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Abstract
Through measurements, researchers continue to produce
large social graphs that capture relationships, transac-
tions, and social interactions between users. Efficient
analysis of these graphs requires algorithms that scale
well with graph size. We examine node distance com-
putation, a critical primitive in graph problems such as
computing node separation, centrality computation, mu-
tual friend detection, and community detection. For
large million-node social graphs, computing even a sin-
gle shortest path using traditional breadth-first-search
can take several seconds.

In this paper, we propose a novel node distance esti-
mation mechanism that effectively maps nodes in high
dimensional graphs to positions in low-dimension Eu-
clidean coordinate spaces, thus allowing constant time
node distance computation. We describe Orion, a pro-
totype graph coordinate system, and explore critical de-
cisions in its design. Finally, we evaluate the accuracy
of Orion’s node distance estimates, and show that it can
produce accurate results in applications such as node sep-
aration, node centrality, and ranked social search.

1 Introduction

Analysis of graph properties is critical to understanding
the mechanisms underlying the formation and evolution
of complex networks, and is of particular importance in
the study of online social networks. In recent years, the
research community has seen a rise in large-scale mea-
surement studies of deployed social networks [2, 18] and
interaction networks [15, 32], some producing graphs of
up to tens of millions of nodes. The size of these massive
graphs makes their analysis extremely challenging, as
even efficient algorithms can become time-consuming.

Computing node distance, or the shortest-path dis-
tance between two nodes, is a primitive that lies at the
core of both graph analysis algorithms and social net-
work applications. For example, in a network with n

nodes, computing exact values for node separation met-
rics like graph radius, graph diameter, and average path
length, requires calculating O(n2) node distances. In de-
ployed social networks, LinkedIn users can use node dis-
tance to filter out query results in their neighborhood, and
social e-commerce sites can use node distance to iden-
tify more trustworthy sellers [27]. Node distance is also
the determining factor for other common graph problems
like centrality and mutual friend detection.

Current methods for computing node distance do not
scale with graph size. For a graph with n nodes and
m edges, efficient implementations of traditional algo-
rithms including breadth-first-search (BFS), Dijkstra and
Floyd-Warshall can produce shortest paths for each node
pair in O(n log n+m) time, and all pairs shortest-paths
in Θ(n3) [6]. Tolerable for small graphs, the compu-
tation required for a single node distance computation
on a large million-node graph can take up to a minute
on modern computers [23]. Given the prohibitively high
costs of storing precomputed distances, researchers have
little choice but to sample portions of the graph or seek
approximate results.

In this paper, we propose a novel approach to ap-
proximating node distance measurements we call Graph
Coordinate Systems. A graph coordinate system maps
nodes in high dimensional graphs to positions in a fixed-
dimension Euclidean coordinate space. Using the co-
ordinates associated with each graph node, we can use
a simple Euclidean distance computation to estimate, in
constant time, its distance to any other node in the graph.
Our work is inspired by the prior success of using vir-
tual network coordinate systems [7, 8, 20] to predict la-
tencies between Internet hosts. Studies show that in-
tegrating network coordinates into applications such as
web caches and peer-to-peer systems significantly im-
proved their performance. Unlike latencies between In-
ternet hosts, however, shortest path values on a graph, by
definition, will never violate the triangle inequality [17].
Since triangle inequality violations are often cited as a
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key source of error in network coordinate systems, graph
coordinates could potentially be even more accurate.

We make three key contributions in this paper. First,
we propose the use of graph coordinate systems to sim-
plify node distance computation on large graphs. While
similar in fundamental methodology to network coordi-
nates, several critical differences force a ground-up re-
design of graph coordinate systems. For example, while
network coordinates can be easily tuned using fast la-
tency measurements (e.g. via Internet ping), measur-
ing actual distances between graph nodes can be very
expensive. We describe Orion, a prototype graph coor-
dinate system, and explore critical decisions in its de-
sign. Second, we perform extensive validation of Orion’s
node distance estimates using several real social graphs.
Finally, we explore the utility of graph coordinate sys-
tems in graph analysis and social applications, and show
that Orion produces effective results on large graphs for
applications such as node separation metrics, centrality
computation, and ranked social search.

Roadmap. We begin in Section 2 by defining our
goals and assumptions, and describing key differences
from prior work on network coordinate systems. We then
describe the Orion graph coordinate system and explain
key design decisions in Section 3. Next, we present ac-
curacy measurements of Orion in Section 4, and show
the effectiveness of Orion in computing graph metrics
and graph applications in Section 5. Finally, we discuss
future directions and conclude in Section 6.

2 Virtual Coordinates and Large Graphs

The goal of our work is to find a compact representa-
tion of distances between nodes in a graph, such that we
can quickly and easily compute estimates of shortest path
distances between any two nodes. We are inspired by the
significant volume of prior work on the topic of network
coordinate systems, much of which mapped distances
between Internet hosts to distances in a Euclidean space.
In this section, we briefly summarize prior work in net-
work coordinates, and use it as context to identify key
differences and challenges in the design of graph coordi-
nate systems. Finally, we briefly discuss related projects
as context for our work.

2.1 Background: Network Coordinates

Network coordinate (NC) systems [7, 8, 17, 20, 21,
22, 29] were designed as efficient and scalable mech-
anisms to estimated distances or latencies between In-
ternet hosts. Such distance estimation mechanisms can
prove critical to large-scale distributed systems that use
approximate distance values for performance optimiza-

tion. Applications that benefit from these systems in-
clude content distribution networks [24], multicast sys-
tems [3], distributed file systems [26] and file-sharing
networks [1, 5].

The majority of network coordinate systems work by
mapping an Internet host to a specific position in a Eu-
clidean space based on round-trip measurements to other
hosts. Depending on the protocol, a node’s coordinates
can be continually refined as additional measurement re-
sults are added to the system. Once a pair of nodes has
converged to their positions in the coordinate space, their
distance in the Internet (usually a round-trip-time or RTT
value) can be predicted by computing the Euclidean dis-
tance between their coordinate values.

Based on the way coordinates are computed for
new nodes, NC systems can be generally categorized
into “landmark-based” and “decentralized” systems.
Landmark-based systems such as GNP [20] first compute
coordinates for an initial set of well-known landmark
nodes using pair-wise measurements, where errors be-
tween virtual and measured distances are minimized us-
ing a non-linear optimization algorithm such as Simplex
Downhill [19]. The NC then uses these nodes as fixed
points to calibrate coordinate values for the rest of the
network. Landmark-based systems [17, 20, 21, 22, 29]
have fast convergence properties, since all nodes rely on
the same fixed nodes for their coordinate calculations.
However, the accuracy of these systems can suffer if the
choice of landmark nodes is suboptimal, i.e. they do not
sufficiently cover the network.

In contrast, decentralized NCs such as PIC [7] and Vi-
valdi [8] allow incoming nodes to orient themselves in
the coordinate space using any nodes already positioned
in the space. While these systems avoid dependence on
well-known landmarks, new nodes can force already cal-
ibrated nodes to adjust their coordinates, potentially in-
creasing convergence time and propagating errors. For
further details on NC systems, we refer the reader to a
recent survey [9].

Successes and Limitations. NC systems have been
shown to be highly effective at improving performance
of large distributed systems [12, 1]. However, more re-
cent work has questioned the validity of using Euclidean
spaces to approximate Internet latencies, which have
been shown to violate the Triangle Inequality [13, 33].

2.2 Graph Coordinates: Challenges

Our goal is to investigate the feasibility of using a Eu-
clidean coordinate space to capture node distances on
large graphs. Upon consideration, we find that three key
differences separate the problems of estimating shortest
paths on graphs and host latencies on the Internet. As a
result, we cannot simply apply techniques from NC sys-
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tems, but must instead carefully reevaluate them in the
context of graph distances.

Triangle Inequality. First, we note that while the
presence of triangle inequality violations (TIV) is often
identified as a barrier to accuracy in network coordinate
systems, shortest path computation on graphs is guaran-
teed to be TIV free. This is inherent in the definition
of the shortest path metric. The proof is straightforward
by contradiction. Assume a triangle inequality violation
for three nodes a, b, c, i.e. d(a, b) + d(a, c) < d(b, c),
where d(a, b) represents the shortest path distance be-
tween nodes a and b. This scenario is impossible, be-
cause one can construct a “shorter” shortest path between
b and c that is the concatenation of the shortest paths be-
tween (b, a) and (a, c). At minimum, the sum of lengths
of two shortest paths in the triangle is equal to the length
of the third. This property means a graph coordinate sys-
tem does not have to support TIVs by resorting to com-
plex algorithms such as matrix factorization [17].

Cost of Measurements. The second and most crit-
ical difference between these two problems is the cost
of obtaining ground truth distance values between two
nodes. In Internet latency estimation, a running system
can perform a latency measurement with minimal cost
via Internet Ping. In contrast, measuring the shortest path
between graph nodes is expensive, and can take at worst
time O(n+m). In addition, computing the distance from
a to b using BFS effectively computes the shortest path
between a to all other nodes in the graph. With these
factors in mind, we must carefully consider how graph
coordinates obtain real node distances for node calibra-
tion. We must minimize the number of overall BFS oper-
ations, while reusing the results from each BFS operation
as much as possible.

Error Sensitivity. Finally, graph coordinate systems
face an additional challenge of higher error sensitivity.
While latency between Internet nodes can vary from sub-
milliseconds to hundreds of milliseconds, node distances
on small-world graphs tend to have much smaller vari-
ance. For example, diameters of recently measured Face-
book graphs are less than 20 [32]. Additionally, all node
distance values are integers. This means node distance
values across different paths in a graph are significantly
more clustered across a small number of possible values,
and any estimation errors can be rounded up. Thus, a
graph coordinate system must provide reasonably high
accuracy in order to be useful in graph applications.

2.3 Related work

Shortest Path Methods. Shortest path computations
are extremely costly on large graphs. Rattigan et al. pro-

poses to compute nodes position in a graph by exploit-
ing a coordinate-like approach, called network structure
index (NSI) [25]. Compared to Orion, NSI is more ex-
pensive in both time and space complexity. The space
complexity of NSI is O(nkD), where k is the number of
zones and D is the number of dimensions, which are k
times higher than Orion. On the other hand, NSI’s time
complexity, O(mkD), is proportional to the number of
edges m while Orion takes only O(nkD) time, where n
is the number of nodes. This also represents a significant
decrease in time complexity, since m is several orders of
magnitude larger than n in online social graphs. Further-
more, unlike our work, annotation distances computed
by NSI are not the number of hops between nodes pairs.

Recent work by Potamias et al. [23] proposes a land-
mark scheme for approximating shortest path distances.
The approach is similar in spirit, but stores for each node
its distance to every landmark. In contrast, Orion is more
compact. It stores for each node a coordinate address of
e.g. 10 values, independent of the number of landmarks
used. In addition, our work considers the broader prob-
lem of embedding large graphs into known coordinate
spaces, and evaluates our work using a broad array of
applications.

Social Networks. A significant amount of research ef-
fort has been invested to understand OSNs such as MyS-
pace, Orkut [2], Flickr, LiveJournal [18], Facebook [32],
and Twitter [10]. Social networks are characterized
by graph properties like power-law degree distribution,
small-world clustering, and scale-free behavior [16]. A
necessary precondition for quantifying some of these
characteristics is calculating node separation metrics (i.e.
radius, diameter and average path length) that are based
on all-pairs shortest paths. Some social applications also
leverage shortest path computations, such as distance-
based community detection [11]. Unfortunately, com-
puting all-pairs shortest paths on today’s social graphs is
infeasible, since they often have millions of nodes and
hundreds of millions of edges. Existing studies sidestep
this issue by using sampling techniques to estimate the
graph’s true values [18, 32]. In contrast, our solution
computes shortest paths between node pairs in 0.2 mi-
croseconds, making it a scalable solution for computing
all-pairs shortest paths on massive social graphs.

3 Designing Orion

In this section, we present the Orion graph coordinate
system and explain our design decisions in detail. Simi-
lar to network coordinate systems, graph coordinate sys-
tems work in two phases. First, nodes in the graph
are iteratively added to the coordinate space, the po-
sition of each node being calibrated by ground truth
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Figure 1: Mapping graph nodes into Euclidean coordinate
space. For most node pairs, the Euclidean distance exactly
matches the hop-count separating them in the original graph.

node-distance measurements. This “calibration phase”
is where a graph coordinate system incurs its one-time
computational overhead. Once all nodes in the graph
have been added, the resulting system can be integrated
with graph applications to answer node distance queries
with estimates.

Since the per-query computation cost is O(1), the fo-
cus of our design is to ensure the calibration phase is
computationally efficient, and the results are as accurate
as possible. More specifically, our goals are three-fold:

• Scalability. The computational cost of the calibra-
tion phase must scale linearly with the number of
nodes, i.e. O(n).

• Accuracy. While individual node distance pre-
dictions might incur reasonable errors, predictions
should approximate ground truth at the large scale.

• Fast convergence. Impact of individual node cali-
brations should be localized, i.e. should not trigger
significant new adjustments to their neighbors.

Based on these goals, we now describe the Orion de-
sign and explain key decisions.

3.1 A Landmark-based Approach

Figure 1 illustrates how Orion maps nodes in a graph to
positions in a D-dimension Euclidean coordinate space.
The goal is accurately translate pairwise hop-count dis-
tances in the graph into Euclidean distances in the co-
ordinate space. To do this, Orion uses a landmark ap-
proach, where the positions of all nodes are calibrated
with their relative distances to a fixed number (k) of cho-
sen landmark nodes. Landmark nodes are initially cho-
sen from the entire graph based on their position and de-
gree of connectivity.

Why Landmarks? We use a landmark-based scheme
in Orion for two main reasons. First and foremost, we
wish to minimize the number of shortest path compu-
tations needed to establish ground truth on the actual

graph, since each computation can, in the worst case,
require a full traversal of the graph. Using a landmark
approach, we limit the total number of Breadth-First-
Search operations to k, the number of landmarks. Each
BFS computes the shortest path distance from a land-
mark to all other nodes. Computing BFS for all land-
marks essentially precomputes all values needed to cal-
ibrate all nodes in the graph. In contrast, a decentral-
ized approach such as the physical springs model used by
Vivaldi [8] requires shortest path computations between
random node pairs, thus drastically increasing the num-
ber of BFS operations.

The second advantage of a landmark-based scheme is
that the positions of incoming nodes depend only on the
landmark nodes. This bounds the number of operations
required to compute a node’s position, guaranteeing fast
convergence. In contrast, in decentralized models adding
a new node will often force its nearby neighbors to make
adjustments on their position, a process that can propa-
gate adjustments iteratively throughout the entire space.

Finally, we note that the challenges that make Land-
mark systems undesirable in Internet systems do not ap-
ply in our context. In network coordinate systems, land-
marks are physical machines that must remain available
at all times, and processing load from other applications
(e.g. web traffic) can affect the accuracy of latency mea-
surements to other machines in the network [21]. Com-
promised landmarks can also significantly impact the en-
tire system [9]. Those issues do not exist for graph coor-
dinates, where nodes are just graph vertices and all com-
putation can be performed on a centralized server.

3.2 Scalable Landmark Coordinates

Intuitively, the number of landmarks used to calibrate a
graph should have a direct impact on the accuracy of the
Euclidean mapping. Similar correlation between land-
marks and accuracy has been observed in the context of
network coordinate systems [20]. The highly connected
and complex nature of social graphs leads us to believe
that an accurate graph coordinate system requires a sig-
nificant number of landmarks. The challenge is to find a
way to accurately and quickly compute the coordinates
for a large number of landmarks.

Traditional network coordinates determine a node’s
D-dimension coordinates by minimizing the sum of
squares of prediction errors using the Simplex Downhill
algorithm [19], a nonlinear optimization algorithm. The
algorithm runs in O(k2 ·D) time to compute coordinates
of k landmarks.

Since running Simplex Downhill on our desired num-
ber of landmarks (up to 100 in our study) is computa-
tionally expensive, we propose a new approach, where
we separate our landmarks into two groups, a small ini-

4



tial group of 16 landmarks, and a larger secondary group
composed of the remaining landmarks.

We leverage the Simplex Downhill algorithm to com-
pute the coordinates for the initial (kI = 16) landmarks,
thus its asymptotical complexity is O(kI

2 ·D). The sec-
ondary group of landmarks calibrate their positions us-
ing the initial kI landmarks as anchors, contributing to a
computational complexity of only O(kI ·D) each. Thus,
the total time required to compute landmark coordinates
is O(kI

2 · D) + (k − kI) × O(kI ·D), where k is the
total number of landmarks.

Furthermore, we describe two ways to compute the
coordinates of the secondary group of landmarks, while
maintaining the same computational complexity. In the
global approach, we compute the coordinates of each
node in the secondary group relying only on the ini-
tial group as anchors. In the incremental landmarks ap-
proach, nodes in the secondary group are added one by
one. Once a node receives its coordinate values, it be-
comes an anchor for all remaining nodes. To compute its
coordinates, any remaining node in the secondary group
can choose any kI nodes from all embedded nodes to be
its landmarks.

3.3 Landmark Selection

Finally, we consider the problem of choosing landmark
nodes to produce the most accurate graph to Euclidean
coordinate mapping. Prior work by Potamias et. al con-
sidered the problem of choosing landmarks, and con-
cluded experimentally that choosing nodes with high
centrality performed significantly better than random
choice [23]. Given the complexity of computing node
centrality, we consider two groups of alternative land-
mark selection strategies as possible approximations of
centrality-based selection: Random and High-degree.

• Random. This is the basic landmark selection strat-
egy. Landmarks are chosen uniformly at random
from all nodes in the graph.

• High-degree. Prior measurements on social net-
works [18, 32] show that social graphs exhibit a
power-law-like degree distribution. Intuitively, high
degree nodes reside at the core of social graphs, ef-
fectively approximating central nodes. This strategy
chooses nodes with the highest degree.

• Landmark separation. Closely positioned land-
marks are less effective at “covering” the graph as
anchors. Therefore, we add variants to the two ba-
sic strategies, where we select the landmarks one
by one, ignore any potential landmarks that are too
close in the graph to existing landmarks, and con-
tinue selecting landmarks until the desired number
has been met.

Network Nodes Edges Avg. Path Len.
Norway 293K 5,589K 4.2
Egypt 246K 1,618K 5.0

Los Angeles 275K 2,115K 5.1
India 363K 1,556K 6.1

Table 1: Properties of Social Graphs

We consider these strategies as approximations of the
high-centrality strategy, and evaluate their effectiveness
empirically in Section 4.

Summary. Orion works as a landmark-based scheme,
where an initial core of 16 landmarks is first fixed in
the space using Simplex Downhill optimization. A sec-
ondary group of landmarks position themselves based
on the original landmarks. Finally, all remaining graph
nodes calibrate their positions based on node distances
obtained from computing BFS from all landmarks.

4 Experimental Results

In this section we analyze the accuracy of Orion’s node
distance estimates. We study the impact on accuracy by
key factors: Landmark selection strategy, cardinality of
the Landmark set, and dimensionality of node coordi-
nates. We preface our core discussion with an overview
of the experimental environment and evaluation metrics.

4.1 Experimental Setup

We evaluate Orion accuracy using four anonymized
datasets (Egypt, India, Los Angeles and Norway) gath-
ered from Facebook regional networks [32]. These
graphs were chosen because they are large, but not too
large to make graph analysis intractable. Their statistical
properties are consistent with other OSN datasets [2, 30].
Table 1 reports their basic properties.

All experiments were run on 2.4 GHz, dual core Xeon
servers with 32GB of RAM. All machines ran Fedora
Core, kernel version 2.6.x.

Evaluation Metrics. We use two key metrics to eval-
uate Orion accuracy. The first is Relative Error. This
metric is widely used in the study of Network Coordinate
Systems, although it must be modified slightly in order
to evaluate graph coordinate systems. Let a and b be two
nodes in the graph. Let dm

a,b be the measured distance
between a and b on the real graph using the BFS algo-
rithm, and let dPa,b be the estimated distance computed
using a and b’s coordinates from Orion. In our context,
the relative error is:

Re =
|dma,b − dPa,b|

dma,b
(1)
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Figure 2: ARE of nodes’ distances with different combination
of landmark selection and computation strategies in India graph

The second metric is Average Relative Error (ARE) of
predicted distances. Small ARE values are sufficient to
prove that the majority of node pairs in Orion have realis-
tic predicted distances. Finally, we also use Computation
time to investigate Orion’s efficiency.

4.2 Estimation Accuracy

We examine Orion’s estimation accuracy under the influ-
ence of three different factors: landmark selection strat-
egy, cardinality of the landmark set, and dimensionality
of node coordinates.

Landmark Selection Strategies. We begin by analyz-
ing the impact of landmark selection strategies on accu-
racy. In Section 3.3, we describe two selection strategies
(random and high-degree) and variants based on land-
mark separation. Figure 2 plots AREs for a variety of
landmark selection strategies using the India graph. We
evaluate the accuracy of each different strategy on all
four datasets. These results are similar for all our graphs,
and we only show India here for brevity.

Each evaluation is performed by selecting 1000 ran-
dom nodes in the graph and computing pairwise dis-
tances between them, for a total of ≈ 500K distances.
These results form the control sample when calculating
relative error vs. Orion. Each value reported in Figure 2
is the average results over 5 sets of randomly selected
1000 node groups.

In general, Figure 2 shows that Orion provides low
relative errors compared to actual path lengths for differ-
ent landmark selection strategies. Among the considered
strategies, Figure 2 shows that high-degree strategies can
produce lower errors. Furthermore, the impact of land-
mark separation on the accuracy of shortest path length
estimation is fairly small. Taking a close look, the high-
degree incremental landmark selection strategy with 3-
hop separation provides the most accurate result among
all the considered strategies. As a result, all remaining
experiments run with this approach.
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Cardinality of Landmark Set. In this section we ex-
plore the variation in accuracy when we initialize Orion
using different cardinalities of the landmark set. The
intuition behind this experiment is that by having more
landmarks spread in the graph there is a better space cov-
erage that should allow higher precision while placing
nodes into this space.

Figure 3 depicts the cumulative distribution function
of the relative error for cardinality 30 and 100 of the land-
mark set. Figure 3 shows that there is a small increase in
precision with larger landmark set sizes. In general, al-
most 70% of the computed distances have a relative error
less then 0.2 and more than 90% are less than 0.4, that
allows us to validate a satisfactory accuracy in comput-
ing node distances with a relatively small landmarks (i.e.
100 landmarks represent a millesimal of our graphs).

Dimensionality of Coordinates. Nodes are mapped
into geometric space based on the coordinates they ac-
quire during the initialization phase. Intuitively, cali-
brating node positions using a larger coordinate vector
should have a direct impact on the precision of the esti-
mated distances between nodes.

We compute coordinates as dimensionality varies be-
tween 2 and 14. Figure 4 shows that increasing the
coordinates dimension also increases the predicted dis-
tances between nodes, confirming our intuition. Al-
though higher dimensions produce smaller errors, as the
dimension increases the time for coordinate and distance
computation increases as well. We explore the trade off
between predicted precision and efficiency and conclude
that using 10-dimensional coordinates is best compro-
mise. In particular, as shown in Figure 4, the accuracy
gain for x ≥ 10 slightly decreases.

4.3 Computational Complexity

In this section we investigate Orion efficiency by analyz-
ing Orion bootstrap and pair distance computation time
versus BFS.

Orion bootstrap involves two main operations: (i)
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Time India Egypt L. A. Norway
Orion Bootstrap 9499s 7852s 8856s 9383s
Orion Response 0.2µs 0.2µs 0.18µs 0.19µs
BFS Response 1.028s 0.75s 1.027s 1.44s

Table 2: Computation times for Orion and BFS.

measure distances from each landmark to all the nodes
using BFS, and (ii) compute coordinates using Simplex
Downhill. We record the time for bootstrapping Orion
on our four social graphs and show that Orion bootstrap
time is about 2 hours (as shown in Table 2). These times
are acceptable since bootstrapping is a one-time cost.

Response time is the average time to compute pairwise
node distances using Orion. As shown in Table 2, Orion
is 7 orders of magnitude faster than BFS. This result con-
firms the huge gain a coordinate graph system like Orion
is able to achieve compared to traditional methods.

Note that Orion bootstrap and response times are func-
tions of the number of nodes in the graph. Conversely,
BFS computation time is a function of the number of
edges. Thus Orion is likely to provide better scalability
than BFS because, as social networks expand, the growth
in edges far surpasses the growth in nodes.

5 Using Orion in Graph Applications

To demonstrate Orion’s utility and accuracy in an opera-
tional setting, we integrate Orion into several graph anal-
ysis and social applications that make extensive use of
shortest path computations. Under normal conditions,
these graph metrics and applications can be computa-
tionally intractable for large graphs. We show that we
can use Orion to scalably obtain answers that reasonably
approximate answers obtained from deterministic meth-
ods. Specifically, we look at three common operations:
computing node separation metrics such as graph radius,
diameter and average path length, locating central nodes
in a graph, and ranked social search.

Metric Method India Egypt L. A. Norway

Radius
Orion 11.7 9.5 10.8 8.1
Actual 11 9 11 8

Diameter
Orion 17.9 13.9 17.8 12.1
Actual 17 13 17 12

Avg. Path
Length

Orion 5.8 4.8 4.9 4.1
Actual 6.1 5.0 5.1 4.2

Table 3: Comparing Node Separation Metrics for a 1000-node
sample in each of our four graphs. Orion’s approximations are
compared to results computed via BFS.

5.1 Node Separation Metrics

Node separation metrics are commonly used to charac-
terize overall graph structure. The common node sepa-
ration metrics include graph radius, graph diameter and
average path length. The eccentricity of a node is defined
as the longest hop distance from it to all other nodes in
a graph. Graph radius is defined as the minimum eccen-
tricity across all nodes, while graph diameter is defined
as the maximum eccentricity across all nodes. Average
path length is the mean of all shortest path lengths.

Computation Time. Given their intensive use of
shortest path computations, node separation metrics are
an ideal application for Orion. We would like to quan-
tify Orion’s accuracy in this context by computing these
metrics using Orion and compare them directly to those
from BFS. Given the large sizes of our graphs, however,
it was not possible for us to compute eccentricity for all
the nodes by BFS for direct comparison. From our time
measurements of single node full BFS we estimate a full
computation of the Los Angeles network (275K nodes)
would take roughly 152 hours or more than 6 days of
computation. In contrast, embedding the LA network
into Orion takes less than 2 hours, and querying for all
pairwise paths takes roughly 7000 seconds, for a total
process time of less than 4 hours.

Accuracy Results. For a scalable side-by-side com-
parison, we randomly sample 1000 nodes from each of
the graphs, and compute graph radius, diameter and av-
erage path length based on BFS from those nodes to
all other nodes in the graph. We compare those results
to those generated using node distance estimations from
Orion, and show the results in Table 3. We find that Orion
performs very well in predicting these metrics. For graph
radius and diameter, it always provides a result that is less
than 1 hop from the BFS answer. In the case of average
path length, Orion is even more accurate, and provides
results that never deviate more than 0.3 from BFS.
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Figure 5: Accuracy of Top k high centrality nodes

5.2 Computing Node Centrality

Information dissemination is an active research area
of social networks. Viral spread [31], influence cam-
paigns [4, 14], and breaking-news coverage [10] are all
examples of information dissemination problems on so-
cial graphs. A critical, but computationally expensive,
metric necessary for these applications is node central-
ity. We leverage Orion coordinates to compute node’s
centrality in order to compare its speed and accuracy
with centrality calculations performed using traditional
shortest-path algorithms.

Centrality is defined as the average shortest path
length from a node a to every other nodes in the graph.
The smaller the average path length for a node is, the
higher its centrality is. Using Orion, a node can quickly
estimate its centrality by computing its average Eu-
clidean distance to all other nodes in the graph.

We estimate the precision of computing node central-
ity via Orion by comparing its results to actual results
computed using BFS. Computationally, node centrality
also requires all pairs of shortest paths computation, and
our time estimates from node separation metrics also ap-
ply here (152 hours for our LA graph).

Accuracy Results. To keep computation time man-
ageable, we again sample 1000 random nodes from each
graph, and compute node centrality values for each node
using both Orion and BFS. We sort nodes based on their
average shortest path length to every other node in the
network, in increasing order. Then we select the top k
nodes from each resulting group, and count the number
of top k central nodes (according to BFS) that also ap-
peared in Orion’s results. We repeat this for 5 sets of
1000 random nodes and average the result.

Figure 5 shows the percentage of top-k nodes that are
correctly considered found by Orion, for different val-
ues of k: 50, 100, and 200. The overlap between Orion
and BFS’ results increases with k. As with results in
Section 4.3, centrality results for India are more accu-
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Figure 6: Accuracy of top k ranked nodes.

rate because it has the longest average path lengths of
our sample graphs. The results are generally good across
the board, with Orion giving correct estimates more than
50% of the time, when selecting top 50 highest centrality
nodes out of 1000.

5.3 Ranked Social Search

Online social networks often need to rank their query re-
sults by proximity in the social graph to the query owner.
For example, searches for specific names on Facebook
and LinkedIn will only return the top results that are clos-
est in social distance to the user. Social distance is used
to rank query results because users generally care about
people close to their social circles.

We implement a ranked social search application. In
each graph, we randomly select 100 nodes to represent
the total set of results for each query. We run the simula-
tion 5000 times, each time with a randomly chosen node
as the point of origin for the query.

Accuracy Results. We sort the randomly selected 100
nodes in increasing order and choose the top k nodes.
Then we count the amount of overlap in the two sets
of top k nodes computed by Orion and the BFS-based
approach. We define the accuracy of the ranked social
search in Orion as the ratio of the number of overlapping
nodes to the total number of all considered nodes. Fig-
ure 6 plots the accuracy values over different values of
k, averaged across the 5000 runs. Again, Orion’s social
search produces fairly good results, with more than 60%
overlap when choosing the top 20 responses.

6 Conclusions and Future Directions

Shortest path computation is one of the most critical
and computationally intensive primitives for both graph
analysis and social networking applications. We pro-
pose graph coordinate systems, a new approach to dra-
matically reduce the complexity of shortest paths com-
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putation by mapping the entire graph into a multi-
dimensional Euclidean coordinate space. We describe
the design of Orion, an efficient graph coordinate proto-
type. Mapping a graph of n nodes takes timeO(kI ·D ·n)
(roughly 2-3 hours for a 275K node graph), after which
each node distance estimation takes less than 0.2 mi-
croseconds. Our experiments show Orion can provide
accurate results both for graph metrics such as graph ra-
dius and node centrality, as well as graph-based applica-
tions such as ranked social search.

Future Directions. We believe graph coordinate sys-
tems are a promising new research direction for scalable
graph analysis. While our work here is preliminary, we
see three immediate areas for future work. First, we
would like to explore the efficacy of mapping graphs
to non-Euclidean coordinate systems such as spherical
and hypercube. Second, we will examine the impact
of graph coordinates on weighted graphs, e.g. geo-
graphical graphs or temporal distance metrics for social
graphs [28]. Finally, Orion is designed for static graphs.
Adding new nodes to the graph after the initial mapping
can change shortest path values for portions of the graph
and force a re-mapping of the graph. We will investigate
mechanisms and heuristics to allow run-time modifica-
tions to graphs already mapped to the coordinate space.
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