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ABSTRACT

Link prediction in dynamic networks is a well studied topic.
Yet until recently, validation of algorithms has been ham-
pered by limitations in the size and realism of empirical
datasets. In this work, we seek to revisit and reassess the
value and accuracy of prediction methods, by leveraging our
access to several large, detailed traces of dynamics in online
social networks (Facebook, Renren, YouTube). Our goals
are to understand the absolute and comparative accuracy of
existing prediction algorithms, and to develop techniques to
improve them using insights from analysis of network dy-
namics.

We implement and evaluate 18 link prediction algorithms,
labeled as either “metric-based” (those that predict poten-
tial links using a single similarity or proximity metric) or
“classification-based” (those that use machine learning clas-
sifiers with multiple metrics as input features). Despite poor
performance in absolute terms, SVM classifiers consistently
perform the best across all our traces. Its accuracy is oc-
casionally matched by metric-based algorithms, but never
consistently across datasets. Finally, we use observations of
network dynamics to build “filters” that dramatically reduce
the search space for link candidates. Augmenting current
algorithms with our filters dramatically improves prediction
accuracy across all traces and algorithms.

1. INTRODUCTION

Link prediction is the problem of predicting formation of
new edges on a given network. It is a fundamental problem
that applies to networking in numerous contexts, including
the Internet, the web, and online social networks. The sheer
number of studies, including proposals for algorithms and
models [2, 3, 9, 13, 14, 20, 23, 24, 26, 32, 33, 35, 39, 42],
underscores the importance of the problem to a variety of
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applications, ranging from resource allocation in online ser-
vices to offline efforts in counter-intelligence and counter-
terrorism [19, 21].

As a technical problem, the efficacy of link prediction is
generally not well understood. Today, link prediction algo-
rithms are the basis for social recommendations in a wide
range of social networks and applications, ranging from Face-
book and Pinterest to personal streaming on Periscope and
Q&A sites like Quora. The success of these sites and the
sheer volume of prior literature lead many to believe the
problem is well addressed. Only evidence to the contrary
comes from anecdotes of failed recommendations that trig-
ger potential privacy concerns [16].

Despite years of research in this space and hundreds of
publications (only a small subset of which is cited here),
there has been little opportunity to study these proposals
from an empirical perspective. Until recently, public datasets
of network dynamics have been limited to co-authorship stud-
ies and patent citation graphs, moderate sized networks which
scale up to 20K nodes and 200K edges [4, 36]. In contrast,
algorithms developed using and validated by these datasets
are targeting dynamic networks that are two or more orders
of magnitude larger, with millions or billions of nodes and
billions of edges [44].

Thankfully, things are changing with the arrival of net-
work traces from online social networks (OSNs). We are
taking advantage of this opportunity (and availability to large
traces of network dynamics) to step back and reassess the
space of link prediction algorithms from an empirical per-
spective. We are motivated by questions such as:

• How far have we come in understanding network growth

and predicting the underlying processes that drive it? How

far do we have to go?

• What lessons can we draw from the successes (and fail-

ures) of existing algorithms?

• Can we improve existing approaches by leveraging more

data, e.g. detailed temporal network history?

In this work, we perform an empirical study using large
traces of network growth from three large OSNs, Facebook,
Renren (Facebook equivalent in China), and YouTube. In
each case, detailed timestamps capture the time when spe-
cific edges were created between nodes (users) in the net-
work. To the best of our knowledge, these are the only



publicly available datasets suitable for this study, both suf-
ficiently large and with sufficiently detailed timestamps to
capture graph dynamics. These traces cover substantial sub-
sets of users in each network, and in the case of Renren, the
entire user population at a time when the network included
10 million users. We discretize these traces into numerous
temporal snapshots, and use them to drive the evaluation of
18 representative link prediction algorithms. Finally, we use
our lessons and observations from analyzing these network
dynamics to build “filters” that help prune the set of candi-
date nodes for edge creation. By applying these filters before
link prediction, we can reduce the search space and focus on
regions of likely growth.

To better understand and compare results across predic-
tion algorithms, we classify them into two groups. First,
Metric-based prediction algorithms define specific metrics
that can be computed for all potential links, where a poten-
tial link with a higher score on the metric indicates a higher
probability of formation. For our analysis, we implemented
14 distinct metrics that had scalable algorithms in existing
literature. In contrast, classification-based prediction algo-

rithms utilize machine learning classifiers that take multiple
metrics as input features, and produce a prediction of like-
lihood of formation for each potential link. Some methods
produce a detailed probability while others produce a binary
result. Experiments in our study cover support vector ma-
chines (SVM), logistic regression, naive Bayesian networks,
and random forests, each using all 14 metrics as input fea-
tures. Our experiments show that more complex techniques,
e.g. larger ensemble methods do not produce noticeable im-
provements in accuracy.

As our first result, we find that link prediction perfor-
mance remains poor in absolute terms. Correctly predict-
ing link formation within some timeframe is difficult, and
the problem only grows harder, as each new node brings
∼N more potential links to a network of size N . Second,
we find that for each of our traces, metric-based prediction
algorithms vary significantly in accuracy. In each case, a
small subset of metric-based predictors do as well as (and
occasionally outperform) the most accurate machine learn-
ing based classifier (SVM in all cases). We note that while
a few metrics perform consistently well, no single metric
predictor consistently performs as well as SVM across all
networks. Instead, there appears to be a strong correlation
between network structure and the relative success of spe-
cific metric-based algorithms. Machine learning methods do
well in part because they automatically adjust weights across
different metrics, emphasizing those that match the targeted
network without a priori knowledge of its structure. Without
such knowledge, we can either achieve “good” accuracy by
choosing a consistently strong metric, or achieve “near opti-
mal” accuracy by using a ML classifier (at the cost of higher
computational and training costs).

Finally, we revisit existing prediction algorithms with the
goal of augmenting them by leveraging knowledge of past
network dynamics. Our insight is to provide “temporal fil-
ters” that significantly reduce the set of potential new links,
reducing the search space and computational cost, while fo-

cusing predictors on more probable link candidates. Our fil-
ters are focused around trends in node activity and poten-
tial link distances, both patterns observed in this and prior
studies of network dynamics. Applying these filters produce
very encouraging results, in many cases effectively doubling
the predictive power of both metric-based and classifier-based
algorithms. Not only do these filters outperform recent meth-
ods leveraging temporal information, but they can be com-
bined with temporal methods to provide even better results.

Our key contributions can be summarized as follows:

• We carry out a comprehensive analysis of a wide range
of link prediction algorithms, studying not only their per-
formance but also possible causes of low prediction accu-
racy. We apply decision tree classifiers to identify the best
metric-based algorithms for different networks.

• We compare the two categories of link prediction methods,
i.e. metric-based and classification methods, study their
cost versus accuracy tradeoffs, and identify strategies for
choosing between them.

• We leverage insights from analysis of network growth to
design filters that improve prediction accuracy by dramat-
ically reducing the search space. In our tests, these filters
significantly improve prediction power across all methods.
Further, they outperform recent proposals that integrate
temporal information, and can be combined with them to
produce even better results.

2. BACKGROUND: LINK PREDICTION

Link prediction identifies new edges that will likely form
in the near future, by analyzing the structure of the current
network [23]. Given a graph Gt =<Vt, Et> observed at
time t, it seeks to predict new edges to be created between
nodes Vt at time t′ (t′ > t).1 Note that we focus on pre-
dicting future links at some time t, which is different from
the detection of missing links, where given a partially ob-
served graph, it identifies link status for unobserved pair of
nodes [17, 29].

Existing link prediction algorithms naturally fall into two
categories, which we refer to as metric- and classification-

based. We list and classify all of the known popular predic-
tion algorithms in Table 1, which are algorithms we focus
on in this work, and their details will be introduced later in
Table 3. Metric-based algorithms estimate the likelihood of
future connectivity between unconnected nodes, by gener-
ating a numeric score based on some graph-based heuris-
tic [23] or models [9, 35]. All potential node pairs are sorted
by score to determine the most likely future edges. In con-
trast, classification-based algorithms treat link prediction as
a classification problem [3]. Using scores by metric-based
algorithms and maybe other information as training features,
these classifiers then “separates” the node pairs that will likely
connect in the near future from those that will not. Some
classifiers also produce a granular similarity score, which
can be used to rank node pairs.
1This is the most common form of link prediction. It does
not consider edges created by new nodes who join after t,
nor edges that might disappear after their creation.



Metric-Based Prediction Classification-Based Prediction

Heuristics Learning Models e.g., SVM,
e.g., CN, JC, AA, RA, Probabilistic Matrix/Tensor Logistic Regression,

LP, SP, PA, Katz, Models Based Naive Bayes,
LRW, PPR e.g., BCN, BAA, BRA e.g., Rescal Random Forest

Table 1: Summary of link prediction algorithms, with details listed in Table 3.

Graph
Trace Start Trace End Time Snapshot # of

Date Nodes Edges Date Nodes Edges Granularity Delta (k) Snapshots

Facebook (New Orleans) [41] 09/05/06 48,969 339,098 01/21/09 63,731 817,090 Seconds 15K 31
YouTube (Snowball Crawl) [30] 02/09/07 1,406,188 3,466,440 07/23/07 3,223,589 9,376,594 Days 250K 21

Renren (Non-sampled) [44] 01/01/07 1,413,731 13,616,792 12/31/07 10,572,832 199,564,006 Seconds 10M 17

Table 2: Statistics of the three OSN datasets.

Next, we describe these two categories of algorithms in
detail and highlight their differences.
Metric-based Prediction. Metric-based link prediction
algorithms quantify and rank node pairs by their likelihood
of forming new edges, based on specific metrics that cap-
ture similarity or proximity between nodes [23]. For sim-
plicity, we refer to the entire group as “similarity metrics,”
and further divide them into heuristics, or more complicated
learning models, as shown in Table 1.

Many popular metric-based algorithms are heuristics based
on common intuitions of graph formation [23], e.g., two cur-
rently unlinked nodes with the most commonly connected
nodes are most likely to link in the future. Those hypotheses
are driven by graph structural properties and do not require
metadata. They generally focus either on node neighborhood
information, where they capture properties of the common
neighborhood between nodes of 2-hop distance, e.g. Com-
mon Neighbors [32] and Adamic Adar Index [2], or on path
properties such as shortest path length [20].

Link prediction can also be performed by inferring the
likelihood of two nodes forming an edge based on learn-

ing models. One way is to use probabilistic models cali-
brated by measurements on Gt. For example, [9, 13] assume
a specific underlying structure of hierarchies or communi-
ties exists in the graph Gt, and model parameters are esti-
mated using maximum likelihood. Another approach is to
extend the field of relational learning to link prediction [39,
42]. However, these underlying models either do not scale
to large graphs (due to complexity in parameter learning)
or rely on special conditions that do not generalize to com-
mon networks such as social networks [42]). Only the local
naive Bayes model [26] meets the needs of large, general-
ized graphs. Other metrics use matrix (tensor) techniques on
matrix representations of graphs. They capture node simi-
larity in a latent space, defined by different models [33, 35].
Among them, only Rescal [33] has been shown empirically
to scale to large graphs of millions of nodes.
Classification-based Prediction. While metric-based
algorithms are known for their simplicity [23], performance
can vary significantly depending on the specific similarity
metric used. Existing work has shown the best metric varies
across datasets and there is no unified solution [23, 24].

The alternative is what we call classification-based meth-
ods. Instead of using a certain similarity metric, one can
build automated classifiers to explore multiple similarity fea-
tures [24]. Compared to single metrics, classifiers face the
challenge of high computational complexity, (e.g. feature
selection and training), especially for massive OSNs [14].

3. DATASETS AND METHODOLOGY

We now describe the datasets used for our study and our
experimental methodology.

3.1 Datasets

Our study uses large traces of dynamic network growth
from three different networks, Renren, Facebook, and YouTube.
As far as we know, these are the only publicly available
large-scale datasets suitable for this study, which have suffi-
ciently detailed timestamps to capture graph dynamics, i.e.,
the time when each edge (link) was created between nodes
(users).

The Renren [44] data includes creation of every edge in
the entire Renren network during a period of over 2 years
(from its first edge, to 10 million users, 199 million edges
when the trace ends). The Facebook trace [41] includes
edges created in the New Orleans regional network over 2+
years. The YouTube trace [30] includes edges recorded from
daily snowball crawls of a user community that grew from
1 million to 3 million users over a period of 5 months. To
avoid disruptions from external events, i.e., the network pol-
icy changes in Youtube, and a one-time network merge event
for Renren (Renren merged with its largest competitor in
December 2006), we use continuous subtraces that do not
include the external events in question. Statistics on all three
traces are summarized in Table 2.

We show each network’s daily growth in nodes and edges
in Figure 1. While the three networks all continue on expo-
nential growth trajectories (Facebook has a number of 49K
users at the beginning while the other two has 1.4M users),
we see Renren is on a much faster growing pace. This is be-
cause both the Facebook and YouTube datasets are sampled
networks, i.e., Facebook dataset is a regional network and
YouTube dataset depicts the growth of a user community.
Figures 2-4 provide a quick look at the change in basic net-
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Figure 1: Daily new nodes and edges in the three networks.
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Figure 2: Average node degree
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Figure 4: Average clustering coefficient

work properties over its evolution, including average node
degree, path length, and clustering coefficient. Unsurpris-
ingly, average node degree for all three networks grows over
time. In comparison, Renren and Facebook are much denser
than YouTube. Unsurprisingly, networks grow and densify
over time, and their average path length shrinks. YouTube
has the largest path length due to its sparsity.

3.2 Methodology

Existing link prediction studies focus on predicting edges
between two static snapshots [23, 3, 11], and most do not
capture the evolution of fast growing networks such as OSNs
like Facebook, LinkedIn and Renren. In contrast, our work
seeks to answer two key questions:
Q1: Can existing algorithms accurately predict the continu-
ous edge (or link) growth of today’s large, dynamic, online
social networks?
Q2: Can we utilize temporal network data to improve pre-
diction accuracy?
Evaluating Link Prediction on Graph Sequences. To
answer these questions, we apply a sequence-based frame-
work to evaluate existing link prediction algorithms as the
network grows. We process each dataset to generate a se-
quence of graph snapshots (G1, G2, ..., GT ) while keeping
the number of new edges created in each snapshot constant.
We refer to this number as the snapshot delta. We run each
algorithm in every graph snapshot Gt−1(1 < t ≤ T ) to pre-
dict new edges (among existing nodes) that will appear in
the next snapshot Gt, and compare them to the ground truth,
i.e. the actual new edges found in Gt. We choose the snap-
shot delta value to ensure sufficient number of snapshots for
analysis (> 15) while ensuring duration between two succes-
sive snapshots is not too long (< 2 weeks). Specific values
and the resulting number of snapshots for each dataset are
listed in Table 2.

To address Q1, we evaluate 14 different metric-based al-
gorithms that can scale to our large datasets, and 4 widely
used classification-based algorithms. For each algorithm, we
study its prediction accuracy as the network grows and iden-
tify potential causes for any loss of accuracy. We answer
Q2 by analyzing the temporal properties in edge creation to
identify and utilize trends as additional metrics to improve
prediction accuracy.
Implementing Metric-based Algorithms. We first cover
10 most popular heuristics: Common Neighbors (CN), Jac-
card’s Coefficient (JC), Adamic/Adar Index (AA), Resource
Allocation Index (RA), which focus on capturing proper-
ties of the common neighborhood between nodes of 2-hop
distance; Preferential Attachment (PA), which is based on
node degree; Local Path (LP), Local Random Walk (LRW),
Shortest Path (SP), Personalized PageRank (PPR), and Katz,
which are driven by path properties. We also include 1 tensor-
based algorithm, i.e., Rescal [33], which works by condens-
ing the interaction among nodes into a latent space. And
finally we implement 3 probabilistic algorithms [26], which
account for different roles by different common neighbor-
ing nodes between node pairs, i.e., Local Naive Bayes based
Common Neighbors (BCN), Local Naive Bayes based Adamic
Adar (BAA), and Local Naive Bayes based Resource Allo-
cation (BRA). These cover the metric-based approaches (see
Table 1), and we summarize their detailed implementation in
Table 3.

We also fine-tune our implementation by identifying the
best parameters and approximation methods (if any) based
on results of our own experiments and from prior studies.
Specifically, LP requires a weight parameter ǫ for 3-hop paths,
and ǫ = 0.0001 provides the highest accuracy. For PPR,
we configure the restart probability α = 0.15 as suggested
by prior work [5]. For Katz, we set β = 0.001 as sug-
gested by [1], and implement two approximation methods:



Metric-based Algorithms Precise Formulation

CN (Common Neighbors) [32] |Γ(u) ∩ Γ(v)|

JC (Jaccard’s Coefficient) [23] |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)|

AA (Adamic/Adar) [2]
∑

w∈Γ(u)∩Γ(v)
1

log(deg(w))

RA (Resource Allocation) [45]
∑

w∈Γ(u)∩Γ(v)
1

deg(w)

BCN [26] |Γ(u) ∩ Γ(v)| log(s) +
∑

w∈Γ(u)∩Γ(v) log(Rw),

where s = |V |(|V |−1)
2|E| − 1,Rw =

N△w+1
N∧w+1 , N△u (N∧u): # of triangles (non-triangles) involving u.

BAA [26]
∑

w∈Γ(u)∩Γ(v)
1

log(deg(w))(log(s) + log(Rw))

BRA [26]
∑

w∈Γ(u)∩Γ(v)
1

deg(w) (log(s) + log(Rw))

Katz [18]
∑∞

l=1 β
l · |paths<l>

u,v |
where β > 0, paths<l>

u,v : all l-hop paths between u andv
LP (Local Path) [45] |paths<2>

u,v |+ ǫ · |paths<3>
u,v |

PPR (Personalized PageRank) [5] πu,v + πv,u

where πu,v: probability of a random walk from u to v with a restart probability α ∈ [0, 1]

LRW (Local Random Walk) [25] deg(u)
2|E| πuv(m) + deg(v)

2|E| πvu(m), where πuv(m): probability from u to v after m steps
SP (Shortest Path) # of hops on shortest path between u and v

PA (Preferential Attachment) [6] deg(u) · deg(v)
Rescal [33] XRXT (u, v) +XRXT (v, u)

where adjacent matrix A ≈ XRXT , X : a |V | × r matrix, R: a r × r matrix

Table 3: The 14 metric-based algorithms used for our study. Notations: given graph G =< V,E >, u and v are two

graph nodes, Γ(u) denotes the neighbors of node u, deg(u) represents the node degree of u.

low rank approximation (Katzlr) [1] and scalable proximity
estimation (Katzsc) [38]. Our experiments in §4 show that
while more accurate than Katzsc, Katzlr does not scale to
larger networks, since it computes Katz score for all candi-
date node pairs2. Thus for Renren and YouTube, we termi-
nate the Katzlr experiments at snapshots of 65M edges and
5.5M edges, respectively.

In terms of computation cost, the local metrics (CN, JC,
AA, RA, BAA, BCN, BRA) are easy to compute since we
only need to compute each node’s 2-hop neighbors. PA is
also fast because one can optimize the implementation to
only consider top-K node pairs. Even for our largest Renren
graph, the computation for the above eight metrics finishes
within a few minutes (we run the C++ implementation on 10
standard servers, each with 8 cores and 192GB RAM). The
next three metrics (LRW, PPR and LP) take a few hours to
compute because LRW and PPR require random walk com-
putation while LP requires reaching 3-hop neighbors. Fi-
nally, the most complex metrics (Rescal, Katz and SP) take
a few days to complete since they require node embedding.
We also note that for the classifier-based methods, the com-
putation complexity is dominated by feature calculation, i.e.

computing the above similarity metrics.

4. METRIC-BASED PREDICTION

Our empirical evaluation begins with metric-based pre-
diction algorithms. We seek to understand their prediction
accuracy, and the key factors that lead to prediction errors.

4.1 Experimental Setup

2Even using 8 machines with 192GB memory each, calcu-
lating Katzlr for a Renren snapshot with 185M edges takes
27 days.

Given a sequence of snapshots {G1, G2, ..., GT }, we pre-
dict the new edges to appear in Gt based on observed Gt−1.
For each of the 14 metric-based algorithms, we compute the
similarity metric score for each unconnected node pair, and
select the top k node pairs with the highest score. While
the choice of k may affect prediction accuracy, we use the
ground truth value, i.e. k equals the number of new edges
among Vt−1 nodes appeared in Gt but not in Gt−1. This
allows us to focus on the effectiveness of similarity metrics.
As a baseline for comparison, we also implement a random

prediction algorithm, which uniform-randomly picks k un-
connected node pairs from Vt−1 as the predicted new edges
in Gt.
Performance Metrics. We follow the established prac-
tice of evaluating each link prediction algorithm by compar-
ing results to those from random prediction, i.e. in terms
of the factor improvement over random [23]. Specifically,
given a similarity metric M , let EM

t represent the set of cor-
rectly predicted node pairs that become connected in Gt, i.e.

the overlap between the predicted top k node pairs to connect
and those that actually connect in Gt. Let ER

t be the set of
correctly predicted edges using random prediction, with an
expected size of |ER

t |. Thus the performance metric is the
improvement factor or accuracy ratio [23], |EM

t |/|ER
t |. If

the ratio is larger than 1, prediction using metric M is more
accurate than random prediction (by predicting k edges).
Note that we choose to use accuracy ratio rather than the
area under the receiver operating characteristic curve (AUC)
because AUC evaluates link prediction performance accord-
ing to the entire list of the predicted node pairs [28], while
our goal is to evaluate the accuracy of top k predicted node
pairs. This allows us to focus on examining the effectiveness
of similarity metrics.
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Figure 5: Link prediction performance (in terms of accuracy ratio) of all metric-based prediction algorithms. We omit

the results of CN, AA and RA because they perform similarly (slightly worse) than their Local Naive Bayes versions,

i.e. BCN, BAA and BRA. The results for Katzlr in Renren and YouTube are capped to 65M and 5.5M edges due to

computation complexity.

Network JC BCN BAA BRA LP LRW PPR SP Katzlr Katzsc Rescal PA
Renren 1.72 2.40 3.22 3.52 1.75 1.06 2.44 0.053 0.82 0.018 0.091 0.0068

Facebook 1.21 6.17 6.82 4.43 5.53 2.11 1.06 0.10 9.41 1.85 4.45 0.21
YouTube 0.22 0.59 0.53 0.44 0.60 0.58 0.23 0.0021 0.98 1.44 1.75 0.38

Table 4: Best possible absolute accuracy (%) of all prediction methods on each dataset.

4.2 Metric-based Prediction Accuracy

Absolute Prediction Accuracy. We start by first looking
at the raw prediction accuracy results in absolute terms, i.e.

ratio of correctly predicted edges that match real new edges.
For each consecutive pair of snapshots Gt−1 and Gt, we ap-
ply each prediction algorithm on Gt−1 generate the next k
links likely to form, and compute the overlap in the result
with the k links actually formed in Gt: |EM

t |/k.
Prediction accuracy was quite low across the board, for

all algorithms on all snapshots across all of our datasets.
To highlight these accuracy results, we show in Table 4 the
highest absolute accuracy results obtained by each algorithm
over any snapshot pair across our datasets.

It is clear to see that in absolute terms, link prediction per-
forms poorly in practice. While some methods consistently
do better than others, the best they can do is accuracy in the
single digits in percentages, e.g. 5–6%. The best results tend
to come from the Facebook dataset, likely because it’s sig-
nificantly smaller (33 times fewer nodes) than the Youtube
and Renren datasets. The single best result is Katzlr, which
reaches 9.41% on Facebook, but fails to reach even 1% on
the larger datasets. Note that our definition of “accuracy”
is loose, in that it only requires a predicted link to appear
within some range of k new links (see Table 2), where k rep-
resents all links created in a time period ranging from one
week (YouTube) to four weeks (Renren).

These numbers are likely to be significantly lower for real
networks, which contain orders of magnitude more nodes
(and therefore many orders of magnitude more potential new
links) than our datasets, e.g. Facebook, WhatsApp, Pinter-
est etc. While our results are limited by reliance on only
network structure (existing links), these results highlight the
fact that link prediction is far from a solved problem. These
results explain why link prediction literature typically uses
the accuracy ratio [23], which compares results to a purely
random algorithm. We will use the accuracy ratio metric for
the rest of our analysis.
Accuracy Ratio Results. We present prediction results
of our 14 metric-based algorithms in Figure 5, as the accu-
racy ratio over the sequence of snapshots for each OSN (marked
by their total edge count). We omit the results of CN, AA
and RA because they perform similarly (slightly worse) than
their Local Naive Bayes versions, i.e. BCN, BAA and BRA.
We include two implementations of Katz: Katzlr and Katzsc,
where Katzlr almost consistently outperforms Katzsc, but is
difficult to scale on Renren and Youtube. For the rest of the
paper we only show analysis of Katzlr and refer to it as Katz.

We make two key observations from Figure 5. First, as ex-
pected, all metric-based algorithms outperform random pre-
diction over each entire sequence of snapshots. The largest
improvement on accuracy ratio is more than 100,000 times
for Renren and YouTube, and 6000 for Facebook. A major
contributor to this magnitude of differential is the large net-



work sizes, where the accuracy of random prediction quickly
decreases as network size grows, resulting in a much higher
accuracy ratio.

Second, while the best algorithm varies across the three
networks, there are algorithms, i.e.,SP and PA, which con-
sistently perform poorly. SP gives all 2-hop node pairs the
highest score, thus its prediction is actually random choice
over all such pairs. PA tries to capture “the rich get richer”
property, which is not dominant in friendship creation net-
works (i.e., Renren and Facebook), where joint efforts from
both users are required [44]. PA achieves marginally better
accuracy ratio in YouTube, which is more of a subscription
network where popular users attract more followers.
Impact of Network Structures. As mentioned before,
Renren and Facebook are more similar in underlying struc-
tures since they are both traditional social networks. Our
results from Figure 5 align with this observation that top al-
gorithms are similar on Renren and Facebook, i.e., both in-
clude common neighbor based algorithms BRA, BAA and
BCN. Renren is slightly different from Facebook in that it is
a non-sampled graph, and therefore captures higher connec-
tivity between nodes compared to the subsampled regional
network in Facebook. Thus Katz is hard to scale on Renren
and JC and PPR perform much better. JC and PPR prefer
pairs with both low degree nodes, which are usually inac-
tive (more in §4.4) and are most common in the early phase
of our Facebook trace, and decrease as the Facebook net-
work grows over time. We can see their clearly increasing
accuracy ratio in Figure 5(b).

In contrast, YouTube is more of a subscription network,
where many super nodes with extremely high degrees re-
main super active in link creation. Thus YouTube has much
higher node heterogeneity and lower network assortativity.
We find that more than 40% new edges involve the top 0.1%
nodes with highest degrees in YouTube, while only less than
3% for Facebook and Renren. Also, among edges created
by super nodes, most are low degree nodes (80% with de-
gree < 20). We confirm this by measuring the assortativity
for each network. It stays consistently negative for YouTube,
and generally positive for the other two.

The difference in network structures produces significantly
different link prediction results in YouTube. Because they
prefer node pairs with both high degrees, BRA, BAA and
BCN do not rank highly amongst metrics (note that the y-
axis in Figure 5 is in logscale). PPR and JC perform very
poorly because most nodes have very low degree (∼80%
nodes with degree ≤ 3). The outperformer is Rescal, which
achieves extremely good performance. Rescal works by con-
densing the interaction among nodes into a much smaller
latent space, where it models the interaction between la-
tent components instead, and assigns nodes corresponding
weights for each latent component. Intuitively, super nodes
are critical in many roles thus have much higher weights,
leading to a higher final score. Our results also confirm that
super nodes are weighted extremely highly while the rest
share similar weights. In this way Rescal best captures the
negative assortativity in YouTube.

Degree

Standard

Deviation

Median

Degree
Rescal

Katz BRA, RA

> 60.3 ≤ 60.3

≤ 8 > 8

Figure 6: Visualization of classification results on choos-

ing the best metric-based algorithm.

Correlation of Accuracy with 2-hop Edge Ratio. We
observe that most algorithms increase in accuracy ratio with
network growth, but only for Renren and YouTube, not Face-
book. Our analysis shows that this could be explained by a
dependence on link creation between 2-hop neighbors, i.e.
λ2, the percentage of 2-hop node pairs in Gt−1 who form
edges in Gt. A plot of λ2 shows that it increases with net-
work growth in Renren/YouTube, but decreases (after a match-
ing spike) in Facebook. This is explained by the trend to-
wards “densification” over time [22]. This is disrupted in the
Facebook trace, because subsampling over the regional net-
work breaks an increasing number of cross-regional edges as
the network grows. We compute the average Pearson corre-
lation of the top-performing 6 metrics for each graph to λ2.
The results are 0.95 for Renren, 0.83 for YouTube and 0.81
for Facebook.
Summary. Our results produce two key takeaways.
First, the underlying network structure heavily impact pre-
diction accuracy of metric-based algorithms (in terms of ac-
curacy ratio). The more similar network structures in Ren-
ren and Facebook (links in which are both the abstraction of
friendship between users, while YouTube is more of a sub-
scription network) means their prediction results show con-
sistent relative performance. Second, prediction accuracy of
most metric-based algorithms strongly correlate with the ra-
tio of 2-hop edges in network evolution, because their pre-
dictions are dominated by 2-hop edges.

4.3 Choosing Metric-based Algorithms

Since network structures heavily impact the performance
of metric-based algorithms, a natural question is “given a
network, can one predict the best link prediction algorithm?”
And similarly, “given an algorithm, can we characterize the
kind of networks on which it provides the most accurate link
prediction?”

We answer the first question by training a multi-class clas-
sifier (decision tree), where the input features are the net-
work properties and each class represents a (winning) link
prediction algorithm (14 classes in total). We treat each
graph snapshot as a data point, and create 69 data points
across our three datasets. We consider the following features
(computed from each snapshot): node count, edge count,
node degree distribution (average, standard deviation, x-percentile),
clustering coefficient, average path length, and network as-
sortativity.

Figure 6 shows the resulting decision tree, where Rescal,
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Metric Predicted Edges Real Edges

Rescal 99.5% 0.5%
LRW 66.7% 0.6%
Katz 39.7% 0.6%
LP 33.3% 0.5%

BCN 24.2% 0.5%
BAA 16.4% 0.5%
BRA 4.7% 0.8%

Table 5: Ratio of predicted and ac-

tual created edges that involve 0.1%

most frequently predicted nodes (Ren-

ren snapshot with 55M edges).
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Katz and BRA (RA) are among the best performing algo-
rithms (consistent with Figure 5). We see that the hetero-
geneity of node degrees in the network (captured as degree
standard deviation) is the highest impact feature. It specifies
that networks with high node degree heterogeneity should
use Rescal, which aligns with our analysis in §4.2 that Rescal
prefers node pairs with higher degree heterogeneity. The
next factor is the median node degree where lower values
(≤8) marks Katz due to its limited scalability and higher
values points to BRA (RA) which prefer high-degree node
pairs.

Note that this result is not meant as a definitive guide to
choosing link prediction approaches for different types of
graphs. Our training set for the decision tree is relatively
small, and only covers three distinct types of networks. A
more “robust” result would require data from a wide range of
networks with varying characteristics, with even more snap-
shots per network. We only use the results here to demon-
strate general trends between key features, which are consis-
tent with our detailed experimental results (Figure 5).

To answer the second question, we train a binary classifier
(decision tree) for each algorithm where the inputs are the
same set of network properties. We consider an algorithm to
provide “good” prediction (i.e. positive) if its prediction ac-
curacy ratio is within 90% of the optimal algorithm. The
classification results are shown as below: (we omit algo-
rithms for which there are few or no positive results):

• Rescal: standard deviation of node degree> 60.3

• Katz: # of edges≤ 4.5M

• BRA (RA): median node degree> 7

The results are consistent: Rescal is best for networks with
high node degree heterogeneity, Katz is suitable for networks
of limited scale and BRA (RA) is best for high-density net-
works.
Summary of Observations. We train classifiers to ex-
plore the correlation between the networks and metric-based
link prediction algorithms. While we are limited to our three
large network traces, we believe our results do provide some
insights on today’s metric-based link prediction algorithms:

• On sparse and small networks, Katz is a good choice.
• On dense and large networks, BRA (RA) performs well.

• On networks with high node heterogeneity, Rescal is likely
the best solution.

4.4 Sources of Low Prediction Accuracy

While metric-based prediction largely outperforms ran-
dom prediction, accuracy is still low in absolute terms. For
example, the best similarity metric (BRA) on Renren boosts
prediction accuracy over random prediction by more than
40,000 times (at 55M edges). Yet it only achieves 3% ac-
curacy when predicting the next edge. To understand the
key reasons behind such low accuracy, we investigate both
structural and temporal aspects of each metric-based algo-
rithm, with the exceptions of PA and SP, the worst perform-
ing metrics which we discussed in §4.2. We later take our
findings into account when designing complementary pre-
diction mechanisms in §6. Our analysis shows consistency
over time and across networks. For brevity we focus our
discussion on a sample of results (Renren, 55M edges).
Structural factors. We notice that all these similarity
metrics are strongly biased by node degree. Figure 7 plots
the degree distribution of nodes associated with the predicted
edges (by each metric) and the ground truth distribution. We
see that PPR and JC are heavily biased towards low-degree
nodes, while the rest focus more on high-degree nodes. Such
bias often comes from the construction of the similarity met-
ric. Take for example BCN (and CN). In a small-world net-
work, two nodes with high degree likely share more common
neighbors, and are more likely to be chosen by the common
neighbor algorithm.

We also observe that for metrics biased towards high-degree
nodes, their results are dominated by a small number of nodes.
To illustrate this, we find the 0.1% nodes most frequently
predicted to create a new edge, and show their ratio of pre-
dicted and real edges in Table 5. We see that except for
BRA, all other similarity metrics overpredict the involve-
ment of a small group of nodes in edge creation. It makes
sense that the worst offender, Rescal, is much better suited
for a supernode-driven network like YouTube. There, its fre-
quent link predictions around supernodes matches the net-
work structure and produces much more accurate results.
Temporal factors. Our analysis also shows that these
metrics tend to predict links between less active nodes. In
particular, for each snapshot Gt, we measure the idle time

for a node v in Gt as the time gap between t and the most



recent time when v creates an edge. Figure 8 shows that the
idle time of nodes in predicted edges by all metrics are larger
than that of ground truth, meaning that they are all biased to
nodes that are dormant recently, which are less likely to form
new edges.

5. CLASSIFICATION-BASED PREDIC-
TION

Classification-based algorithms apply supervised learning
to predict links using multiple similarity metrics as features.
The key challenge is how to scale to large OSNs, i.e. being
able to predict edges among all possible node pairs. Prior
works limit the prediction coverage to a very small sub-
set of node pairs [36, 38]. Another challenge is that so-
cial networks are highly sparse, translating into highly “im-
balanced” positive (connected) and negative (disconnected)
subsets. Prior work cites data imbalance as a major cause
of low prediction accuracy [15]. In our 55M-edge Renren
snapshot for example, the ratio of positive to negative links
is 1 : 179K , and decreases further as the network grows.

In this section, we evaluate classification-based link pre-
diction in practical scenarios, using our large OSN datasets
with high data imbalance. To do so, we develop a scalable
measurement mechanism for implementing and evaluating
classification-based algorithms. We also study how they per-
form on imbalanced data and compare their results to metric-
based prediction algorithms.

5.1 Evaluation Configuration

Classification-based algorithms first train models (classi-
fiers) using labeled data and their corresponding features,
then apply the trained classifiers to test data to predict their
labels. Link prediction only requires binary classification
(“+” for creating an edge and “-” for no edge). The key
challenge in evaluating these algorithms is how to train and
make prediction on all possible node pairs – this requires
computing all the features for O(|V 2| − |E|) node pairs and
making a classification decision ( |V | and |E| the graph node
and edge count). Even for a “small” Renren snapshot (2.3M
nodes, 25M edges), it takes 88 days to compute features!
Snowball Sampling. To address this challenge, we con-
sider limiting our evaluation using snowball sampling [12],
which has been shown to effectively reduce computation cost
while preserving network structure and statistical represen-
tativity. Specifically, for a snapshot Gt−2 = {Vt−2, Et−2}
we first randomly select a node v as the seed, then run a
breadth-first-search from node v until a fixed percentage p
of nodes are visited. These visited nodes V S

t−2 are the sam-
pled nodes in snapshot Gt−2. We repeat the process on the
next snapshot Gt−1 = {Vt−1, Et−1} using the same seed v,
producing V S

t−1. The choice of sampling percentage p must
balance between computation cost and data representativity.
We configure p based on the network size. Since our Face-
book network is reasonably small, p=100%. For Renren and
YouTube, p=2%.

Next, we apply common classification methods on these
sampled node sets. During the training process, we measure

the similarity features of all node pairs among V S
t−2 in Gt−2,

labeling each node pair as either positive or negative depend-
ing on whether they are connected in Gt−1, and training a
classifier using this labeled set. In the testing process, we
collect features between node pairs among V S

t−1 in Gt−1,
feed them into the trained classifier to compute prediction
scores, and then choose the top k node pairs with the highest
scores as the new edges for the next snapshotGt = {Vt, Et}.
As in §4, we set k to the actual number of new edges created
among node pairs in V S

t−1 for Gt, and use the accuracy ratio
to evaluate prediction accuracy. To minimize the impact of
seeds, we randomly select 5 nodes as seeds, repeat classifica-
tion methods on them, and measure the average and standard
deviation of prediction accuracy ratios.

Given the computation complexity, we limit our evalua-
tion to two instances (listed in Table 6) of different sizes
(small and large) for all three networks. Again, because
these instances produce highly consistent results and space
constraints, we only discuss the results for the large net-
works.
Features and Classifiers. We use scores from all 14
similarity metrics listed in Table 3 as features, and exper-
iment with 4 well-known classifiers: Support Vector Ma-
chine (SVM), Logistic Regression, Naive Bayesian (NB),
and Random Forests (RF)3. We also considered but ultimately
rejected Decision Trees, because they can only produce bi-
nary recommendations, and are effectively subsumed by Ran-
dom Forests.

We ran experiments on a wide range of network snap-
shots, and found the classifiers were consistent in their rela-
tive performance. RF and NB always performed poorly, and
LR performed generally on par with SVM. In addition, we
found that SVM outperformed LR with imbalanced training
sets, which has been also shown in prior work [15]. Since
our data is highly imbalanced, SVM’s results are uniformly
the best of the bunch, and we use SVM results for the re-
mainder of our discussion. As an example of the relative
accuracy results, we plot in Figure 9 prediction accuracy ra-
tio for all 4 classifiers on a Facebook network snapshot of
345K edges.

5.2 Link Prediction Accuracy

To evaluate classification-based prediction, we must first
understand the impact of data imbalance within training sets.
Recall that link formations in social networks are extremely
imbalanced, i.e. far fewer connected node pairs than dis-
connected. This imbalance has been shown to contribute to
classification errors [15]. For this we apply the well-known
undersampling technique to build training data, keeping all
positive node pairs while varying the number of negative
node pairs [15]. Here positive(negative) node pairs refer to
those which will(not) connect in the prediction timeframe.
Figure 10 plots prediction accuracy ratio while varying the
under-sampling ratio, θ=(# of positive node pairs : # of neg-

3We use the implementation in an open source library [34]
with default parameters for all classifiers in this paper.



Graph
Gt−2 Gt−1 Snowball

Nodes Edges Nodes Edges Sampling p

Facebook
small 49K 345K 49K 360K 100%
large 56K 600K 57K 615K 100%

YouTube
small 1.63M 4M 1.74M 4.25M 2%
large 2.63M 7M 2.70M 7.25M 2%

Renren
small 2.3M 25M 2.7M 30M 2%
large 6.2M 95M 6.7M 105M 2%

Table 6: Data instances for evaluating classification algo-

rithms.
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classifier training.

ative node pairs), from (1:1) to (1:10000)4. For our three
OSNs, the true (unsampled) positive vs. negative ratio is
around (1:100000). Note that existing classification-based
prediction algorithms generally use balanced node pairs, or
a ratio of (1:1).

These results show that classification-based prediction al-
gorithms are significantly better than random prediction for
all 5 sampling ratios. For Renren and Facebook, accuracy
ratio improves as the sampling ratio θ approaches the actual
positive vs. negative ratio (1:100000). Compared to con-
ventional balanced sampling (1:1), a lower under-sampling
ratio produces significantly more accurate results, and im-
provements in accuracy ratio, and also the accuracy, can be
as high as a factor of 5.

The above results confirm the effectiveness of classification-
based link prediction. More importantly, we show that the
performance of these algorithms depends on the configura-
tion of training data. Conventional methods of using bal-
anced training data can lower prediction accuracy by as much
as a factor of 5. To minimize such loss, we need to invest ef-
forts on finding the right level of undersampling ratio (θ).

5.3 Comparing to Metric-based Algorithms

For a fair comparison, we run the metric-based methods
again on the same sampled data (V S

t−1). We plot the accu-
racy ratio for each algorithm (blue circle on the left) in Fig-
ure 11, and rank them in descending order from right to left.
We see that the top (most accurate) similarity metrics are
generally consistent on both the sampled data and the entire

4We stop at (1:10000) for YouTube and Facebook and
(1:5000) for Renren because this is the largest training size
we can support on our memory-heavy servers (192GB RAM
each).

network (see §4) across different datasets. Also note that
the test dataset V S

t−1 is smaller than Vt−1 and better con-
nected, the accuracy ratio of the metric-based algorithms is
lower than results previously shown in §4 (accuracy ratio is
lower because random prediction does better on this smaller
dataset).
Comparing Accuracy. Figure 11 plots the accuracy ratio
of SVM (red cross on the right) and metric-based methods
(blue circle on the left). With a well-chosen θ, SVM consis-
tently performs as well as, or outperforms the best metric-
based algorithms. This outperformance stems from two fac-
tors: combining multiple similarity metrics to broaden cov-
erage, and using under-sampling to address the issue of data
imbalance. Overall, these results show that among existing
algorithms, the SVM classifier provides consistently strong
results. However, we also note that some similarity metrics,
namely RA and BRA, provide consistently “good” results
across all of our networks. In scenarios where the computa-
tional or training costs of SVMs were undesirable, RA and
BRA provide reasonable alternatives with much lower com-
putational complexity.
Similarity Metric Ranking vs. SVM Feature Weight. We
seek to understand whether a good similarity metric in the
metric-based method (identified from Figure 11) also be-
comes a dominant feature for the classification method. For
this we use the feature coefficient provided by SVM, where
a larger absolute value means the feature is more important.
To make a fair comparison, we normalize the coefficients
(using absolute values) within each classifier.

We take two steps to study the relationship between top
similarity metrics and top SVM features. First, we directly
compare the rankings of the two. For both Renren and Face-
book, the rankings are very similar between the similarity
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Figure 11: Comparing the prediction performance of metric- and classification-based prediction algorithms.
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metrics and SVM features, i.e. top similarity metrics are
also top features in SVM. For YouTube, the orders are less
consistent, except that Rescal always ranks first.

Next, we study how top similarity metrics contribute to
SVM by comparing their feature coefficients. Specifically,
for each graph we pick the top N similarity metrics and cal-
culate their total normalized SVM coefficients, where N =
1, 2, ..., 14. Figure 12 presents the results for the large data
instance listed in Table 6 with the largest θ. Results of small
data instances and other values of θ are consistent and omit-
ted for brevity.

We see that for Renren and Facebook the similarity met-
rics make similar contributions to the machine learning pro-
cess. The top 6 similarity metrics have a slightly higher
weight than the rest. For YouTube, the top first similarity
metric (Rescal) and a lower ranked metric (Katz) are the key
contributors while the rest make similar contributions.

Together, these results suggest that in general the metric-
based and classifier-based methods share similar preferences
on similarity metrics. But the classifier-based methods can
combine prediction power of multiple metrics to achieve a
higher accuracy and robustness across different datasets. Fi-
nally, the difference between Renren/Facebook and YouTube
aligns with our earlier observation that as a subscription net-
work YouTube’s link prediction pattern differs from those of
Renren and Facebook.

6. IMPROVING LINK PREDICTION

While our results show that today’s prediction algorithms
significantly outperform random prediction, they are still lim-
ited in their prediction accuracy. A fundamental contribut-
ing factor is that current prediction algorithms take a purely
static approach to network analysis, and do not take in ac-

count temporal patterns exhibited by an evolving network.
While recent studies seek to extend link prediction to sup-
port dynamic networks, they either do not scale [36], or are
restricted to single model or metric [40] where performance
vary significantly across datasets.

In this section, we improve existing link prediction algo-
rithms by integrating them with dynamic network analysis.
Specifically, we identify key patterns on network dynamics,
and use them to build temporal filters that drastically reduce
the search space for link prediction. Our proposed filters
effectively augment existing link prediction algorithms, pro-
viding a significant boost in prediction accuracy. This is even
true for algorithms that were already designed to capture net-
work dynamics, e.g. [10].

6.1 Temporal Properties on Edge Creation

Using our dynamic OSN datasets, we investigate how dif-
ferent properties of network dynamics affect edge creation.
These include node activeness, neighborhood structure evo-
lution, neighborhood activeness, and arrival of common neigh-
bor. We conclude that node activity and arrival of common

neighbor are the key factors for all three networks, and thus
we omit analysis for other explorations here. We have con-
sistent observations across different snapshots and over dif-
ferent networks, and due to space limitation we only show
figures for Renren snapshot at 55M edges in this subsection.
We will briefly summarize our observations for other net-
works in the next subsection.
Node Activeness. Intuitively, a node that has recently
actively created edges is more likely to create edges in the
near future. We validate this by measuring node activity on
both positive and negative node pairs (i.e. those with edges
and those without). For each node pair, we mark the node
with longer idle time (defined in §4.4) as the inactive node
and the other as the active node. We measure activity by
the idle time of the active node, the idle time of the inactive
node, and the number of edges created by the active node in
the past d days.

We found that for positive node pairs, i.e. those who will
connect in the prediction timeframe, the idle times of both
active and inactive nodes are significantly smaller. Figure 13
plots the CDF of the active node’s idle time for the Renren
snapshot at 55M edges. More than 90% of positive node
pairs have <3 days idle time while only 40% of negative
pairs do so. This 3-day threshold can effectively distinguish
positive and negative node pairs. Similar patterns can be
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found when comparing the inactive nodes’ idle times, with a
20-day idle threshold.

Furthermore, active nodes in positive node pairs tend to
create more edges in a recent time. Using the same Renren
snapshot, Figure 14 shows the CDF of new edges in the past
week for both positive and negative sets. For more than 60%
of positive node pairs, the active node creates more than 3
edges while only 20% of negative node pairs do so. This
“3-edge in past 7 days” can also be used to help identify
potential new links.
Arrival of Common Neighbor. We show in §4 that
most similarity metrics focus on predicting edge formation
between 2-hop neighbors. For these, the recent arrivals of
common neighbors can often trigger the completion of a
triad [46] and thus be critical in predicting edges. We test
this hypothesis by measuring, for each node pair, the gap
between the most recent time when they connect to a com-
mon neighbor and the current snapshot time, referred to as
the CN time gap. Our results show that the CN time gap of
positive set is much smaller than that of negative set. Fig-
ure 15 shows the result for the same Renren snapshot, where
more than 60% of positive pairs create their last common
neighbors in the last 10 days, while 20% of negative pairs
do so.

6.2 Temporal Filtering

We propose to use these observations, which are consis-
tent across networks, to develop “temporal filters” to dras-
tically reduce the search space of new links by filtering out
node pairs that are unlikely to create edges. Specifically, we
remove any potential node pair from the candidate list if it
fails to meet any of the following four criteria:

• Idle time of active nodes < dact days.
• Idle time of inactive nodes < dinact days.
• d-day new edges ≥ Enew.
• CN time gap < dCN . 5

Our threshold values are listed in Table 7 , which hold
across different snapshots for each corresponding network.
While each parameter is network specific, the methodology
to discover them is general.

5For node pairs beyond 2 hops, we do not apply this crite-
rion.

Graph
Node Idle Time d-day New Edges dCN

dact dinact d Enew

Facebook 15 40 21 2 40
YouTube 3 30 7 3 20
Renren 3 20 7 3 10

Table 7: Parameters of the temporal filters.

Prediction Accuracy after Filtering. We now present
the improvement in link prediction accuracy (in terms of ac-
curacy ratio) after adding temporal filtering. We experiment
with the same data instances used to evaluate classification-
based algorithms (see Table 6) and present the result for the
large instance. Results from the smaller instance show even
more significant benefits and are omitted for brevity.

Table 8 lists the normalized improvement from applying
the filter, i.e. the accuracy ratio of prediction with filtering
divided by the accuracy ratio of prediction without filters.
The improvement is quite significant for many cases, and
somewhat incremental for others. For classification-based
algorithms, our filtering raises the accuracy by 10%∼120%.
For metric-based algorithms, the gain can be as much as a
factor of 15.7.

We observe that filtering affects certain algorithms more
than others. For metric-based algorithms, applying temporal
filters changes the “best” prediction algorithm. For example
in Facebook, JC was the weakest metric before the filters,
but becomes the best metric after filtering. This is because
temporal filters effectively identify and remove the unlikely-
to-connect node pairs, i.e. inactive, low-degree nodes that
JC is unable to identify.

6.3 Comparing to Other Temporal Meth-
ods

Recent works have exploited temporal information to im-
prove prediction accuracy [8, 10, 40]. We compare our fil-
tering design with the time series based prediction [10], a
popular method that can also scale to our network datasets.
For each potential node pair, this method computes its sim-
ilarity metrics at multiple past time points, and aggregates
these scores to produce a final score of the pair. We imple-
ment two aggregation approaches, Moving Average (MA)
and Linear Regression (LR), shown by [10] as the two best
approaches, and perform aggregation on equally spaced past
time points (the space equals to the number of days between



Network JC BCN BAA BRA LP LRW PPR SP Katz Rescal PA 1:1 1:10 1:100 1:1000 1:10000

Renren 2.2 5.8 4.1 2.3 9.7 3.2 1.7 14.9 1.5 2.4 - 1.9 1.9 1.8 1.8 1.8*
Facebook 5.7 1.2 1.2 1.4 1.3 1.3 5.3 4.4 1.3 1.2 2.1 1.3 1.4 1.5 1.3 1.2
YouTube - 1.2 1.2 1.2 1.2 1.1 3.1 15.7 1.5 1.1 1.2 2.2 2.2 2 1.2 1.1

Table 8: Ratio of accuracy values after filtering vs. before filtering for all metric-based and classification methods. Bold

value in each row is the maximum improvement for that network; “-” means the accuracy before filtering is “0”. *Ratio

in Renren is 1:5000.
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Figure 16: Our proposed temporal filtering method outperforms time-based models.

Gt and Gt−1). We observe that MA consistently outper-
forms LR, and thus omit the LR result for brevity.

Similar to Section 6.2, we also present the result for the
large instance for each network in Table 6 and ignore the
similar results from the smaller instance. Figure 16 shows
prediction accuracy ratio for original similarity metrics (marked
as Basic) and those enhanced with MA (marked as Time
Model), both with and without our filtering method. For
each metric, our filtering consistently improves the accuracy
far more than the time series based prediction, especially for
Renren and Facebook. Furthermore, even after applying the
time series based prediction, our filter can still consistently
improve prediction accuracy.
Summary. We show that by leveraging temporal in-
formation on network dynamics, we can effectively improve
link prediction accuracy. Using these temporal filters, we
can prune the set of candidate node pairs for edge creation,
allowing link prediction algorithms to focus on regions of
likely growth. By comparing to other temporal methods, we
further confirm the effectiveness and generality of our filter-
ing method.

7. RELATED WORK

We perform an in-depth study on two types of link pre-
diction algorithms (metric- and classification-based). Prior
works have evaluated metric-based algorithms using co-author
networks [23], classification-based methods using balanced
data [3, 11], and both methods using a small subset of Twit-
ter (155K nodes) [7]. Our work differs by studying both
methods using datasets of large, dynamic online social net-
works that recently became available. By discretizing these
datasets into numerous temporal snapshots, we study the
evolution of link prediction over fine time intervals, iden-
tify potential factors behind prediction errors, and propose
filters that improve prediction power for all algorithms.

Recent studies have leveraged temporal information for
link prediction. The key approach is to extend existing al-
gorithms in the temporal domain, e.g. adding a temporal di-

mension [1], assigning more weights to new links [37, 40],
integrating graph structure information over time [10]. An-
other approach applies past observations for prediction [8,
36], by identifying subgraphs that are similar to the target
subgraph and use their time-evolving behaviors to help pre-
dict the target. Unfortunately, each of these methods suffers
from at least one of the following limitations: i) the method
is of high complexity and cannot scale to large networks; ii)
the method is limited to a single model/metric, whose perfor-
mance varies significantly across networks; iii) the method
does not capture (and leverage) temporal patterns of the net-
work. In contrast, our approach not only provides a general
and scalable link prediction solution that supports a wide va-
riety of similarity metrics, classifiers and network graphs,
but also utilizes insights of network evolution to boost pre-
diction accuracy and reduce complexity.

Finally, our work targets link prediction that only require
graph topology information, i.e. nodes and edges. Addi-
tional information, such as edge weights [27], node connec-
tions on other social networks [31], and link direction [43],
can improve prediction performance. We plan to consider
these factors in future work.

8. CONCLUSIONS AND DISCUSSION

Using real traces of large dynamic networks, our work
takes a concrete step towards objectively quantifying the pre-
dictive power of today’s link prediction algorithms. By im-
plementing a wide range of algorithms, we have already iden-
tified concrete challenges and issues with multiple algorithms,
from high computational complexity that limits scalability,
to binary classification results that lack granularity.

For metric-based approaches, we have shown the futility
of some metrics (shortest path) and validated the scalability
of others, e.g. scalable Katz heuristics [38]. At the same
time, we have shown that it is indeed possible to scale some
classifiers to large, multi-million node networks, and that
classifiers such as SVMs can produce consistently strong re-
sults.



More surprisingly, we find that the best metric-based pre-
dictors (vary across different networks) perform on par with
the most accurate classifier (SVM in all cases), and we de-
rive potential guidelines for choosing metrics based on net-
work structure. We also take a deeper look at current link
prediction algorithms for the source of low accuracy, in terms
of both structural and temporal aspects. Furthermore, we
provide “temporal filters” that can greatly improve predic-
tion accuracy (across different methods and networks) by
leveraging knowledge of prior network dynamics, even for
predictors that have already integrated temporal information.

Finally, our results underscore the fact that current predic-
tion algorithms still perform poorly at the fine granularity of
individual link predictions, even with our proposed tempo-
ral filters. While this confirms link prediction is still an un-
solved problem, it is important to calibrate expectations de-
pending on specific applications. For example, while current
algorithms focus primarily on predicting nearby neighbors,
a significant number of new links connect “distant” nodes.
Overcoming these empirical limitations requires a better un-
derstanding of underlying network structures and dynamics.

This work only scratches the surface of a much larger
problem space. Using datasets from just three networks, we
already observe significant variance in accuracy for single
metrics across different networks. Much more experimental
and analytical work is necessary before we can identify spe-
cific properties of each network that make them more or less
predictable by certain metrics. Our evaluation is limited by
our reliance on network structural data, whereas deployed
link prediction systems are likely to combine multiple infor-
mation sources [14], e.g., user profiles and behavioral data,
which can boost prediction accuracy empirically.
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