
Papyrus: A Software Platform for Distributed Dynamic
Spectrum Sharing Using SDRs

Lei Yang, Zengbin Zhang, Wei Hou†, Ben Y. Zhao, Haitao Zheng
Department of Computer Science, University of California, Santa Barbara

† Department of Electronic Engineering, Tsinghua University, Beijing, China
{leiyang,zengbin,ravenben,htzheng}@cs.ucsb.edu, weihou2008@gmail.com

ABSTRACT
Proliferation and innovation of wireless technologies require
significant amounts of radio spectrum. Recent policy re-
forms by the FCC are paving the way by freeing up spec-
trum for a new generation of frequency-agile wireless devices
based on software defined radios (SDRs). But despite recent
advances in SDR hardware, research on SDR MAC proto-
cols or applications requires an experimental platform for
managing physical access. We introduce Papyrus, a soft-
ware platform for wireless researchers to develop and exper-
iment dynamic spectrum systems using currently available
SDR hardware. Papyrus provides two fundamental build-
ing blocks at the physical layer: flexible non-contiguous fre-
quency access and simple and robust frequency detection.
Papyrus allows researchers to deploy and experiment new
MAC protocols and applications on USRP GNU Radio, and
can also be ported to other SDR platforms. We demonstrate
the use of Papyrus using Jello, a distributed MAC overlay for
high-bandwidth media streaming applications and Ganache,
a SDR layer for adaptable guardband configuration. Full im-
plementations of Papyrus and Jello are publicly available.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Experimentation

Keywords
Dynamic Spectrum Access, Cognitive Radio, Testbed

1. INTRODUCTION
Wireless technologies are expanding into all aspects of our

daily lives. For example, today’s digital home uses a wide
range of wireless devices to replace messy and cumbersome
audio, video, telephone and data cables. Future wireless
technologies are expected to deliver high-quality streaming
media between rooms (see Figure 1). While mom or dad
streams a cooking video from the office PC to the kitchen
counter, kids in the den can watch an HD movie streamed
from the Digital Video Recorder (DVR) in the living room.

These networks of the future require significant amounts
of radio spectrum. Changing policies at the FCC are paving
the way by freeing up spectrum for a new generation of

Link 1

Link 3

Link 2

Frequency

Link 1
Link 2

Link 3

Spectrum Allocation for 3 Links

Figure 1: Home networking devices share radio fre-
quency to provide high-quality media streaming.

spectrum-worry-free wireless devices based on software de-
fined radios (SDRs). SDR devices can be programmed to
intelligently sense locally available spectrum and coordinate
with other communication endpoints to occupy specific fre-
quency bands for reliable, high throughput communication.
By operating on different frequency ranges, multiple wire-
less flows can coexist without mutual interference in high
density environments, similar to prior OFDMA approaches.
Towards this goal, recent research projects have produced
a number of viable SDR platforms for research experimen-
tation and deployment, such as AirBlue [5], KNOWS [2],
SORA [10], USRP GNU Radio [4], and WARP [13].

Despite the availability of these experimental platforms,
several significant challenges must be addressed before we
can begin research on developing key media access control
(MAC) protocols necessary for network applications. More
specifically, two issues remain at the physical layer. First,
SDR devices must be able to quickly sense specific spectrum
ranges that are unused and available. Second, the band-
width requirements of future network applications will be
highly heterogeneous and highly dynamic over time. The re-
sult is that available spectrum is likely to be in fragments of
all sizes. To support bandwidth hungry applications, SDR
devices must be able to combine multiple spectrum frag-
ments into single channel for network transmissions. On
top of these two issues, SDR devices must also be able to
operate in a decentralized manner without central control.

In this article, we describe our work on Papyrus, an exper-
imental software platform for building and evaluating MAC
protocols and applications on dynamic spectrum access sys-
tems. Papyrus provides a fully programmable decentralized
OFDMA system suitable for deploying MAC protocols and
applications. By providing a higher level interface to the

ACM SIGCOMM Computer Communication Review 32 Volume 41, Number 1, January 2011



MAC

Spectrum SensingFlexible Frequency Access

Multiband Filter

OFDMA 
Modulation

OFDMA 
Demodulation

Preamble Detection
Synchronization

Adaptive Multiband 
Filter

Papyrus
PHY

Edge Detection

GetAvailableSpectrum()ReceivePacket()
SetSpectrumUsage()

PSD Estimation

Preprocessing: 
smoothing&filtering

Subcarrier 
Configuration

Papyrus 
API

ADC/
DAC

USB2.0RF
Front-end

GetPSD()SetTxPower()
SetFreq()

SendPacket()

USRP 
Radio

Figure 2: Papyrus software architecture and its interfaces with the MAC layer. Papyrus’s contributions are
marked by the purple colored blocks.

MAC-layer while abstracting away key challenges of spec-
trum sensing and access, Papyrus simplifies implementation
and experimentation at the MAC layer.

To illustrate Papyrus usage, we describe the implementa-
tion of two example systems. The first is Jello, a distributed
MAC overlay for high-bandwidth media streaming applica-
tions [14]. Jello devices support high-quality delay-sensitive
media sessions by accessing and sharing wireless medium
in the frequency domain. These devices utilize Papyrus’s
physical layer components to sense, identify, and access un-
used spectrum, allowing multiple flows to work in parallel
on isolated frequencies. Jello devices also self-defragment
spectrum on-the-fly, and scavenge multiple frequency frag-
ments for use by individual, high-speed transmissions. Our
second example is Ganache [15], a system that intelligently
sets and adapts “guardbands” in the frequency domain to in-
sulate frequency-adjacent transmissions from mutual cross-
band interference. Ganache leverages Papyrus to measure
frequency signal strength, configure link spectrum usage,
and make adjustments to local guardband settings.

Our full implementation of Papyrus is available for down-
load at http://link.cs.ucsb.edu/papyrus. While our in-
stance of Papyrus runs on the USRP GNU Radio platform,
Papyrus can be ported into all other current SDR platforms,
including SORA and AirBlue.

2. THE PAPYRUS PLATFORM
Recent advances in hardware platforms [5, 10, 12, 13] are

building the groundwork for experimental research on SDR
protocols and applications. To take this significant step for-
ward, we propose Papyrus, a flexible, software platform that
manages the complexities of dynamic spectrum access at the
physical layer, exporting a clean and manageable abstrac-
tion to the MAC layer.

2.1 Overview
Figure 2 illustrates Papyrus’s software architecture and its

interfaces to the MAC layer. Papyrus provides to the MAC
layer two fundamental physical layer functions of dynamic
spectrum access:

• Flexible spectrum access which transmits and re-
ceives packets from any combination of frequency seg-
ments as specified by the MAC layer;

• Spectrum sensing which senses and identifies locally
usable spectrum segments at frequency ranges defined
by the MAC layer.

Both components operate in a fully decentralized manner
without relying on any central control or dedicated control
radio. Both components are also modular and thus easy to
reconfigure or modify.

The Papyrus API. Using these two components, we
define the interface between Papyrus and the MAC layer
by the Papyrus API functions, listed in Table 1 as well
as Figure 2. The API implements the physical layer func-
tionalities of dynamic spectrum access, allowing the MAC
layer to obtain and investigate the energy/interference pro-
file on each frequency subcarrier, discover locally usable
spectrum, send and receive both control and data packets
on desired frequency ranges, and finally configure transmit
power profile and central carrier frequency on each trans-
mission. For example, to send a packet on subcarriers spec-
ified by carrierUsage, the MAC layer calls two functions
sequentially:

SetSpectrumUsage(carrierUsage)

SendPacket(payload).

In the following, we briefly describe the design of these two
components as well as their USRP GNU radio implementa-
tion. For a detailed explanation, we refer the readers to [14].
In Section 3, we will show that using these two components,
researchers can build MAC protocols that dynamically con-
figure spectrum usage in both time and frequency.

2.2 Flexible Frequency Access
We start from describing how Papyrus devices access and

share spectrum in the frequency domain. The spectrum
band is divided into a large set of frequency subcarriers.
Each Papyrus sender can transmit on any subset of the sub-
carriers, either contiguously or non-contiguously aligned in

ACM SIGCOMM Computer Communication Review 33 Volume 41, Number 1, January 2011



API function Description

int * GetAvailableSpectrum( ) It performs edge-detection based sensing, and returns a binary array that
records each subcarrier’s availability (idle or busy).

void SetSpectrumUsage(int * carrierUsage) A function used by the MAC layer to configure the spectrum (subcarrier) usage
of Papyrus PHY. The input parameter carrierUsage is a binary array that
defines the set of subcarriers to use.

void SendPacket(int * payload) Sends a packet using Papyrus PHY. The input parameter payload holds the
packet content.

void ReceivePacket(int pktStatus, int * payload) The packet reception callback function for Papyrus PHY. Upon detecting a
packet (via preamble), it returns pktStatus, a boolean value that indicates
whether the packet is correctly received, and payload the content of the packet
if it is received correctly.

float * GetPSD( ) Gets the current power spectrum density map. It returns an array of floats that
stores the observed PSD at each subcarrier.

void SetTxPower(float * powerProfile) Sets the transmission power of Papyrus PHY. The input parameter powerPro-
file is a float array that defines the transmission power at each subcarrier.

void SetFreq(float freq) Sets the central carrier frequency freq of Papyrus PHY.

Table 1: The API functions that Papyrus provides to the MAC layer.

frequency. Each receiver can listen to the entire set of sub-
carriers at once, and decode its desired signal. As shown by
the top halves of Figure 3, multiple transmissions can oc-
cur simultaneously on isolated frequency subcarriers without
mutual interference, while adapting their frequency usage to
time-varying traffic demands.

Papyrus offers this level of flexible frequency access by
implementing decentralized orthogonal frequency division
multiple access (OFDMA). OFDMA is a multi-user version
of the orthogonal frequency-division multiplexing, a digital
modulation scheme. By dividing the frequency band into
a large set of subcarriers and letting transmissions operate
on isolated subset of subcarriers, OFDMA allows several in-
terfering links to transmit simultaneously. Because of its
flexibility and efficiency, OFDMA has been widely used in
centralized wireless networks such as WiMAX.

Implementing OFDMA on distributed networks, however,
faces several significant challenges. Existing designs in cen-
tralized networks rely on global synchronization to maintain
subcarrier orthogonality, so that transmissions on different
subcarriers do not interfere with each other. In distributed
networks, where global synchronization is infeasible, this
subcarrier orthogonality no longer exists, and transmissions
create harmful cross-band interference to each other.

The bottom half of Figure 3a shows a frequency-domain
snapshot of two transmissions (link 1 and 2) in an OFDMA
system, in terms of the power spectrum observed by link
2’s receiver. In this example, link 1 occupies subcarriers
23-30 and link 2 occupies subcarriers 33–40. Both trans-
missions leak power to unoccupied subcarriers due to out-
of-band emissions. When these transmissions are tightly
synchronized, i.e., their symbols start and end at the same
time and their central carriers are identical, their receivers’
demodulation operation will remove unwanted signals and
maintain the subcarrier orthogonality. But when operating
in a decentralized network without tight synchronization,
link 1 and 2’s OFDM symbols are mis-aligned with each
other in time when they arrive at link 2’s receiver (see Fig-
ure 3b). In this case the receiver can no longer cancel the
out-of-band emission and will suffer significant damage in
its preamble detection and packet decoding [7].

Addressing Cross-Band Interference. Papyrus over-
comes this problem using advanced signal processing tech-

niques, essentially by reengineering receivers to “filter” out
unwanted signals and restoring the desired transmission or-
thogonality. Specifically, Papyrus introduces two new mod-
ules on top of the conventional OFDMA design.

• Adaptive Multi-band Receiver Filter – Papyrus applies
a filter at both the transmitter and receiver to re-
move signals from unwanted subcarriers. The filter
is multi-band so that devices can access multiple non-
contiguously aligned frequency subcarriers. Each Pa-
pyrus receiver also dynamically tunes the filter’s car-
rier frequency and width to compensate the difference
between transmitter and receiver in their central car-
rier frequency, an artifact known as the frequency off-
set. At initialization, the receiver starts from a loose
filter in order to capture its desired signal. After each
successful packet decoding, it estimates the frequency
offset using the packet preamble and adjusts the filter’s
carrier frequency accordingly. It also shrinks the filter
bandwidth to remove as much interference as possible.
If the filter becomes too narrow and fails to detect any
packet preamble, the receiver again expands the filter
to capture more signals.

• Sensing-assisted Guardband Protection – The adap-
tive filter can effectively reduce cross-band interfer-
ence, but cannot fully remove it. To suppress the im-
pact of residual interference, Papyrus inserts frequency
guardbands at link boundaries to protect them from
interfering each other [7]. Instead of blindly insert-
ing guardbands, Papyrus measures interference power
levels using its sensing component (Section 2.3), and
marks severely affected frequency subcarriers as busy.
In addition, the MAC layer can use sensing reports
to adjust guardband configuration. This technique,
combined with the adaptive filtering, enables Papyrus
devices to effectively control cross-band interference.

2.3 Sensing and Detecting Vacant Frequencies
When sharing spectrum with peers, wireless devices must

sense the spectrum to quickly and reliably identify locally
usable frequency. Based on the frequency range defined
by the MAC layer, Papyrus configures its OFDMA-based
transceiver to listen to the spectrum span in this range and
produce a power spectrum density (PSD) map that mea-
sures the received energy level across the frequency band.

ACM SIGCOMM Computer Communication Review 34 Volume 41, Number 1, January 2011



Link 3 Link 1

Link 2 Link 1

Time

F
re

q
u

en
cy

Link 2 Link 3

(a) (b)

Frequency (subcarrier index)

P
ow

er
 S

pe
ct

ru
m

 (
dB

)

Figure 3: An example of Papyrus’s flexible spectrum access using OFDMA. Three transmissions access and
share radio spectrum in the frequency domain. Link 2 operates on two non-contiguous spectrum blocks to
form a single transmission. The closer look at the frequency and time signals show the impact of unsynchro-
nized OFDMA.

Papyrus then uses the PSD map to identify usable frequency
by detecting “busy” subcarriers.

To detect busy subcarriers, conventional approaches ap-
ply a threshold-based energy detector over the PSD map. A
subcarrier is busy when its PSD value exceeds the threshold
and otherwise idle. This approach, however, is highly depen-
dent on the choice of the detection threshold and finding a
uniformly optimal value is unrealistic [8].

Sensing via Edge Detection. Papyrus instead exploits
a unique property of radio transmissions in the frequency
domain. Regardless of energy levels, all active transmissions
display pairs of rising and falling edges in the PSD map (see
Figure 4). By identifying these edges, Papyrus can reliably
identify active transmissions and usable subcarriers.

To do so, Papyrus first smooths the PSD map by aver-
aging it over several signal samples, filtering out most noise
before trying to locate edges. Papyrus also applies energy
detection with two extreme thresholds τmax and τmin on
the smoothed PSD map to filter out subcarriers with very
high and very low power – any subcarriers with power level
higher than τmax are considered busy, and any subcarriers
with power level lower than τmin are considered idle. Next,
Papyrus applies the edge detection mechanism used in im-
age processing [1] to detect rising and falling edges (see Fig-
ure 4). A frequency block with a rising edge to its left and a
falling edge to its right is busy, and the rest are free. While
this new method still requires a threshold to detect edges,
our experimental results confirm that its sensitivity to both
noise and threshold choice is much smaller than that of the
energy detector [14].

Detecting External Users. The above spectrum sens-
ing design focuses on detecting available spectrum among
peering Papyrus devices. It can also detect external users
and even primary users whose spectrum usage can be stably
represented by the PSD map. For other forms of transmis-

-60

-50

-40

-30

-20

-10
P

ow
er

 S
pe

ct
ru

m
 

 D
en

si
ty

 (
dB

)

a rising edge

a falling edge

-20

-10

 0

 10

 20

 0  50  100  150  2001s
t O

rd
er

 D
er

iv
at

iv
e

 o
f P

S
D

 (
dB

)

Frequency (subcarrier index)

Figure 4: A sample PSD map and its first-order
derivative, used to detect edges. Papyrus identi-
fies occupied frequency blocks using edge detection.
While the absolute signal strength varies signifi-
cantly across the frequency, the rising/falling edges
are easier to detect. Image from [14].

sions, such as wireless microphones with intermittent trans-
missions, Papyrus can apply other sensing mechanisms, e.g.,
feature detection based sensing, to obtain reliable results.

2.4 Prototyping Papyrus on GNU Radios
We have implemented a prototype of Papyrus on USRP

GNU Radios, a widely available software reconfigurable ra-
dio that supports full reconfiguration across various protocol
layers. Each Papyrus device consists of a USRP GNU radio
and a laptop (or desktop) running Ubuntu Linux. A USB
2.0 interface connects the USRP radio with the laptop.

Following the GNU Radio software framework, we im-

ACM SIGCOMM Computer Communication Review 35 Volume 41, Number 1, January 2011



plemented Papyrus’s flexible frequency access component in
C++ and the spectrum sensing component in Python. The
architecture of our implementation is shown in Figure 2.
The original USRP GNU Radio package only includes the
basic OFDM functions but does not contain any decentral-
ized OFDMA implementation. We add/modify the pur-
ple colored blocks to implement the proposed distributed
OFDMA, allowing devices to flexibly access any combina-
tions of subcarriers without central control. These include
preamble configuration and detection which sends and de-
tects packet preamble on a subset of subcarriers using a
modified PN correlation approach [11], adaptive multi-band
filter at both sender and receiver to filter out unwanted inter-
ference, and edge detection based spectrum sensing to iden-
tify usable spectrum subcarriers. From these components
we then build the Papyrus API functions. We believe that
these are the basic set of functions to implement dynamic
spectrum access protocols and applications.

Our USRP implementation supports operations in both
50MHz - 2.9GHz and 4.9GHz - 5.85GHz bands by using the
RF daughter-boards WBX or XCVR2450 from [12]. Run-
ning on a standard dual-core laptop, a Papyrus device can
communicate over any 1MHz frequency band. The frequency
band can be divided into 64, 128, 256 or 512 subcarriers,
where each subcarrier can use either BPSK or QPSK mod-
ulation. There are two primary limitations to the bandwidth
of the system, one is the USB 2.0 interface that connects the
USRP board to the laptop; the other is the limited compu-
tation power of the laptop. We expect that these artificial
limitations will play considerably smaller roles as our plat-
form migrates to improved SDR hardware in the near future.

Finally, since Papyrus code is modular and freely avail-
able, researchers can easily implement additional physical
layer functions or refine existing functions. For example,
the current Papyrus implementation uses the same modula-
tion scheme for all subcarriers, since they experience similar
channel conditions in our narrow-band GNU Radio imple-
mentation. To exploit frequency diversity present in wide-
band systems, we can apply frequency-aware rate adapta-
tion [6, 9] to configure the modulation and coding scheme
on a per-subcarrier basis. This also requires per-subcarrier
signal strength estimation [6].

3. USING PAPYRUS
To demonstrate the impact of Papyrus as an experimental

platform, we have used it to implement two MAC protocols
on dynamic spectrum access systems. Jello [14], is a dis-
tributed MAC overlay to support multiple concurrent media
streaming applications, e.g. in digital homes. Ganache [15],
is an intelligent guardband configuration system that dy-
namically sets and adapts frequency guardband to insulate
links from cross-band interference. In this section, we briefly
describe the architecture of both systems, and describe how
they are implemented on top of Papyrus.

3.1 Jello: A MAC Overlay on Papyrus
Jello is a decentralized MAC overlay that enables multiple

point-to-point media sessions (shown in Figure 1) to oper-
ate in parallel by sharing spectrum in the frequency domain,
thus avoiding costly temporal contention and ensuring con-
tinuous spectrum access. These sessions also make use of
the spectrum efficiently by adapting their frequency usage
to time-varying traffic demands.

Link
Failure

Link 
Coordination

Link Init
(SYNC)

Jello MAC

Applications

TX/RX Interface

Data
Packets

Control 
Packets

Frequency 
Selection

Papyrus PHY

USRP Radio

SendPacket() ReceivePacket() GetAvailableSpectrum()

Figure 5: Jello and its interface with Papyrus.

As a MAC protocol, Jello essentially implements a dis-
tributed coordination framework that allows devices to con-
figure and adapt their spectrum usage on the fly. It consists
of three key components: 1) initialization, where end-devices
coordinate their initial frequency usage to set up links; 2)
selecting and adapting frequency usage, 3) maintaining link
connection by coordinating frequency usage within each Jello
sender and receiver pair. All three components operate with-
out relying on any central control. We refer the readers
to [14] for a detailed description of Jello.

Utilizing Papyrus’s API functions, we have implemented
Jello as a user-level Python program on GNU radios. It
interfaces with Papyrus’s C++ code using Swig (http://
www.swig.org). Figure 5 illustrates the structure of Jello,
and its interaction with the Papyrus API.

We describe Jello’s MAC operations using pseudocode be-
low. When a pair of Jello devices initiate a link, they first
enter the SYNC state and communicate with each other on
the SYNC frequency band. After establishing the session,
they communicate with each other on the negotiated fre-
quency subcarriers. Jello devices use the best-fit algorithm
to determine their frequency usage. During the session, the
devices may change their spectrum usage by repeating the
spectrum sensing, frequency selection and link coordination
steps. While configuring and adapting their spectrum usage,
each pair of Jello devices exchange coordination messages
on the current frequency to negotiate and synchronize their
spectrum usage. In rare cases where coordination fails, both
devices enter the SYNC state to restore communication.

%% Initialization

availSubcarriers = GetAvailableSpectrum()

SetSpectrumUsage(SYNC FREQ)

SendPacket(availSubcarriers + coordinationMsg)

%% Selecting and adapting frequency usage

%% current frequency usage == carrierUsage

availSubcarriers = GetAvailableSpectrum()

newCarrierUsage = BestFit(availSubcarriers,demand)

%% Coordination between sender and receiver

SetSpectrumUsage(carrierUsage)

SendPacket(newCarrierUsage + coordinationMsg)

ACM SIGCOMM Computer Communication Review 36 Volume 41, Number 1, January 2011



%% Sending packet on newly selected frequency

SetSpectrumUsage(newCarrierUsage)

SendPacket(dataPacket)

To match device frequency usage to traffic demand, Jello
devices make frequent use of Papyrus’s functions for report-
ing available spectrum and setting spectrum usage.

Initial Deployment. To validate our prototypes of Jello
and Papyrus, we built a small ad-hoc indoor network of eight
USRP1 GNU radios, creating four ad-hoc but simultaneous
media sessions with time-varying traffic. This provides a
proof-of-concept verification of our MAC and physical layer
design and implementation. Our measurements confirm that
Jello (and Papyrus) can provide reliable spectrum access for
media applications and significantly improve spectrum usage
efficiency. We refer the readers to [14] for more detailed
experimental results.

Our initial deployment, however, has been limited by the
hardware bandwidth and the unpredictable OS scheduling
and processing delay between USRP and GNU radio soft-
ware [3]. Our Jello devices currently only operate on a 500
KHz band at 2.38 GHz. We partition the spectrum into
256 subcarriers, each of size 1.953 KHz. We have to use
relatively large timing parameters in the proposed link co-
ordination and frequency adaptation, which limit the effi-
ciency of both components. However, we expect the impact
of these factors will decrease significantly as we port Jello
and Papyrus to new SDR hardware such as SORA [10].

3.2 Ganache: Guardband Configuration
Ganache [15] is an intelligent guardband configuration

system for dynamic spectrum networks. Because transmis-
sions on one frequency band will spill energy into adjacent
bands, guardbands must be placed at link frequency bound-
aries to insulate transmissions. Ganache applies both cen-
tralized planning and dynamic per-link tuning to protect
links against cross-band interference. A Ganache server first
estimates required guardband sizes from measurements of
power levels over frequency-adjacent links. Then, it per-
forms network-level frequency planning to allocate frequency
usage to links, and configures an effective set of guard-
bands. During transmissions, individual Ganache links mon-
itor physical distortion of their signals to detect residual
cross-band interference, and adjust guardband locally to
compensate.

Ganache is also implemented as a user-level Python pro-
gram on the Papyrus API. The Ganache server schedules
each transmitter i to send training packets, where all the re-
ceivers measure the channel response via the getPSD() API
function. After receiving the frequency allocation, individ-
ual links configure their frequency usage for data commu-
nication. Each individual link also monitors physical signal
distortion to detect residual cross-band interference, and lo-
cally adjusts its guardband usage (by reducing frequency
usage) to suppress interference.

%% Signal measurements

FOR EACH transmitter i
SendPacket(allSubcarriers)

FOR EACH receiver j
chanResponse(i,j) = GetPSD()

%% Centralized frequency planning

FOR EACH transmitter i

SetSpectrumUsage(carrierUsage)

SendPacket(data)

%% Local guardband adaptation at each link

IF Cross-band Interference Detected at Subcarrier k

newCarrierUsage = {carrierUsage} - k

SetSpectrumUsage(newCarrierUsage)

SendPacket(data)

Note that for both Jello and Ganache, the large majority
of code is dedicated to internal system functions. By provid-
ing higher level abstractions to query for and set spectrum
usage, Papyrus allows MAC developers to greatly simplify
their interactions with wireless spectrum.

4. CONCLUSION
In this article we describe Papyrus, a software platform

that enables researchers to design, deploy and experiment
dynamic spectrum access systems using currently available
SDRs. Papyrus implements two fundamental building blocks
of dynamic spectrum access: flexible non-contiguous fre-
quency access and robust usable frequency detection. Pa-
pyrus devices operate in a fully decentralized manner with-
out requiring a centralized controller or external control ra-
dios. We also describe Jello and Ganache, two specific MAC
protocols for dynamic spectrum access systems, and their
implementation via Papyrus.

We have made both Papyrus and Jello’s GNU Radio im-
plementation public to the research community, available
at http://link.cs.ucsb.edu/papyrus. Because both Pa-
pyrus and Jello follow a modular design, researchers can
modify individual modules and add additional modules to
fit their research topics.

5. REFERENCES
[1] Canny, J. A computational approach to edge detection. In

IEEE Trans. on Pattern Analy. and Mach. Intell. (1986).
[2] Chandra, R., et al. A case for adapting channel width in

wireless networks. In Proc. of SIGCOMM (2008).
[3] Ge, F., et al. Software defined radio execution latency. In

Proc. of SDR Technical Conference (2008).
[4] http://gnuradio.org/trac/wiki.
[5] Gummadi, R., et al. AirBlue: A system for cross-layer

wireless protocol development and experimentation. In
MIT Report (2008).

[6] Halperin, D., Hu, W., Sheth, A., and Wetherall, D.

Predictable 802.11 packet delivery from wireless channel
measurements. In Proc. of SIGCOMM (2010).

[7] Hou, W., et al. Understanding the impact of cross-band
interference. In Proc. of Coronet (2009).

[8] Rahul, H., et al. Learning to share: narrowband-friendly
wideband networks. In Proc. of SIGCOMM (2008).

[9] Rahul, H., et al. Frequency-aware rate adaptation and
MAC protocols. In Proc. of MobiCom (2009).

[10] Tan, K., et al. SORA: High performance software radio
using general purpose multi-core processors. In NSDI
(2009).

[11] Timothy M., S., and Donald C., C. Robust frequency
and timing synchronization for OFDM. In IEEE
Transactions on Communications (1997).

[12] http://www.ettus.com/.
[13] http://warp.rice.edu/.
[14] Yang, L., et al. Supporting demanding wireless

applications with frequency-agile radios. In NSDI (2010).
[15] Yang, L., Zhao, B. Y., and Zheng, H. The spaces

between us: Setting and maintaining boundaries in wireless
spectrum access. In Proc. of MobiCom (2010).

ACM SIGCOMM Computer Communication Review 37 Volume 41, Number 1, January 2011


