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Abstract. Techniques for modeling and simulating channel conditions play an essential role in understanding network protocol and appli-
cation behavior. In [11], we demonstrated that inaccurate modeling using a traditional analytical model yielded suboptimal error control
protocol parameters choices. In this paper, we demonstrate that time-varying effects on wireless channels result in wireless traces which
exhibit non-stationary behavior over small window sizes. We then present an algorithm that extracts stationary components from a collected
trace in order to provide analytical channel models that, relative to traditional approaches, more accurately represent characteristics such as
burstiness, statistical distribution of errors, and packet loss processes. Our algorithm also generates artificial traces with the same statistical
characteristics as actual collected network traces. For validation, we develop a channel model for the circuit-switched data service in GSM
and show that it: (1) more closely approximates GSM channel characteristics than traditional Markov models and (2) generates artificial
traces that closely match collected traces’ statistics. Using these traces in a simulator environment enables future protocol and application
testing under different controlled and repeatable conditions.
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1. Introduction

As networks evolve, the design of communication protocols
increases in complexity. Evaluating the performance of exist-
ing networks provides insights into techniques for optimizing
future protocols. The most common techniques include simu-
lation, analysis of empirical data, and analytical models (e.g.,
channel models). Accurate modeling of network events, es-
pecially the error behavior at link layer and above, is essential
to the understanding of network behavior and to the design
of communication protocols. For example, a detailed under-
standing of the packet loss process and burstiness of errors is
necessary for the proper design and parameter tuning of error
control protocols, such as Automatic Repeat reQuest (ARQ)
protocols.

Streaming audio and video multimedia applications can
also benefit from a better understanding of the underlying
network behavior. For example, video and audio codecs can
perform real-time predictive rate control by using a model of
network traffic characteristics to estimate traffic conditions in
real-time.

The traditional network modeling approach to error mod-
eling is to create a Gilbert model [17] (i.e., a two-state dis-
crete time Markov model) based upon collected network traf-
fic traces. Using this model, one can then dynamically gener-
ate artificial network traces for the network under study and
use the traces to simulate, and thus, better understand the per-
formance of existing and new network protocols and appli-
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cations. These traces provide network protocol and applica-
tion developers with ease of use and repeatability, two critical
characteristics for developing and improving network and ap-
plication performance. More importantly, for new networks
under development (or for which there are only limited pro-
totypes), it is often difficult to collect a reasonable amount of
traces or to run experiments. By generating synthetic traces
that simulate the network being tested, multiple users can si-
multaneously gain network access and perform experiments.

Unfortunately, as we will show, Markov models have sev-
eral significant shortcomings in the accuracy of their error
modeling, which directly affect the validity of results based
upon traces generated from these models. Models based upon
Markov processes require that the error statistics remain rel-
atively constant over time. Many networks experience time
varying effects, such as congestion-related losses. Wireless
channels, in particular, experience effects such as Rayleigh
fading, multipath fading, shadowing, etc. While previous
work has not focused on the stationarity of traces, we hypoth-
esize that wireless traces exhibit non-stationary behavior over
small window sizes, and that by isolating and analyzing sta-
tionary trace segments, more accurate models can be devel-
oped. Utilizing a previously published, but not widely known
algorithm for testing stationarity [2], we tested 215 min of
wireless traces and confirmed its non-stationarity with a de-
rived window size. This implies that traditional stochastic
analysis of wireless traces are likely to be less accurate than
ideal.

Thus, we propose and evaluate a novel algorithm, the
Markov-based Trace Analysis (MTA) algorithm, for the de-
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sign of channel error models. Our approach is to derive a
statistical constant from the wireless trace, and use this con-
stant to identify lossy and error-free segments of transmission.
From the original trace we extract a stationary subtrace rep-
resenting lossy segments of transmission. By analyzing the
length distributions of the lossy and error-free segments, we
can effectively characterize the transitions between them, and
create a model that more accurately represents the original
trace.

In practice, this MTA algorithm allows a more accurate
analysis of network traces which accounts for their non-
stationary behavior. This characteristic makes MTA a general
purpose algorithm, meaning that it can be applied to network
traces such as wireless traces which experience different er-
ror statistics over time. However, the purpose of this work is
not to show that the MTA algorithm is general purpose, but to
argue that the MTA algorithm generates accurate analytical
models for wireless channels.

We validate the benefits and accuracy of the MTA algo-
rithm by applying it to 215 min of GSM digital wireless cel-
lular network [15] data traces collected at the reliable link
layer (Radio Link Protocol layer [5,7]) to generate a model
we call the MTA GSM channel model. We then show that,
unlike traces generated by Markov models, artificial MTA
model network traces have the same statistical properties as
traces collected from the actual network. Such traces will pro-
vide more accurate simulations of the network being tested,
yielding results that more closely match the results obtained
on actual networks.

In particular, we generate artificial traces using the MTA,
Gilbert, and third-order Markov models, and perform retrace
analysis [11] on these artificial traces. Retrace analysis emu-
lates an enhanced RLP layer using a fixed data frame size and
fixed per frame overhead (e.g., checksums, sequence num-
bers, etc.), and calculates the predicted throughput over a
range of fixed RLP frames sizes. In our enhanced RLP im-
plementation, frame sizes are multiples of the physical ra-
dio block size of 30 bytes.1 For a given frame size, there
is a tradeoff between the increased throughput from reducing
overhead and the retransmission delay caused when a radio
block of an RLP frame is lost and the entire frame is retrans-
mitted. In other words, a greater frame size leads to (1) lower
overhead, and (2) longer retransmission delay (more radio
blocks have to be retransmitted) when a radio block is cor-
rupted. Thus, throughput performance results for each frame
size are highly correlated with a collected or synthetic trace’s
error statistics. In [11], we used retrace analysis to show that
for bursty error traces (where errors tend to occur in clus-
ters), larger frames yield higher throughput. Furthermore, we
showed that incorrectly assuming an even distribution of er-
rors in GSM leads to the wrong choice of optimal frame size.

These results show that the distribution of errors within
traces has a significant influence on models, analysis, and
simulations based upon such traces. This conclusion is es-

1 Note that the existing GSM RLP implementation uses a frame size of one
radio block.

pecially true when the goal is to artificially generate traces
for the design, simulation, and analysis of new networking
protocols. To replicate and further explore the results from
our earlier work, we generate an artificial trace that we call
even error distribution (EED) trace, which has the same er-
ror rate as collected traces, but with an even error distribution
(i.e., errors are individual events, isolated, and have a constant
distance between each other).

The rest of this paper is organized as follows. We start by
discussing related work in the next section. Section 3 provides
background information about GSM’s Circuit-Switched Data
(CSD) service and an overview on Discrete Time Markov
Chains. Next, in section 4, we describe our measurement plat-
form for collecting frame level error traces on the GSM wire-
less link. Then section 5 shows the development of the MTA
algorithm, followed by section 6, where we develop three an-
alytical models for GSM wireless traffic: the MTA model,
the Gilbert model, and the third-order Markov model. In sec-
tion 7, we present our algorithm for generating artificial traces
and evaluate the MTA algorithm by comparing the traffic sta-
tistics of the collected and artificial traces. We conclude and
discuss our plans for future work in section 8.

2. Related work

Several researchers have explored ways of characterizing the
loss process of various channels. Bolot et al. [3] use a charac-
terization of the loss process of audio packets to determine an
appropriate error control scheme for streaming audio. They
model the loss process as a two-state Markov chain, and show
that the loss burst distribution is approximately geometric.
Yajnik et al. [20] characterize the packet loss in a multicast
network by examining the spatial (across receivers) and tem-
poral (across consecutive packets) correlation in packet loss.
Of particular interest is their modeling of temporal loss as a
third-order Markov chain. Both these efforts analyze the loss
process of traces with static error statistics (i.e., the error rates
do not vary over time). However, our work addresses the ad-
ditional challenge of modeling traces with time-varying error
statistics.

There is also interesting related work in wireless traffic
modeling. Nguyen et al. [16] use a trace-based approach for
modeling wireless errors. They present a two-state Markov
wireless error model, and develop an improved model based
on collected WaveLAN error traces. Building on this, Bal-
akrishnan and Katz [1] also collected error traces from a
WaveLAN network and developed a two-state Markov chain
error model (i.e., Gilbert model). Zorzi et al. [21] also investi-
gate the error characteristics in a wireless channel. They com-
pare an independent and identically distributed (IID) model to
the Gilbert model, and claim that higher order models are not
necessary. Their results are drawn by applying these mod-
els to artificial traces generated by assigning a fixed-average
burst length and a constant bit error rate.

While these previous works confirm that Markov models
improve upon the simple IID model, we offer proof in this



MARKOV-BASED CHANNEL MODEL ALGORITHM FOR WIRELESS NETWORKS 191

paper that these models have several significant shortcomings
in their error modeling accuracy. Furthermore, we argue that
there is a need to develop a more accurate model based on real
world statistics that better describes and handles time-varying
wireless channel error characteristics. Previous work such
as that done by Yajnik et al. modeled loss processes using
higher-order Markov chains for improved accuracy, but was
limited to stationary traces. In this work, we provide an algo-
rithm that successfully models non-stationary error traces.

3. Background

In this section we present a brief background on the technol-
ogy behind circuit-switched data in GSM networks. We also
define Discrete Time Markov Chains (DTMC) and some of
their relevant properties.

3.1. Circuit-switched data in GSM

The Global System for Mobility (GSM) wireless digital cel-
lular network is a second generation cellular network, pro-
viding nearly 700 million subscribers with global roam-
ing capabilities in several hundred countries. GSM imple-
ments several error control techniques, including adaptive
power control, frequency hopping, Forward Error Correction
(FEC), and interleaving. The primary uses of the GSM net-
work are for Circuit-Switched Voice service (CSV) and Short
Message Service (SMS). However, an increasing number of
subscribers are using GSM’s Circuit-Switched Data service
(CSD), which provides an optional reliable link layer proto-
col, the Radio Link Protocol (RLP). We provide a brief sum-
mary below; more details about GSM, the CSD service, and
RLP can be found in [15].

GSM is a TDMA-based (Time Division Multiple Access)
circuit-switched network. At call-setup time, a mobile ter-
minal is assigned a user data channel, defined as the tu-
ple 〈carrier frequency number, slot number〉. The slot cy-
cle time is 5 ms on average. This timing allows 114 bits
to be transmitted in each slot, yielding a gross data rate of
22.8 Kbit/s. The fundamental transmission unit in GSM is
a radio data block. A Forward Error Correction (FEC) ra-
dio data block is 456 bits, representing the payload of 4 time
slots. In GSM-CSD, the size of an unencoded data block is
240 bits, resulting in a raw data rate of 12 Kbit/s (240 bits
every 20 ms) [6].

Interleaving is a technique that is used in combination
with FEC to combat burst bit errors. Instead of transmitting
a data block in four consecutive slots, the block is divided
into smaller fragments. Fragments from different data blocks
are then interleaved before transmission. The interleaving
scheme chosen for GSM-CSD interleaves a single data block
over 22 TDMA slots [8]. A few of these smaller fragments
can be completely corrupted while the corresponding data
block can still be reconstructed by the FEC decoder. The
primary disadvantage of this deep interleaving is that it intro-

duces a significant one-way latency of approximately 90 ms.2

This high latency can have a significant adverse effect on in-
teractive protocols [12].

RLP [5,7] is a full-duplex logical link layer protocol that
uses selective reject and checkpointing for error recovery.
The RLP frame size is fixed at 240 bits aligned to the above
mentioned radio data block. RLP introduces an overhead of
48 bits per RLP frame, yielding a user data rate of 9.6 Kbit/s
in the ideal case (no retransmissions).3 RLP transports user
data as a transparent byte stream (i.e., RLP does not “know”
about IP packets). However, RLP may lose data if a link reset
occurs (e.g., after a maximum number of retransmissions of a
single frame has been reached).

3.2. Discrete time Markov chains

A Discrete Time Markov Chain (DTMC) [17] is a random
process {Xn | n � 0} that takes values in a discrete space E.
A DTMC is defined by its memory and its transition proba-
bilities and is characterized as follows:

Pr(Xn+1 = j | X0 = i0,X1 = i1, . . . , Xn = in)

= Pr(Xn+1 = j | Xn−z+1, 1 � z � K), (1)

where Pr(Xn+1 = j | Xn−z+1, 1 � z � K) are the Kstep
transition probabilities, and K defines the memory.

To calculate the memory of a DTMC, we find the order of
the Markov chain as first proposed in [14]. To aid in determin-
ing the order of the Markov chain, we introduce the concept
of conditional entropy. The conditional entropy is an indica-
tion of the randomness of the next element of a trace, given
the past history. We determine the amount of past history nec-
essary by calculating the ith order entropy for 1 � i � M ,
where M is an upper bound on the maximum amount of his-
tory we want to record. We choose M to be 6 because main-
taining history for 26 or 64 states yields a reasonable level of
implementation and processing complexity (more states im-
plies higher computational time). An ith order entropy of
0 indicates that knowing the last i elements of the chain to-
tally predicts the next element on the chain. As the entropy
value increases, there is more randomness in the next element
on the chain. We follow the same procedure used by Yajnik
et al. [20] to calculate the conditional entropy for each value
of i:

H(i) = −
∑


x

ξ(
x)
Tsamples

∑
y∈{0,1}

ξ(y, 
x)
ξ(
x) log2

ξ(y, 
x)
ξ(
x) . (2)

In equation (2), 
x represents the vector [x1, . . . , xi ] which
corresponds to one of the 2i different patterns of i consecutive
elements in the chain; Tsamples represents the total number of
samples of length i in the chain; ξ(
x) indicates the number
of times the pattern 
x = [x1, . . . , xi] shows up in the chain;

2 Note that voice is treated differently in GSM. Unencoded voice data blocks
have a size of 260 bits and the interleaving depth is 8 slots.

3 Note that the transparent (without RLP) GSM-CSD service introduces a
wasteful overhead for modem control information, reducing the user data
rate to 9.6 Kbit/s.
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Figure 1. The GSM network and measurement platform.

and the term ξ(y, 
x) corresponds to the number of times the
pattern 
x = [x1, . . . , xi] appears in the chain followed by y,
where y ∈ {0, 1}.

Given the implicit tradeoff between entropy and complex-
ity of the Markov model, we choose the order of the Markov
chain K , such that we gain the minimum entropy possible
at an acceptable complexity level. As entropy decreases, the
order K increases, meaning the number of states (i.e., 2k) in-
creases exponentialy.

4. Data collection

In this section, we first introduce the concept of frame error
traces. Then we describe the measurement platform we de-
veloped to collect these traces.

4.1. Frame error traces

An accurate representation of a wireless channel’s error char-
acteristics for a given time period can be captured by a bit er-
ror trace. A bit error trace contains information about whether
a particular bit was transmitted correctly (i.e., a “1” represents
a corrupted bit, while a “0” represents a correctly transmit-
ted bit). The average Bit Error Rate (BER) is the first-order
metric commonly used to describe such a trace. The same
approach can be applied on a frame level instead of on a bit
level. A frame error trace consists of a binary sequence where
each element represents the transmission state of a data frame.
There are two frame states, a “1” represents a corrupted data
frame, while a “0” represents a correct data frame. Corrupted
frames are detected using an error detection code (e.g., Cyclic
Redundancy Check). In this paper, we refer to frame error
traces simply as traces. We also use the Frame Error Rate
(FER) of a trace to define the average rate of corrupted data
frames. For a trace, we define an error burst to be a run of

consecutive 1’s, and an error-free burst as a run of consecu-
tive 0’s.

We have collected traces under several different scenarios.
As shown in figure 1, we vary the movement of the mobile
host (fixed, walking, and driving) while keeping the other
endpoint fixed. We collected 215 min of traces in a fixed en-
vironment, where the mobile host’s signal strength was below
4 on a scale of 1 to 5. In the following sections, we refer to
this trace as the GSM trace. In section 6, we use the GSM
trace to develop an analytical traffic model for RLP. Note that
the error characteristics we have measured in these traces are
only valid for the particular FEC and interleaving scheme im-
plemented in GSM’s Circuit Switched Data network (see sec-
tion 3.1). To analyze other types of network channels, the first
step is to collect frame or packet level traces and then to apply
the analysis described below.

4.2. Measurement platform

We depict our measurement platform in figure 1. A single-
hop network running the Point-to-Point Protocol (PPP) [18]
connects the mobile host to a fixed host that terminates the
circuit-switched GSM connection. We used the sock tool [19]
to generate traffic on the link. To collect traffic traces at the
RLP layer, we ported the RLP protocol implementation of a
commercial available GSM data PC-Card to BSDi3.0 UNIX.
In addition, we developed RLPDUMP, a protocol monitor
tool for RLP. RLPDUMP logs whether or not a received frame
could be correctly recovered by the FEC decoder. This deter-
mination is possible because every RLP frame corresponds
to an FEC encoded radio block (see section 3.1). Thus, a
received block suffers an error whenever the corresponding
RLP frame has a frame checksum error. We used sock to gen-
erate bulk data traffic and used RLPDUMP to capture frame
error traces.
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Figure 2. The separation of an error trace into two stationary traces.

5. The MTA algorithm

The basic concept behind the MTA algorithm is the assump-
tion that an error trace with non-stationary error properties
can be decomposed into a stationary subset consisting of what
we define as lossy states. The MTA algorithm defines two
states, the lossy and the error-free states and parameterizes
transitions between them as a function of a preset parameter,
the change-of-state constant.

Error-free states contain only correctly transmitted frames,
while lossy states contains both error-free and error frames.
We show that lossy states exhibit stationarity in its error statis-
tics, and that they can be modeled by a traditional DTMC. The
MTA algorithm computes the distribution of lengths for both
error-free and lossy states, along with the memory and para-
meters for the DTMC used on the sequence of lossy states.

In this section, we first discuss stationarity properties and
how to test a trace for stationarity. We then present the MTA
algorithm and show how it is applied to a trace.

5.1. Stationarity

We consider a network traffic trace to be a random process
{Xn | n � 0} with a discrete space E = {0, 1}, where a
1 denotes a corrupted frame and a 0 denotes a correct trans-
mitted frame. If Xn = i, then the process is said to have
value i at time n. A process Xn that takes values on the dis-
crete space E = {0, 1} is also called a binary time series [4].
One major challenge in the analysis of time series is the con-
cept of stationarity. A process Xn is strictly stationary if
the distribution of (Xp+1, . . . , Xp+k) is the same as that of
(X1, . . . , Xk) for each p and k. Xn is second-order stationary
if the mean mn = E(Xn) is constant (independent of n), and
the autocovariance only depends on the difference k for all n
(Cov(k, n) = Cov(Xn,Xn− k) = Cov(k)). Given a binary
time seriesXn that is second-order stationary, the process can
be modeled as a DTMC where the value of the chain at time n
is determined by the memory of the process [10]. However,
checking a trace for stationarity is mathematically challeng-
ing.

We define a trace to be stationary whenever the error statis-
tics remain relatively constant over time. This definition de-
pends on the window size we are using to examine the trace.
Figure 3 shows that GSM trace consists of error and error-
free bursts, where the length of error-free bursts are signifi-
cantly longer than the length of error bursts. In other words,
the traces consist of long error-free segments interrupted by
small error clusters [13]. Note that for channels with rela-
tively small error clusters, examining traces using a large win-
dow size value not only lowers the perceived channel error

Figure 3. Burst length in GSM trace.

rate, but also distorts the statistics needed by DTMCs, result-
ing in less accurate models. As the window size decreases
towards the length of the average error burst, the channel ex-
hibits significantly different error characteristics.

We identify trace sections that exhibit stationary properties
by finding error-free bursts of length equal to or greater than
the change-of-state constant C. The value of C is a design
decision that we define as the mean plus one standard devi-
ation of the length of error bursts of a trace. By removing
trace sections consisting of error-free bursts of length equal
to or greater than C, we guarantee that the resulting trace will
have stationarity error statistic properties. We explain the rea-
soning behind our choice in more detail in section 6.1. We
next define a lossy state as a sequence of zeros and ones (al-
ways started by a one), where each run of zeros is not greater
than the change-of-state constant C. To test for stationarity in
wireless traces we need to choose a window size close to the
average size of the lossy state.

We use the test for stationarity introduced by Bendat and
Piersol called the Runs Test [2], summarized as follows:

1. Define a run as a number of consecutive ones (also referred
to as an error burst).

2. Divide the trace into segments of equal lengths.

3. Compute the lengths of runs in each segment.

4. Count the number of runs of length above and below the
median value for run lengths in the trace.

5. Plot a histogram for the number of runs.

For a stationary trace, the number of runs distribution be-
tween the 0.05 and 0.95 cutoffs will be close to 90% [2].
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Figure 4. The Runs Test applied to GSM trace.

We apply the Runs Test to test GSM trace for stationarity.
We first calculate the mean and standard deviation for the er-
ror burst length. In this case, the mean value was found to
be 6 frames and the standard deviation was 14 frames, yield-
ing a state-of-change constant value C of 20 (6 + 14) frames.
The average error cluster size was found to be 26 frames and
the standard deviation was 54 frames. We choose the window
size for the Runs Test to be 50.

Figure 4 shows that only 17% of the runs distribution lie
between the 0.05 and 0.95 cutoffs, and 83% lays outside the
left and right cutoffs. Thus, from the Runs Test, we conclude
that GSM trace is a non-stationary process for a window size
of 50. In the following sections we use the term stationarity
to refer to stationarity for window size of 50.

5.2. Algorithm

The MTA algorithm views a trace as a process with two types
of states: lossy and error-free. The algorithm extracts lossy
states from the error trace and concatenates these states to
form lossy subtrace (as defined in section 5.1) (see figure 2).

We define two random processes with a discrete spaceE =
{0, 1, 2, . . .}:
• The lossy state length process {Bn | n � 0}, where Bn

represents the number of elements in the nth lossy state
(i.e., the length of the state).

• The error-free state length process {Gn | n � 0}, where
Gn represents the length of the nth error-free state.

The distributions of Bn and Gn are found by plotting the
cumulative density function (CDF) and finding the “best” fit-
ting distributions. We provide an example of how to deter-
mine these distributions in section 7.1.

The lossy subtrace is a stationary random process, there-
fore, it can be modeled as a DTMC with a certain memory.
The MTA algorithm calculates the memory of the lossy sub-
trace, and determines its transition probabilities.

The application of the MTA algorithm to an input trace can
be summarized as follows:

1. Calculate the mean (me) and standard deviation (sde) val-
ues for error burst lengths in the trace.

2. Set C, the change-of-state constant, equal to (me + sde).

3. Partition the trace into lossy state and error-free state por-
tions using the following definitions:

• Lossy state: runs of 1’s and 0’s, with the first element
being a 1, and with runs of 0’s that have length less
than or equal to the C.

• Error-free state: runs of 0’s that have length greater
than C.

4. Create lossy subtrace from the lossy state portions of the
error trace.

5. Model lossy subtrace as a DTMC, and calculate its order
and transition probabilities.

6. Determine the best fitting distributions of the length
processes Bn and Gn.

In summary, to take advantage of the Markov process
properties in non-stationary traces, we have used a novel ap-
proach to error modeling: a Markov-based Trace Analysis
(MTA) algorithm that extracts from an error trace a subset
trace that have stationary properties.

6. Modeling GSM wireless channel

In this section, we demonstrate the process of extracting char-
acteristic statistics from a given trace using the MTA and
Markov models [17]. We apply all three algorithms to GSM
trace to generate the statistics which we will later use to gen-
erate artificial traces based on each model.

6.1. MTA GSM model

This section presents an application of the steps of the MTA
algorithm (as described in section 5) to GSM trace.

First, the MTA algorithm analyzes the error-free and er-
ror burstiness experienced by GSM trace (see figure 3), and
calculates the state-of-change constant value C. Section 5.1
calculated C to be 20. Since our goal is to isolate and ana-
lyze sections that experience stationarity, we use the MTA al-
gorithm to create a stationary subtrace, called lossy subtrace.
The MTA algorithm creates this subtrace (as described in sec-
tion 5) by first identifying lossy states and then concatenating
these states to form lossy subtrace. Figure 5 shows the error-
free bursts and error burstiness experienced by lossy subtrace.
In this plot, the average error free burst is 3.26 frames, with a
maximum value of 20 frames (recall that the change-of-state
constant C was defined to be 20). The error free burst mean
and maximum values in lossy subtrace are much smaller than
the error burst mean and maximum value in GSM trace. Thus,
our choice ofC guarantees that lossy subtrace will experience
constant error statistic properties and therefore stationarity.
To prove that lossy subtrace is an stationary process we apply
the Runs Test. Figure 7 shows that 87% of the runs distrib-
ution lie between the 0.05 and 0.95 cutoffs. Therefore, this
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Figure 5. Burst length in lossy subtrace.

Figure 6. Complexity versus entropy in lossy subtrace.

Figure 7. The Runs Test applied to lossy subtrace.

result proves that lossy subtrace is a stationary process and
can thus be modeled as a DTMC.

Next, the MTA algorithm models lossy subtrace as a
DTMC with memory K . To determine the memory K of
the DTMC, the MTA algorithm first calculates the conditional
entropy values. Table 1 shows the conditional entropy calcu-
lated for differentK values. Figure 6 illustrates how the com-
plexity of the DTMC measured in number of states increases

Table 1
Entropy for the lossy subtrace.

Order K Entropy

6 0.5228
5 0.5240
4 0.5248
3 0.5290
2 0.5422
1 0.5585

Table 2
Fourth-order Markov model statistics.

State i Pr(i) Pr(1 | i) Pr(0 | i)
0000 0.1254 0.1699 0.8301
0001 0.0305 0.6414 0.3586
0010 0.0172 0.1832 0.8168
0011 0.0344 0.8009 0.1991
0100 0.0166 0.3073 0.6927
0101 0.0033 0.8129 0.1871
0110 0.0087 0.2683 0.7317
0111 0.0415 0.8889 0.1111
1000 0.0305 0.3022 0.6978
1001 0.0210 0.7037 0.2963
1010 0.0027 0.0547 0.9453
1011 0.0159 0.8820 0.1180
1100 0.0350 0.4556 0.5444
1101 0.0153 0.8623 0.1377
1110 0.0415 0.3118 0.6882
1111 0.5604 0.9341 0.0659

exponentially as entropy decreases. For this trace we chose
K to be 4 (i.e., 16 number of states), which corresponds to
only 0.38% increase in entropy from the chosen upper bound
of K = 6. We could have chosen K to be larger than 4, but
we did not want to significantly increase the complexity of the
Markov model.

Table 2 shows the probabilities of the trace being in each
state and the associated transition probabilities. The transition
probabilities were also calculated by frequency counting.

The last step of the MTA algorithm is to determine the
best fitting distribution for the lossy state length process Bn
and error-free state length process Gn. Figures 8 and 9 show
the CDF for the processes Bn and Gn. Each figure shows
two plots, one plot is the CDF as calculated from the em-
pirical data (i.e., the distribution of GSM trace), and the
other plot corresponds to the CDF of an exponential distri-
bution with parameter α. We assume that the distributions of
Bn and Gn are exponential with parameter α (i.e., the CDF
F(x) = 1 − e−αx , where x is the error-free or lossy state
length). For each distribution,Bn andGn, the MTA algorithm
plots the CDF of the exponential distribution with α ranging
from 0 to 1 in steps of 0.001, and then chooses a value of α
that provides the best approximation to the empirical data’s
CDF (i.e., the distribution for GSM trace). We denote 
x as
the vector with the CDF values based on the empirical data,
and 
y as the vector with the CDF values based on the pre-
dicted exponential distribution. We use the standard error
as a measure of the error between plots, and choose the dis-
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Figure 8. Lossy state length distribution.

Figure 9. Error-free state length distribution.

tribution with smallest standard error. The equation for the
standard error of the predicted 
y is

Serror(
y, 
x)

=
√[

1

n(n− 2)

][
f (y)−

[
n

∑
xy − ∑

x
∑
y
]2

f (x)

]
, (3)

where f (a) = n
∑
a2 − (∑

a
)2, and n is the dimension of

the vectors 
y and 
x.
The predicted distributions for the lossy and error-free

state lengths are exponential distributions with parameters
αb = 0.037 and αg = 0.04, respectively. The standard error
values for the predicted distributions of Bn and Gn are 0.013
and 0.025, respectively. Note that a lower standard error value
indicates a more accurate prediction.

6.2. The Markov GSM models

To study the performance and accuracy of the MTA algo-
rithm, we compared the MTA model to two Markov-chain
based models, the traditional Gilbert model and a third-order
Markov model. The Gilbert model is a DTMC of order one
(i.e., with two states). In our traces, the Gilbert model states

Figure 10. Gilbert model state transition diagram.

Table 3
Gilbert model statistics.

State i Pr(i) Pr(1 | i) Pr(0 | i)
0 0.9449 0.0087 0.9913
1 0.0551 0.8509 0.1491

Table 4
Third-order Markov model statistics.

State i Pr(i) Pr(1 | i) Pr(0 | i)
0 0 0 0.9299 0.0056 0.9944
0 0 1 0.0068 0.5488 0.4512
0 1 0 0.0034 0.1140 0.8860
0 1 1 0.0048 0.8087 0.1913
1 0 0 0.0068 0.2360 0.7640
1 0 1 0.0014 0.7654 0.2346
1 1 0 0.0048 0.2139 0.7861
1 1 1 0.0421 0.9074 0.0925

correspond to the status of each data frame {0, 1}, where a 1
denotes a corrupted frame and a 0 denotes a correct frame.
The Gilbert model predicts the state of the next frame by just
looking at the previous received frame. Figure 10 shows the
Gilbert model state transition diagram. Table 3 shows the re-
sults of the Gilbert model transition probability calculations
for GSM trace.

The third-order Markov model is a DTMC of order three
(i.e., with eight states). Compared to Gilbert, this model keeps
track of the status of the previous three frames, increasing
its prediction accuracy at the cost of additional complexity in
the Markov chain. Table 4 shows the transition probability
calculations for the third-order Markov model for GSM trace.

7. Trace generation and evaluation

A key capability of the MTA algorithm is the ability to gen-
erate artificial traces (of any duration) with the same statisti-
cal characteristics as traces collected from any given network.
In this section, we demonstrate how to generate an artificial
trace given characteristic statistics from the MTA model. We
also generate two artificial traces based on the Gilbert and
third-order Markov models, and compare all three artificial
traces against the GSM trace. We show that with respect to
key characteristics such as error burst length distribution and
throughput versus frame size, the MTA artificial trace pro-
vides a much improved approximation of the original GSM
trace.
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7.1. MTA artificial trace generation

The algorithm for trace generation from an MTA model is as
follows:

1. Choose the number of frames, N , to generate in the arti-
ficial trace.

2. The algorithm repeats the following steps until all N
frames have been generated:

(a) Determine glen, the error-free state length from the
error-free state length distributionGn.

(b) Determine blen, the lossy state length from the lossy
state length distribution Bn.

(c) Generate glen error-free frames (i.e., a sequence of
“0” of length glen).

(d) Generate blen frames that are either error or error-free
frames depending on the transition probabilities cal-
culated for the lossy subtrace in the MTA model.

Recall that in the MTA model, we observed that the lossy
and error-free state length distributions, Bn and Gn, fit expo-
nential distributions. Thus, to calculate blen and glen we can
use the inverse transformation method from [9]. Given a ran-
dom variableX with a CDF F(x), the variable u is uniformly
distributed between 0 and 1. We can generate a sample value
of X by generating u and calculating x = F−1(u). In the
exponential case with parameter α, u = F(x) = 1 − e−αx ,
x can be determined from x = − lnu/α. In each case, x
corresponds to either glen or blen.

It should be clear by inspection that an artificial trace cre-
ated by the above algorithm is guaranteed to have the same
characteristics as those extracted by the MTA algorithm.

7.2. Trace comparison

Here we evaluate the MTA algorithm by comparing the error
statistics of the GSM trace against the three artificial traces.
Figure 11 plots each CDF for the error burst lengths of the
four traces. The mean, standard deviation, and maximum
values are summarized in table 5. Note that GSM trace and
the MTA artificial trace experience similar burst characteris-
tics with 95% of the error burst lengths being smaller than
22 frames long, while in the Gilbert trace 95% of the error
burst lengths are of size 1, and in the third-order Markov trace
95 are of size 4. These results show that the error burst distri-
bution of the MTA trace represents a much closer approxima-
tion to the collected trace, GSM trace.

To demonstrate the importance of an accurate model for
setting system parameters, we cite an example where a naive
assumption about the channel statistics can lead to poor per-
formance. In [11], we showed how an inaccurate channel
model can lead to poor decision on the optimal RLP frame
size of an enhanced multiple radio block implementation (see
section 1). We repeat this demonstration using the GSM trace,
artificial traces from MTA, Gilbert, third-order Markov, and
an artificial trace based on trivial assumptions we call even er-
ror distribution (EED) trace. We artificially generated EED

Figure 11. Error burst length distribution.

Figure 12. Retrace analysis of four traces.

Table 5
Error length statistics.

Trace Mean Standard deviation Maximum

GSM trace 6 14 126
MTA trace 7.0 8.1 82
Gilbert trace 1.8 0.4 4
Third-order Markov trace 2.35 0.02 8

trace with the same FER as GSM trace, but with an even
error distribution. We then perform retrace analysis on the
four artificial traces, yielding the results shown in figure 12.
Note that the throughput for EED trace decreases dramati-
cally as frame size increases, yielding an optimal frame size
of only 60 bytes or 2 radio blocks. The Gilbert trace expe-
riences higher throughput values for small frame sizes, but
throughput decreases rapidly as the frame size increases. Its
optimal frame size is 150 bytes (5 radio blocks). The third-
order Markov trace has an optimal frame size of 180 bytes,
which improves upon the Gilbert estimate. In contrast, the
throughput plots for GSM trace and the MTA trace follow
similar paths. Furthermore, they both yield an optimal frame
size of 210 bytes (7 radio blocks). In this particular case, re-
trace analysis shows that the improved accuracy of the MTA
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artificial trace over the Markov artificial traces leads to a more
optimal design decision.

We used the standard error equation (see equation (3)) to
measure how closely each artificial trace approximates the
GSM trace. The standard error for EED trace was 48, for
Gilbert trace was 22, for third-order Markov trace was 10,
and for MTA trace was 8. Small standard error values signify
that the traces experience more similar error statistics.

In summary, we used the characteristics from the MTA,
Gilbert, and third-order Markov models to generate artificial
traces, and used these traces to measure how accurately these
algorithms model real traces. Both CDF and retrace analysis
show that the artificial trace from the MTA model more ac-
curately portrays the original GSM trace. Thus, we conclude
that the MTA model provides a more accurate approximation
technique than the traditional Markov models.

8. Conclusion

In this paper, we present a novel algorithm for modeling net-
works channels that experience time varying error statistics.
The time varying nature of wirelss and some wired channels
has been a limiting factor in the analysis or modeling using
Discrete Time Markov Chains. However, our Markov-based
Trace Analysis algorithm and techniques allow us to separate
a non-stationary network trace into stationary traces and to
accurately model the traces using DTMCs.

We compare the application of the MTA model, the tra-
ditional Gilbert model and the third-order Markov model to
traces collected in the GSM wireless digital cellular networks,
and show that MTA model synthetic traces have burst error
distributions that are closer to the real distributions of col-
lected traces than the distribution of traces generated from the
Gilbert and third-order Markov models.

We further show that when using retrace analysis to calcu-
late the throughput for different frame sizes, our MTA model
yields the correct optimal frame size decision, whereas less
accurate models including the Gilbert model, the third-order
Markov model, and an even error distribution model yield in-
correct and non-optimal frame sizes. The results of the retrace
analysis gives an example where a less accurate traffic model
leads to the wrong design decision.

We are in the process of applying the MTA model to the
problem of modeling the third generation GSM networks, in-
cluding the General Packet Radio Service (GPRS). These net-
works currently have limited prototype deployment, making
experimentation difficult. However, by creating MTA models
for each network, we will enable easy, rapid experimentation
and prototyping.
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