
to decrypt the transaction proofs obtained from agetFriendInfo, all
non-friend users essentially get data that they cannot understand.
LocationInfo get and put Calls. These calls are used for shar-
ing information about a site in the geographic location (x, y) – the
longitude-latitude value obtained from a user’s GPS. The site could
be anything from a restaurant to a store or a school/department. The
data is stored as a transaction proof generated by the user. When the
user stores the proof, the exact value of (x, y) is also stored within
the proof. The server stores the data corresponding to a given (x, y)
in a bucket with a key that is approximately close (say withina
block radius from the given value). A new bucket is created ifone
such bucket does not exist. Storing the data at approximatedvalue
of (x, y) is useful for several reasons: (a) To account for the lo-
calization errors inherent in several positioning systems, and (b)
To also enable applications that query for data related to anentire
neighborhood (similar to range queries in databases). Similarly,
the get call returns all the information stored in the bucketclosest
to the input (x, y) value. When multiple buckets are close to the
user, data from all of them are returned. The server can use several
approaches to approximate the coordinates, such as pre-dividing a
region into blocks and assigning one bucket per block, etc.

Decrypting the data obtained from thegetLocationInfocall is
different from that of thegetFriendInfocall. In the version of the
call in Table 1, the user that obtains the data will have to tryto
decrypt all the proofs she obtains with all her friends’ keys; valid
decryption can be tested by comparing the signature stored in the
proof. Section 5 discusses the privacy vs. performance tradeoffs in
the design of this call in more detail.

Finally, we implement several optimizations to the calls inthe
Table 1: (a) Each get call takes in an array of input values to lookup
multiple keys at once to avoid multiple round-trip times. (b) A last
access time parameter is included to tell the server to avoidsending
duplicate proofs and send only the new proofs since the specified
time. We do not show these optimizations in the Table to keep the
description simple.
Summary. To summarize, friendship proofs are exchanged
once between friends via a secure channel. The transaction proofs
are stored on the storage server based on the application’s needs,
and the proofs contain application-specific data encryptedwith the
user’s symmetric key. These applications store the data viaone
of the put calls, and fetch the appropriate data from the store via
getcalls. Applications then decrypt the received data and perform
application-specific computation on the data before displaying the
results to the users.

4.4 Building Applications with the Proofs
Here we demonstrate the usage of the proofs and the server inter-

faces by building the motivating apps. we described in Section 2.
In the collaborative downloading application, nearby users only

need to use their friendship proofs to check their social proximity.
All one-hop friends are known a priori, and any pair of users can
easily check if they are two-hop friends by just intersecting their
friends list. Once trusted one-hop or two-hop friends are discov-
ered, the mobiles can continue to download files. To preservethe
confidentiality of the users’ social circles during two-hopfriend

discovery, privacy preserving matching techniques can be used [8].
In the recommendations and the local businesses applications,

the mobiles need to use both the proofs. When a user wants to rec-
ommend a site, the user generates a transaction proof and stores it
on the server using aputLocationInfocall with the site’s coordi-
nates. Later, a friend user in the vicinity can do agetLocationInfo
call with the location’s coordinates, decrypt the friends’recommen-
dations out of all the proofs returned, and view the recommendation
for the sites in the vicinity that she cares about. Since theputLoca-
tionInfo call stores the data in a bucket that is approximately close
to the input (x, y), all proofs intended for the locations in the same
vicinity end up in the same bucket. This enables users (at thein-
tended location, or remotely browsing say from home) to obtain
information about the vicinity of the specified location. Finally,
the applications on the client devices can make additional calls by
providing the longitude-latitude values that are close to the current
location of a user to view a larger neighborhood when necessary.

In the reminders application, the user creating the reminder gen-
erates a transaction proof and stores it on the server viaputFriend-
Info. Later, her friends download the reminders viagetFriendInfo.
Only the friend user to whom the reminder is intended stores the
reminder in the device and the rest of them discard it. The applica-
tion on the mobile remembers this reminder and generates an alert
for the receiver when she is near the reminder location.

Finally, to implement the friend locator, each user periodically
stores her current location (in a transaction proof) via aputFriend-
Info call, and each user’s mobile periodically obtains the location
of all friends viagetFriendInfo, computes the distance between the
friends on the mobile and plots it on a map.

5. PRIVACY ANALYSIS AND TRADEOFFS
In this section we describe the intuition behind the privacyguar-

antees provided by our design. We first describe the properties of
the server interface, and then look at the impact of compromising
several end-points in the system.

5.1 Server Interface Privacy and Tradeoffs
Now we look at the privacy and the performance properties of

the interfaces in Table 1, and potential ways to strengthen them.
FriendInfo get and put Calls. These calls provide strong privacy
guarantees. Only the friend users with appropriate keys candecrypt
the data of a user. Since these calls are targeted for a specific user,
they are also efficient – transmit exactly the data that is requested.
LocationInfo get and put Calls. There is a clear performance
vs. privacy tradeoff in designing thegetLocationInfocall. In the
getLocationInfointerface in Table 1, the user needs to decrypt all
the proofs she obtains from the call to see which ones belong to her
friends. One potential way to improve the performance is to tag
each proof stored via aputLocationInfocall with an Id (or public
key) of the user that generated the proof. However, this tag clearly
leaks location privacy of users in case the server’s data leaks.

An approach to achieve both performance and privacy in this call
is to tag the proofs with an userId that changes periodicallyin a
known pattern (known only to friends). For example, users can ex-
change a salt in their friendship proofs and periodically change the
tags associated with the new proofs stored viaputLocationInfous-
ing random numbers generated from this salt. This enables friends
to query a specific user’s data at a given location using thesetags,
but the server will not be able to relate the different tags tothe same
user. Thus, users do not lose privacy and yet the returned results can
be filtered by users. Due to the involved nature of this solution, we
did not present it in Table 1.

An additional dimension to further filter the returned results is
by associating tags related to the locations themselves. Tags such
as the site type – restaurants, gas station, etc. We leave details of
this for future work.

5.2 Impact of Several Potential Attacks
Compromised Client. A compromised client can leak the lo-
cation privacy of all her friends. Thus, informing friends of com-
promised key/device is critical. Revoking keys, unfortunately, is an
expensive operation in several crypto systems. As a result,we rec-
ommend that the users protect access to their keys via passphrases
to reduce the chance of key compromises even if the client device
is compromised or lost.
Compromised Third-party Storage Server (Stronger Threat Model).
If the data on the server is leaked to an attacker not in the social net-
work, the user privacy is still preserved as no data can be decrypted
by the attacker, and hence the attacker cannot associate an user with
a location. However, if the attacker were to monitor the incoming
connections on the compromised server passively, then the attacker
might be able to associate the (x, y) locations in theputLocation-
Info call with information gleamed from the connection [15] such
as the client’s browser, SSID, IP address, among others and hence
potentially associate a location with an user. However, these attacks
can be averted by scrubbing the connection off such information
with privacy proxies such as Privoxy. In addition, using anonymous
routing [5] can further enhance privacy against such attacks. But
unfortunately, using heavy-weight anonymous routing techniques
incur significant performance (bandwidth/latency) penalty on the
clients. Given that certain reputed storage servers (such as Amazon
S3) are less likely to be compromisedandpassively monitored for
long time, we believe that heavy-weight techniques are not neces-
sary for reputed storage servers by default.
DoS Attacks on the Server. Like any other shared storage server,
our design is also vulnerable to DoS and pollution attacks. But
existing mechanisms to combat these attacks also work for us.

6. RELATED WORK
Mechanisms to Preserve Location Privacy. A well-known
mechanism used to improve user location privacy is spacial and
temporal cloaking [12], wherein the location and time sent to the
server is approximated instead of sending the real value. The intu-
ition is that this prevents accurate identification of the location of
the users, and thus improves privacy. This approach, however, hurts
the accuracy and timeliness of the responses from the server, and
most importantly, there are several simple attacks on thesemecha-
nisms [10,14,16] that can still break user privacy.

Pseudonyms and silent times [15] are other solutions proposed
to improve location privacy. They argue for changing the device
identifier frequently, and not transmitting signals for long periods
at regular intervals, thus hurting functionality and disconnecting
users from applications. The primary problem with majorityof the
solutions proposed to date is that they build on the model where
the third-party servers are entrusted with location data inplain text.
Compromising such a server easily leads to large-scale privacy leaks.
Novel Applications and Location Privacy. AnonySense [5] re-
cently proposed using an anonymous routing overlay to preserve
user location privacy. While this system supported a limited inter-
face only to upload non-real-time data to the servers, several mech-
anisms used in this system are complementary to our work here.

Several researchers have looked at building specific mobileso-
cial applications while preserving user privacy. SmokeScreen [6]
is designed to share presence information only with trustedusers,

and missed connections [19] looks at connecting users that shared a
physical location without compromising their privacy at the server.
We share the privacy goal with these papers, but we are attempting
to build a framework for supporting a variety of applications.

The friendship proof construction is similar to that of location
proofs proposed in [22], and the social attestations proposed in [28].
The primary difference is that social attestations are usedfor social
access control of data in Lockr [28], and location proofs [22] are
mainly focused on enabling novel class of applications.
Encryption to Improve Privacy. Similar to our approach, Per-
sona [3] encrypts all data shared among users in a social network.
While we focus on location privacy and using symmetric crypto
for efficiency on mobile devices, Persona focuses on online social
networks and on providing fine-grained privacy controls to users.
Hence Persona uses attribute-based encryption which are signifi-
cantly heavy-weight for mobile devices.
Decentralized Social Networks. VIS [4] argued for a decentral-
ized approach to build mobile social applications using compute
clouds. Similarly, PrPl [24] built a decentralized social network
where users store their data in personal Butlers. PrPl uses anovel
language called SociaLite to execute queries over this distributed
network of Butlers. This language ensures that user access control
policies are honored, and hence preserves user privacy. In these
proposals, however, the cost of owning and operating this decen-
tralized network is an hindrance to widespread deployment.
Social and Policy Changes. A recent paper [26] argued for
social and policy changes in addition to technical changes to pro-
vide user privacy in mobile environments. It argued for a system
architecture that includes strict access control policies, data visual-
ization tools for users to understand the full impact of datashared
on privacy, and allow for users to change the access control policies
when they wish. Incorporating our mechanisms into this architec-
ture would further improve user privacy.

7. FUTURE WORK AND CONCLUSIONS
We argued in this paper that location-based mobile social appli-

cations (LBSAs) need to take an approach where the application
intelligence is moved to the clients and the servers simply act as
rendezvous points to share encrypted data. We provide evidence
to show that this approach is flexible enough to implement several
widely-used applications, and yet preserves location privacy of the
users – a property lacking in today’s systems.

Our current design is tailored for location-based social applica-
tions. We can further extend and apply our design to other contexts,
including non-social applications. This would improve theapplica-
bility of our work significantly: (i) Several more applications can
adapt our approach, and (ii) Even users of social applications can
benefit by using data from non-friends, which is especially use-
ful for users with only a handful of friends. The key challenge
in extending our approach to non-social applications is encryption
key management. Key management is currently done by the users
based on their offline social network, which is lacking in non-social
applications. Thus we need to develop novel mechanisms for users
to securely discover the keys used to encrypt the data on the server,
without revealing the key to the server itself.

In addition to resolving the above-mentioned challenge, weare
also working on implementing and deploying the applications de-
scribed in this paper on mobile devices. We intend to report on our
experience regarding the performance, energy-efficiency,overhead,
and usability of our proposed approach in the future.

8. REFERENCES

[1] Mobile LBS on the move, Oct. 2008.http://www.
emarketer.com/Article.aspx?R=1006609.

[2] A NANTHANARAYANAN , G., ET AL . Combine: leveraging
the power of wireless peers through collaborative
downloading. InProc. of MobiSys(2007).

[3] BADEN, R., BENDER, A., SPRING, N., BHATTACHARJEE,
B., AND STARIN , D. Persona: An online social network
with user defined privacy. InProc. of SIGCOMM(2009).

[4] CÁCERES, R., ET AL . Virtual individual servers as
privacy-preserving proxies for mobile devices. InProc. of
MobiHeld (2009).

[5] CORNELIUS, C., ET AL . AnonySense: Privacy-aware
people-centric sensing. InProc. of MobiSys(2008).

[6] COX, L. P., DALTON , A., AND MARUPADI, V.
Smokescreen: Flexible privacy controls for presence-sharing.
In Proc. of MobiSys(2007).

[7] DAILY NEWS. How cell phone helped cops nail key murder
suspect secret ’pings’ that gave bouncer away, Mar. 2006.

[8] FREEDMAN, M. J.,AND NICOLOSI, A. Efficient private
techniques for verifying social proximity. InIPTPS(2007).

[9] FROEHLICH, J.,AND KRUMM , J. Route prediction from trip
observations.Society of Automotive Engineers(2008).

[10] GOLLE, P.,AND PARTRIDGE, K. On the anonymity of
home/work location pairs. InProc. of Pervasive(2009).

[11] GRACE, F. Stalker victims should check for gps, Feb. 2003.
[12] GRUTESER, M., AND GRUNWALD , D. Anonymous usage of

location-based services through spatial and temporal
cloaking. InProc. of MobiSys(2003).

[13] HENDRICKSON, M. The state of location-based social
networking, Sept. 2008.

[14] HOH, B., ET AL . Enhancing security and privacy in
traffic-monitoring systems. InIEEE Pervasive Computing
Magazine(2006).

[15] JIANG , T., WANG, H. J.,AND HU, Y.-C. Preserving
location privacy in wireless lans. InProc. of MobiSys(2007).

[16] KRUMM , J. Inference attacks on location tracks. InProc. of
Pervasive(2007).

[17] KRUMM , J. A survey of computational location privacy.
Personal and Ubiquitous Computing(2008).

[18] L I , K. A., ET AL . Peopletones: a system for the detection
and notification of buddy proximity on mobile phones. In
Proc. of MobiSys(2008).

[19] MANWEILER, J.,AND OTHERS, R. We saw each other on
the subway: Secure, anonymous proximity-based missed
connections. InProc. of HotMobile(2009).

[20] M ILUZZO , E., ET AL . Sensing meets mobile social
networks: the design, implementation and evaluation of the
cenceme application. InProc of SenSys(2008).

[21] MOTANI , M., SRINIVASAN , V., AND NUGGEHALLI , P. S.
Peoplenet: engineering a wireless virtual social network.In
Proc. of MobiCom(2005).

[22] SAROIU, S.,AND WOLMAN , A. Enabling new mobile
applications with location proofs. InHotmobile(2009).

[23] SCHILIT, B., HONG, J.,AND GRUTESER, M. Wireless
location privacy protection.

[24] SEONG, S.-W.,ET AL . The architecture and implementation
of a decentralized social networking platform. Tech. rep.,
Stanford, October 2009.

[25] SHEN, G., LI , Y., AND ZHANG, Y. Mobius: enable
together-viewing video experience across two mobile
devices. InProc. of MobiSys(2007).

[26] SHILTON , K., ET AL . Designing the personal data stream:
Enabling participatory privacy in mobile personal sensing. In
In TPRC(2009).

[27] SOHN, T., ET AL . Place-its: A study of location-based
reminders on mobile phones. InProc. of Ubicomp(2005).

[28] TOOTOONCHIAN, A., GOLLU , K. K., SAROIU, S.,
GANJALI , Y., AND WOLMAN , A. Lockr: social access
control for web 2.0. InProceedings of WOSN(2008).

