
J Supercomput (2009) 48: 15–42
DOI 10.1007/s11227-008-0203-3

Peer-exchange schemes to handle mismatch
in peer-to-peer systems

Tongqing Qiu · Edward Chan · Mao Ye ·
Guihai Chen · Ben Y. Zhao

Published online: 30 April 2008
© Springer Science+Business Media, LLC 2008

Abstract A self-organizing peer-to-peer system is built upon an application level
overlay, whose topology is independent of an underlying physical network. A well-
routed message path in such systems may result in a long delay and excessive traf-
fic due to the mismatch between logical and physical networks. In order to solve
this problem, we present a family of Peer-exchange Routing Optimization Proto-
cols (PROP) to reconstruct the overlay. It includes two policies: PROP-G for generic
condition and PROP-O for optimized one. Both theoretical analysis and simulation
experiments show that these two protocols greatly reduce the average latency of
the overlay and achieve a better logical topology with low overhead. Their over-
all performance can be further improved if combined with other recent approaches.
Specifically, PROP-G can be easily applied to both structured and unstructured sys-
tems without the loss of their primary characteristics, such as efficient routing and
anonymity. PROP-O, on the other hand, is more efficient, especially in a heteroge-
nous environment where nodes have different processing capabilities.

Keywords Peer-to-peer · Distributed hash table · Mismatch · Topology-aware

1 Introduction

Peer-to-Peer (P2P) systems are massively distributed computing systems in which
peers (nodes) communicate directly with one another to distribute tasks, exchange

T. Qiu · E. Chan (�)
Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
e-mail: csedchan@cityu.edu.hk

T. Qiu · M. Ye · G. Chen
State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China

B.Y. Zhao
Department of Computer Science, University of California, Santa Barbara, CA, USA

mailto:csedchan@cityu.edu.hk

16 E. Chan et al.

information, or share resources. There are currently several P2P systems in operation
and many more are under development. Gnutella [1] and Kazaa [2], which are often
referred to as the first generation P2P file sharing systems, construct the unstructured
overlay without rigid constraints for search and placement of files. They use a de-
centralized file lookup scheme. Requests for files are flooded with a certain scope.
However, there is no guarantee of finding an existing file within a bounded number
of hops. Chord [3], Pastry [4], and Tapestry [5] are examples of the second generation
of peer-to-peer systems. These systems can be viewed as providing a scalable, fault-
tolerant distributed hash table (DHT). Any data item based on a unique identification
can be located within a bounded number of hops using a small per-node routing ta-
ble. Unstructured P2P systems are widely used due to their simplicity; but structured
systems can be more efficient. Consequently, these two models coexist and in some
sense complement each other [6].

All P2P systems are built upon application-level overlays, the topology of which
is independent of the underlying physical network. In unstructured systems, a new
node randomly chooses some existing nodes of the systems as its logical neighbors;
while in structured ones, a new node will get an identification by certain hash function
and construct connections with other nodes based on specific rules of the DHT. As a
result, the neighborhood of two nodes on the top of overlay does not inherently reflect
proximity in the physical network, due to an arbitrary organization or the hash-based
property. A well-routed message path in an overlay network with a small number of
logical hops may lead to a long delay. The mismatch problem between the overlay
and physical network is a major obstacle in building an effective large-scale overlay
network.

Another important issue is the dynamic nature of peer-to-peer systems, in which
peers can arrive or depart at any time. Without a timely reconfiguration mechanism,
the logical overlay will stray from the optimal condition as inefficient routes gradually
accumulate in the routing tables.

In this paper, we propose a family of Peer-exchange Routing Optimizing Proto-
cols (PROP) to handle the mismatch in peer-to-peer systems. It includes two relevant
policies: PROP-G (generic) and PROP-O (optimized). They both adaptively adjust
the connections of the overlay, and efficiently reduce the average logical link latency
of the whole system. Combining them with other recent mechanisms will further
improve their performance. Moreover, they are adaptive to dynamic changes in the
system. PROP-G, to the best of our knowledge, is the first scheme that can be de-
ployed effortlessly on both unstructured and structured P2P systems, while preserv-
ing the logical topology of overlay at the same time. PROP-O, on the other hand, is
more efficient, especially in a heterogenous environment where nodes have different
processing capabilities.

The rest of paper is organized as follows. In Sect. 2, we review related work.
Section 3 describes the design of PROP. In Sect. 4, we evaluate the effectiveness of
our design analytically. The methodology and results of simulation experiments are
presented in Sect. 5. Finally, we conclude the paper in Sect. 6.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 17

2 Related work

The issue of mismatch between physical and logical networks in P2P systems has
been the focus of intensive research in recent years. A location-aware topology
matching (LTM) technique [7] is proposed for unstructured P2P systems. In LTM,
each peer issues a detector in a small region so that the peers receiving the detec-
tor can record the relevant delay information. Based on the information, a receiver
can detect and cut most of the inefficient and redundant logical links and add closer
nodes as its direct neighbors. LTM is a typical method which is only applicable for
Gnutella-like overlay networks where each peer can freely cut and add connections.
Moreover, free modification of connections, to some extent, impairs the natural fea-
ture of self-organizing overlay where powerful, reliable nodes always provide more
services and inherently have more connections [8]. Other methods for unstructured
systems like [9] and [10] share similar features with LTM and will not be discussed
in detail due to space limitation.

Regarding structured P2P systems, most solutions fall into three broad categories
[11, 12].

– Proximity Neighbor Selection (PNS): The neighbors in the routing table are chosen
based on their proximity. Pastry and Tapestry are examples.

– Proximity Route Selection (PRS): Once the routing table is chosen, the choice of
the next-hop when routing to a particular destination depends on the proximity of
the neighbors. CAN is an instance.

– Proximity Identifier Selection (PIS): The node identifiers are selected based on their
geographic location. Topologically-aware CAN [13] is an example in this category.

However, all of these approaches have a common limitation: protocol-dependence.
For example, the entries in routing table are deterministic in systems like Chord or
CAN, where the PNS scheme cannot be applied directly.1 Similarly, PRS also has the
requirement that there must be more than one choice for the next hop. Topologically-
aware CAN, which ensures that nodes which are close in the network topology are
close in the node ID space, is only suitable for systems like CAN [14], where the
similarity of node IDs means less hops in routing. In short, recent methods based on
DHT cannot be applied to other variants of the DHT protocols, not to mention other
unstructured P2P systems.

Recently, some researchers focus on the configuration of AS or ISP level [15, 16].
Although this kind of central or cluster-like management can improve the efficiency
of the system, it is more related to the deployment of different nodes instead of the de-
ployment of end systems. Moreover, such control is impractical in loosely organized
peer-to-peer systems.

There is some overlap between mismatch and another issue: heterogeneity in P2P
systems. We classify heterogeneous factors into two categories: network heterogene-
ity and node heterogeneity. In a large-scale area like the Internet, the connections

1The P2P systems mentioned here are the original ones. Our goal is to find an auxiliary way to make
recent P2P systems more efficient. It is quite different from the idea of Gummadi et al. [11] whose aim
is to determine if the routing geometry precludes choosing neighbors based on proximity. That is why
they argue that ring geometry allows the greatest flexibility while we argue that the real system of original
Chord cannot use PNS.

18 E. Chan et al.

between any two nodes may vary in transmission delay and bandwidth. Things get
more complicated in an overlay network as a logical connection of an overlay is
composed of several physical connections. Handling the mismatch problem in some
sense amounts to exploiting the variations in network connections. Brocade [17] is an
early attempt to exploit network heterogeneity. It constructs a secondary overlay of
super-nodes to improve routing efficiency. Similarly, Xu et al. construct an auxiliary
expressway network to take advantage of heterogeneity [18]. Accordion [19] main-
tains variable size routing tables to handle the efficiency versus bandwidth tradeoff
over a wide range of operating conditions.

Heterogeneity is not limited to network connections. Different nodes have various
capabilities, including processing and storage size. SmartBoa [20] categorizes the
nodes into different levels based on the capability of the nodes. Heterogeneous infor-
mation can be broadcasted in this tree-like structure. Gia [21] modifies the Gnutella
protocol to ensure that high capacity nodes are indeed the ones with high degree and
that low capacity nodes are within short reach of higher capacity ones.

In this paper, we concentrate on the efficiency of PROP in a network-heterogeneous
condition and introduce node heterogeneity when comparing PROP-G with PROP-O.
We have previously explored using peer exchange schemes in overlay networks
[30, 31] and this paper builds on these works and enhances both the theoretical analy-
sis as well as experimental results of these prior works.

3 Design description

3.1 Motivation

Before presenting our proposed algorithms, we describe the overlay more formally.
The overlay can be modeled by a directed graph G = (V ,E), where V is the set of
nodes in the network, and E is the set of links between nodes. An edge xy in E

means that x knows a direct way to send a message to y. For simplicity, we will not
explicitly point out the direction of connections in this paper, and we will explain the
reason to support this kind of simplicity later.

Figure 1 shows an example of the mismatch problem. Figure 1(a) represents a
physical network with three nodes, where each number represents one unit of routing
delay between two nodes in the physical environment. If every node is connected
with each other, there will be no mismatch problem. Unfortunately, the overhead cost
will be too high to manage such a fully-connected overlay, so that only a limited
number of logical connections will be possible in practice. Here, we assume that at
most two connections can be preserved when it is mapped to a logical overlay. There
exists three different topologies (b), (c), and (d), where each dashed line stands for an
indirect connection.

It is obvious that overlay (d) is optimal because it has the smallest accumulated
delay (AB + BC + AC). In order to adjust the topology from (b) or (c) to (d), the
intuitive operation is to cut a longer connection and add a shorter one. However,
this cut-add operation cannot be performed freely without any constraints in many
cases. First of all, the reconfiguration of topology should never introduce overlay

Peer-exchange schemes to handle mismatch in peer-to-peer systems 19

Fig. 1 An example of topology
choices for overlay. (a) Physical
network. (b)–(d) Overlay
network

partitioning, which may significantly reduce the success rate of lookup or even lead
to a collapse of the system. Furthermore, as an auxiliary method, this operation needs
to be independent of the existing P2P protocols. In other words, adjustment of the
logical overlay must not affect the existing original routing and searching algorithms,
so that it can be plugged-in directly on to the underlying protocols. Finally, the traffic
overhead of the reconfiguration algorithms should be small when compared with the
traffic savings.

3.2 PROP-G and PROP-O

In order to satisfy the above requirements, we use “peer-exchange” as the basic oper-
ation of our scheme. Generally speaking, peer-exchange means a series of exchanges
of some neighbors between two peers, and one exchange can be viewed as a pair of
cut-add operations.

A simple and direct way of peer-exchange, called PROP-G, is to exchange all
neighbors of the two nodes. Figure 2 shows an example of PROP-G, where nodes 3
and 4 exchange their neighbor sets ({1,6,7} and {2,5}). This can be viewed as ex-
changing their “position” in the overlay network. Intuitively, the topology of overlay
is not affected by the PROP-G operation. That is why we call it a generic method,
which will be proved in Sect. 4.

Another way for peer-exchange, called PROP-O, is to selectively choose neighbors
for exchange. Figure 3 illustrates the process: nodes 3 and 4 exchange equal number
(m = 2) of neighbors. Note that exchanged neighbors should never lie on the path
of nodes 3 and 4, which ensures that nodes 3 and 4 will still be connected after the
exchange. The primary reason that we exchange equal number of connections instead
of an arbitrary number is to ensure the degree of each node remains the same after the
exchange, so that the topology can maintain its essential features. The effectiveness
and characteristics of both PROP-G and PROP-O will be illustrated by theoretical
analysis in Sect. 4 and validated by simulations in Sect. 5.

20 E. Chan et al.

Fig. 2 PROP-G, exchange all neighbors

Fig. 3 PROP-O, exchange m neighbors, where m = 2

A traditional way to accomplish topology optimization is to let each source node
select one nearest node in the candidate list and establish the connection with it.
This “selfish” method, in our opinion, is beneficial to the source node itself but is
not always beneficial to (or in some case may actually detracts from) system-wide
optimization. Our approach is to utilize the collaboration of two peers, say u and v,
to discover potential opportunities to optimize their neighborhood environments, and
then perform the exchange operation. In this way, reconfiguration of the overlay will
improve overall system performance and avoid many, if not all, of the potential con-
flicts and pitfalls in “peer competition.”

3.3 Description of basic method

Assuming that there is a potential exchange between nodes u and v, node u is the
counterpart of v, and vice versa. d(u, v) means the delay (latency) between nodes u

and v. t0 represents the time before an exchange, while t1 represents the hypothet-
ical time when the potential exchange really occurs. The neighbor set of node u is
formally defined as follows:

N(u) = {
i | i ∈ V ∧ (ui ∈ E ∨ iu ∈ E)

}
. (1)

Peer-exchange schemes to handle mismatch in peer-to-peer systems 21

time = INIT_TIMER;
add all neighbors into neighborQ;
while ntrial < MAX_INIT_TRIAL do

s = neighborQ.pop;
neighobrQ.addTail(s);
make node s as destination of the first hop;
find node v which is nhops away;
exchange neighbor information with node v;
measure Var when a potential exchange occurs;
if Var > MIN_VAR then

do exchange operation
end
ntrial = ntrial + 1;
wait timer before next trial;

end

Algorithm 1: Initialization procedure

There are two separate procedures here: the warm-up and the maintenance phases.
Having joined the system based on a random or DHT based assignment, a new node u

will start the warm-up procedure, like in Algorithm 1. It begins probing its neighbors
and collecting the initial latency information

∑
i∈Nt0 (u) d(u, i). Then it will period-

ically contact a random node v which is nhops hops away at each time interval of
timer. A priority queue neighborQ is used to choose nodes s for the first hop of ran-
dom walk. The use of priority is to ensure that “active” nodes will be probed first,
which is useful in the maintenance procedure. In the beginning, it is initialized with
a random sequence of node u’s neighbors, so each neighbor has an equal probabil-
ity to be probed. A message containing the source IP address, the source timestamp
and a small TTL value nhops is used to realize the random contact. Any node that
receives this message will add an identifier like the IP address into the message,2

decrement the TTL field by 1, and forward it. The target node v is located when TTL
value becomes zero. Then nodes u and v selectively exchange their address lists and
initial latency information with arbitrary m neighbors for PROP-O and all neighbors
for PROP-G. So, the value of m is no more than the minimum degree of overlay
δ(G). We choose m = δ(G) by default. After collecting the new latency informa-
tion

∑
i∈Nt1 (u) d(u, i) and

∑
i∈Nt1 (v) d(v, i) by probing new neighbors (hypothetical

neighbors when the potential exchange occurs), they exchange information and cal-
culate the variable Var independently, as in the following equation:

Var =
∑

i∈Nt0 (u)

d(u, i) +
∑

i∈Nt0 (v)

d(v, i)

−
∑

i∈Nt1 (u)

d(u, i) −
∑

i∈Nt1 (v)

d(v, i). (2)

2To avoid repetitive forwarding and exchange neighbors which stand on the random walk path.

22 E. Chan et al.

Fig. 4 A Markov chain of
Timer

If Var � MIN_VAR, it means that the exchange cannot gain any benefit, and, there-
fore, no subsequent operation will be performed. Otherwise, nodes u and v will do the
peer-exchange operation as follows: they rewrite corresponding routing entries and
even exchange node identifiers (for PROP-G in DHT systems), respectively. Both of
them cache the address of their counterparts so that the lookups in progress during
peer-exchange can be forwarded correctly. Moreover, both of them will notify their
neighbors to change the routing tables and recalculate the initialized sums.

If the routing tables are extended to record both successor nodes and predeces-
sor ones (bidirectional connections in other words), the notification can be realized
directly. We have at least two reasons for this simplification. First, most structured
systems selectively record several predecessor nodes in order to improve fault re-
silience. The size of the extended routing table is at most twice as large as the size of
the original one. There is even no increase in some symmetrical systems like Gnutella
or CAN. More importantly, even if there is no such extension, notifications can still
be implemented by using the underlying mechanisms just as what happens when
peers arrive or depart, although it leads to more complicated reconstruction opera-
tions. The warm up procedure will last for MAX_INIT_TRIAL times; simulations in a
later section show this number to be less than ten.

Next node u will enter the maintenance phase, which differs from the initializa-
tion procedure in two ways. First, the selection of node s will depend on the re-
sult of peer-exchange trials. If an exchange occurs, which implies that selection of
main “direction” is successful, node s will merely decrease the priority number by a
small number like 1 so that it could be chosen in near future. Otherwise, it will be
replaced at the tail of neighborQ, waiting for the next probing cycle. Another differ-
ence lies in the modification of timer based on a Markov chain model [22]: Timer
will be doubled after a failed peer-exchange attempt, and reset to INIT_TIMER after
a successful one; if Timer ≥ MAX_TIMER, it will also be set as INIT_TIMER. Here
MAX_TIMER = 25 × INIT_TIMER, so there are at most five times of suspending (half
of MAX_INIT_TRIAL). Figure 4 shows the process. Similarly, in order to handle de-
partures and sudden failures gracefully, the value of timer will be reset to INIT_TIMER

and the new neighbors will be added into the front of neighborQ with a maximum
priority value, so that these peers can be probed earlier during the maintenance pro-
cedure. The details of the maintenance process is presented in Algorithm 2.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 23

while timer expires do
s = neighborQ.pop;
make node s as the destination of the first hop;
find node v which is nhops away;
exchange neighbor information with node v;
measure Var when a potential peer-exchange occurs;
if Var > MIN_VAR then

do peer-exchange operation;
s.priority = s.priority − 1;
timer = INIT_TIMER

else
s.priority = neighborQ.minPriority − 1;
timer = min(timer ∗ 2,MAX_TIMER)

end
refresh neighborQ;
wait timer before next trial;

end
if receive join/leave messages or detect failure entries then

timer = INIT_TIMER;
add new entries to the front of neighborQ;

end

Algorithm 2: The procedure of maintaining connections

3.4 Technical details

3.4.1 Synchronization

The optimization of overlay is conducted simultaneously from multiple peer-
exchange operations. When one node u probes a random node v, all neighbors of
these two nodes should not change their states until the probing and peer-exchange
operations complete. This ensures the correctness and accuracy of the exchange.
We provide a simple mechanism based on a query-response model to synchronize
operations between related nodes. Both u and v that decide to perform an exchange
operation after the calculation of Var will broadcast an identical synchronization mes-
sage to their neighbors. If those nodes do not receive other synchronization messages
except this one, they send a corresponding acknowledgment message to node u or v.
Once both u and v have received all the acknowledgments, the exchange operation
is initiated.3 If either u or v did not receive all the responses after a period of time,
TIME_LIMIT, the exchange attempt is aborted. Recent studies show that flooding with
a small number of TTL hops is highly effective and the synchronization based on
this kind of flooding is acceptable [22]. Without flooding, the synchronization zone
of our method is limited to the two exchanging nodes and their neighbors, resulting
in lower synchronization overhead.

3It also requires a similar negotiation between nodes u and v.

24 E. Chan et al.

Fig. 5 A solution of data
movement. There is a query
(w,o) from node w to query
item o which resides on node v.
After the peer-exchange, the
query will be redirected by node
u to the node v without data
movement

3.4.2 Data movement

In a real peer-to-peer application based on DHT, data items reside on different nodes.
After exchanging the routing tables and identifiers, the items may also need to be
exchanged accordingly. The movement of data items will consume significant band-
width, since each node may store many gigabytes of data.

However, a new node has already performed peer-exchange operations when it
joins the systems, and during the warm-up procedure, it can start from a clean slate,
i.e., without a large amount of data such as shared files from other nodes. The ini-
tial optimization without data movement can achieve performance improvement in a
short time—less than 10 cycles of probing as shown in the simulation experiments.

In fact, even when nodes which share a lot of data are involved in the exchange
operation, the overhead of data movement does not really have to be high if pointers
of objects are kept, as is the case for many peer-to-peer data sharing systems [23, 24].
A typical solution is illustrated in Fig. 5. Both nodes u and v own a partition of data
items. We assume that data item o resides on node v at the beginning. There is a
query (w,o) from node w to query item o. The query process is shown in Fig. 5(a).
After the nodes u and v have performed exchange operation, they will not exchange
the items immediately. Instead, both of them own their counterpart’s pointer, which
contains one timer and the address information of the counterpart. So, the subsequent
queries can be forwarded by the counterpart to the correct destination. For example,
in Fig. 5(b), the query (w,o) will be redirected by node u to node v. When the
nodes become stable and the timer expires, the data items will be exchanged. The
initial value of the timer is related to the state of a node mentioned above. Since both
the size and distribution of data items are typically application-specific, we will not
go beyond the generic scheme proposed here and it will not be considered in our
simulation experiments.

4 Theoretical analysis

4.1 Characteristics of peer-exchange

The basic requirement of overlay reconstruction, as mentioned above, is that the
change of connections should never lead to a graph partition.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 25

Fig. 6 A generic path where
node nj is off the path

Fig. 7 A generic path where
node nj is on the path

Theorem 1 (Connectivity persistence) Let G be an undirected connected graph, and
let G′ be the graph that is derived from G by applying an exchange operation in
PROP-G or PROP-O. G’ is an undirected connected graph.

Proof Both PROP-G and PROP-O consist of an exchange of several neighbor nodes.
This exchange can be performed by a series of cut-add operations of two nodes: cut
one connection of one’s neighbor and add another one for its counterpart. Hence, we
can restrict our attention to a single cut-add operation. It follows from induction that
if the graph remains connected after a single cut-add operation, it remains connected
after exchange. Let P = 〈n1, . . . , nk〉 be an arbitrary sequence of nodes that forms a
path in G. Node ni will remove a connection between one of its neighbor, ns , and
itself. Then a connection between nj and ns is established.

Case 1: if ni lies off the path. This means that while there may be nodes on the
path whose edges change, the changed edges connect to the nodes implementing
cut-add. Hence, no edges that form the path are changed, so the path remains after
the cut-add is complete.
Case 2: ni lies on, and nj lies off the path, as in Fig. 6(a). Since nodes ni and
nj are connected both before and after a cut-add (as mentioned in Sect. 3, ex-
changed neighbors should never lie on the probing path between nodes ni and nj ,
which ensures that two nodes will be still connected after the exchange), two pos-
sible scenarios occur: ni cut no edges or one edge on the path. As can be seen in
Fig. 6(b), a path between n1 and nk remains after the cut-add where ns = ni−1.

26 E. Chan et al.

Case 3: Both nodes ni and nj lie on the path, as in Fig. 7(a). There are two similar
scenarios as in Case 2: ni cut no edges or one edge on the path. As can be seen in
Fig. 7(b), a path between n1 and nk remains after the cut-add where ns = ni−1.

So the graph is still connected after a single cut-add operation. We can further con-
clude that G′ is connected after a series of cut-add operations for both PROP-G and
PROP-O. �

The above theorem ensures that there is no graph partition after a peer-exchange
operation. Moreover, it is trivial to proof that PROP-O preserves the original degrees
of each node, so it never breaks the natural Power-law-like characteristic (i.e., pow-
erful nodes own more connections) of unstructured P2P systems.

Theorem 2 (Isomorphic characteristic) Let graph G(V,E) denote the network over-
lay, and let G′(V ′,E′) be the graph that is derived from G by applying an arbitrary
sequence of PROP-G exchange operations. G′ is isomorphic to graph G, i.e. G ∼= G′.

Proof It follows from induction that if the derived graph G′′ ∼= G after a single ex-
change operation of PROP-G, then G′ ∼= G based on the transitivity of isomorphism.
Without loss of generality, we assume nodes u and v do a single exchange during the
period t0 to t1. We try to find a bijection ϕ : V → V ′ with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′
for all x, y ∈ V . V1 is used to denote the set of un-exchanged nodes and V2 presents
the set of exchanged ones. A mapping ϕ between E and E′ is constructed as follows:

– For ∀x, y ∈ V1, xy ∈ E ⇔ xy ∈ E′.
– For ∀x ∈ V1, y = u, xy ∈ E ⇔ xv ∈ E′, yx ∈ E ⇔ vx ∈ E′. Similarly, for ∀x∈V1,

y = v, xy ∈ E ⇔ xu ∈ E′, yx ∈ E ⇔ ux ∈ E′.
– For ∀x ∈ V2, y ∈ V1, the proof is similar to the above one.
– For ∀x, y ∈ V2, xy ∈ E ⇔ yx ∈ E′.
Observing the constructed mapping, it is easy to conclude that G is isomorphic
to G′. �

Theorem 2 illustrates that PROP-G not only keeps the connectivity of logical net-
work but also maintains the overlay topology. Therefore, as an auxiliary method, it
is suitable for different topologies: ring, hypercube, tree, and so on. Moreover, the
change of positions using PROP-G is not arbitrary. As an example in DHT systems,
instead of regenerating its identifier, each node is only allowed to get old identifiers
of other nodes. It preserves anonymity provides a certain measure of security.

However, it does not mean that PROP-G can be used in all P2P systems. In fact,
there are several classes of P2P applications where neighbor relationships cannot be
set arbitrarily. For instance, in some systems where each node has a certificate which
binds its identifier to a public key for security reasons, it seems that PROP-G which
exchanges node ID may not be feasible.

4.2 Effectiveness of the peer-exchange mechanism

We use the following definitions to explain the effectiveness of the peer-exchange
mechanism. Stretch is defined as the ratio of the average logical link latency over

Peer-exchange schemes to handle mismatch in peer-to-peer systems 27

the average physical link latency. It is a common parameter to quantify the degree
to which the physical and logical topology matches. Average latency (AL) is a basic
parameter to quantify the property of a network. If there are n nodes in a network,
then4

AL =
(∑

i∈V

∑

j∈V

d(i, j)

)/
n2. (3)

Given that the physical network is usually static, only the average logical link
latency affects stretch. Furthermore, supposing that the number of nodes is constant
during the period t0 to t1, the accumulated latency (Lti) can be analyzed as follows.
The next two equations show the accumulated latency at t0 and t1:

Lt0 = C +
∑

i∈Nt0 (u)

αid(u, i) +
∑

i∈Nt0 (v)

βid(v, i), (4)

Lt1 = C +
∑

i∈Nt1 (u)

γid(u, i) +
∑

i∈Nt1 (v)

δid(v, i). (5)

In (4) and (5), C represents the invariable part during the period t0 to t1. The coef-
ficients of the summations αi,βi, γi, δi represent the visited times of each neighbor-
link when calculating AL. The equation αi ≈ γi ≈ βi ≈ δi is valid by assuming that
each link has the same probability to be visited. To calculate the variation by (4)–(5),
it is easy to find that if Var > 0 then Lt0 > Lt1 , which implies that a peer-exchange
reduces stretch. So in our simulation part, we will set MIN_VAR = 0.

We notice that the latency for other peers to reach a certain object on exchanged
nodes might have been increased. For example, assume peer u and v exchange their
identifiers and keep pointers to each other. Peer i was originally a neighbor of v, but
is now a neighbor of u. If it tries to retrieve an object stored at v, it takes it two hops
instead of one now. However, according to the above analysis, the average latency of
all queries issued from all nodes to u and v will be decreased.

Note that this is only an approximate analysis. In fact, when the positions of the
nodes change, the visited times of each node varies accordingly. This explains why
not all exchange operations can reduce the average latency, as shown in the simulation
experiments.

4.3 Stability

When the system are highly dynamic, it is reasonable to perform exchange operations
to achieve better topology. But if the network is stable, is it possible that the exchange
operation occurs continually? Will the oscillations occur?

If we only consider the exchange of two nodes, say A and B . If their neighbor
condition is relatively stable, the exchange is one-way. So if nodes A and B ex-
change their logical positions, they will not exchange back directly. However, when
we consider a chain of exchange operations involving three or more nodes, things are

4We assume the latency between a node and itself is zero.

28 E. Chan et al.

Fig. 8 Triangle churn—a chain
of state transformation

different. A typical example is shown in Fig. 8. The lines between every two nodes
here stands for the cooperations rather than direct connections. After four exchange
operations, the topology can return to the original state. So, the exchange will never
stop. We call it triangle churn. If nhop = 1, i.e., the three nodes are directly con-
nected with each other, it is highly possible that triangle churn occurs: assuming that
the average degree is c and the average probe times are np (the value is less than
MAX_INIT_TRIAL during the warn-up procedure, and the probing frequency is lower
during maintaining process), if the neighbor information determines that the topology
will change according to the chain, the probability of churn when nhop = 1 is

p1 =
{

1 if c ≤ np,

(np

c

)4 if c > np.
(6)

However, if the average probing time is constant, when nhop = 2, the probability
of churn p2 ≈ (

np

c2)4, which is about 1/c4 of p1. For example, if the average degree is
around 10 in a Gnutella-like system, p2 is 0.1% of p1. In other words, when nhop ≥ 2,
the probability of churn is very low. Other chains involving more than three nodes
will have a larger exponent number (6 for quadrangular churn), so they can be also
omitted when nhop ≥ 2. In the simulation part, we will also illustrate that the stretch
become stable when nhops ≥ 2.

4.4 Overhead analysis

Our method improves the overlay topology in two types of cost: the information col-
lection between two cooperative nodes, and the reconstruction of overlay. Both of
them are determined by two factors: the number of nodes involving into one potential
exchange operation and the number of probing times. For an overlay network with n

peers, we use c to denote the average number of neighbors. For each peer, one step
of adjustment will involve (nhop + 2c) for PROP-G, and (nhop + 2m) for PROP-O.
The overhead of PROP-O is intuitively better than PROP-G especially when c is
much larger than nhop and m. Our simulation will illustrate that. As for the second
factor, we investigate the frequency of probing for each node, fp . In the worst case,
when each peer has to probe every time, the frequency will be fp = 1/INIT_TIMER.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 29

Table 1 The choice of parameter

Symbol Meaning Default Value/Range

MIN_VAR The minimum value of variation/improvement for exchange 0

MAX_INIT_TRIAL The maximum value of warmup trials 10

INIT_TIMER The initial value of time interval for probing 1 min

MAX_TIMER The maximum value of timer to stop probe 128 min

n The number of nodes in overlay networks 1200

nhop The distance between two nodes for probing [1, 4]

m The number of nodes for exchange [1, 4]

In fact, the topology will become stable after a warm-up procedure, and the frequency
is very low after that because we utilize a Markov chain model to exponentially post-
pone the time of probing. Even when churn occurs, the frequency of probing will
reduce quickly after a short period of time. Our simulation experiments regarding
performance in a dynamic environment will demonstrate this idea.

5 Performance evaluation

5.1 Simulation methodology

We use the GT-ITM topology generator [25] to generate two different transit-stub
models of the physical network. The first topology, ts-large has 70 transit domains,
5 transit nodes per transit domain, 3 stub domains attached to each transit node and
2 nodes in each stub domain. The second one, ts-small, differs from ts-large in that
it has only 11 transit domains, but there are 15 nodes in each subdomain. Intuitively,
ts-large has a larger backbone and sparser edge network than ts-small. Except in the
experiment of physical topology, we always choose ts-large to represent a situation
where the overlay consists of nodes scattered in the entire Internet and only very few
nodes from the same edge network join the overlay. We also assign latencies of 5,
20, and 100 ms to stub-stub, stub-transit and transit-transit links, respectively. Then
a number of nodes (default set to 1200), are selected from the physical network as
overlay nodes.

The simulation involves three P2P infrastructures, Chord, CAN, and Gnutella;
and different improving methods based on them like PNS, PIS and LTM. Table 1
shows the default value of some parameters. Among these parameters, MIN_VAR is
determined by the analysis in Sect. 4.2. The value of MAX_INIT_TRIAL is based on
massive experiments. It is difficult to set the value of INIT_TIMER because it is related
to the dynamics of the system. In our evaluation, we simply set it as 1 minute. The
choices of other parameters will be discussed in the following subsections.

30 E. Chan et al.

Fig. 9 Effectiveness of PROP-G in Gnutella-like environment

5.2 The effectiveness of PROP-G

5.2.1 Generic mechanism

According to the analysis in Sect. 4, PROP-G is a generic mechanism, which can be
used in both unstructured and structured systems. Figures 9 and 10 show its effec-
tiveness in both Gnutella-like and Chord environments. Stretch is the metric used to
characterize matching degree. As messages are sent by the flooding method in un-
structured P2P systems, it is not practical to calculate the latency between each pair
of nodes. Therefore, the average lookup latency derived from 10,000 lookup opera-
tions is chosen in Gnutella instead. Both stretch and average lookup latency are varied
according to time.

Figures 9(a) and 10(a) show the impact of the TTL on stretch in two different sys-
tems. There are four typical scenarios as far as probing is concerned. In the main
scenario, instead of TTL packets, a random node is selected as the probing target. In
other three conditions, TTL value nhop is set to 1, 2, and 4, respectively. Neighbors’
exchange (nhop = 1) is not suitable because it cannot reduce the stretch significantly
(which is consistent with our analysis of stability), while other three different ways
have nearly the same impact on stretch reduction. Given that random probing is not
practical in a distributed system, only when nhop ≥ 2 can a good performance be
attained in a P2P system. In order to minimize the cost, nhop = 2 may be a better

Peer-exchange schemes to handle mismatch in peer-to-peer systems 31

Fig. 10 Effectiveness of PROP-G in Chord environment

choice, and it will be used in the following experiments. Figures 9(a) and 10(a) also
illustrate that stretch is not reduced all the time, which is consistent with our approx-
imate analysis.

Figures 9(b) and 10(b) demonstrate the impact of system size. The effectiveness of
the schemes is slightly reduced as the system size becomes larger. There are at least
two reasons. First, when the system has a larger size and PROP-G fixes nhop as 2, the
collected information is relatively limited. Second, as we choose the nodes from the
same physical network, the overlay is getting closer to the physical topology when it
is larger. Fortunately, PROP-G is still effective even when almost all physical nodes
are chosen.

The impact of physical topology is presented in Figs. 9(c) and 10(c). We have gen-
erated two different types of topologies: ts-large and ts-small by GT-ITM tools, both
of which contain about 2400 nodes. It is obvious that the ts-large topology has much
better performance. In the ts-large topology, only a few stub domains are attached to
transit nodes. As a result, the probability that two stub nodes belong to different tran-
sit domains is relatively high. In other words, two far nodes can execute the exchange
operation with a high probability, and this kind of exchange will greatly improve the
performance of the system. PROP-G is more efficient in ts-large topology, which is
much like the Internet as we mentioned above. Finally, comparing structured and un-
structured systems, the average lookup latency in Gnutella fluctuates more markedly.

32 E. Chan et al.

Fig. 11 A comparison between PIS and PROP-G

This is because Gnutella owns more random logical connections, and it is harder to
find the better candidate nodes to exchange.

5.2.2 Comparison with PIS

As mentioned in a previous section, there are three kinds of optimization methods
for structured P2P systems: PIS, PRS, and PNS. Since PNS and PRS share many
common features, we will merely compare PROP-G with PIS and PNS. Landmark
clustering, which is widely used in the PIS method, is based on the intuition that
nodes close to each other are likely to have similar distances to a few landmark nodes.
Ratnasamy et al. utilize this idea to optimize the CAN system [13]. By measuring the
distance between some landmarks and itself, a new node joins CAN and locate a
specific position. Figure 11 shows the comparison between PIS and PROP-G based
on CAN. We choose two different number of landmarks: 4 and 8. It is obvious that
PROP-G produces a better topology because landmark clustering is a coarse-grained
approximation which is not effective in differentiating nodes within close distance.
Furthermore, PIS seems more sensitive to changes in system size. The reason is that
when the number of landmarks is fixed, the precise degree tends to decrease, which in
turn lead to an increase in stretch. Moveover, since PROP-G is a protocol-independent
method, it can be easily combined with landmark clustering. Figure 11 also shows
that this kind of combination can further reduce stretch.

5.2.3 Comparison with PNS

We choose PNS-Chord, the proximity-aware version of Chord [26] to represent PNS
schemes for comparison. In the original version of Chord, the ith finger table entry of
the node with ID a refers to the first node in the ID-space range a+2i to a+2i+1 −1,
while PNS(x) considers up to the first x nodes in that range, and routes lookups
through the node with the lowest latency. We choose x = 4 and x = 16.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 33

Fig. 12 A comparison of efficiency between PNS and PROP-G

Fig. 13 A comparison of overhead between PNS and PROP-G

Figure 12 shows that PROP-G outperforms PNS(4), but is worse than PNS(16).
However, PNS incurs a much higher overhead than PROP-G, especially when x = 16,
as shown in Fig. 13. This is because in PNS-Chord, each node actually extends the
finger table to maintain much more state information (though less than x times),
which unavoidably introduce complexity into the system management process. Con-
sequently, a lot more messages are required for join requests and forwards, distance

34 E. Chan et al.

measurements, as well as status updates. PROP-G, on the other hand, simply tries to
make adjustment in a limited area.

Moreover, just as with PIS, PROP-G can further reduce system stretch when com-
bined with PNS(16), even though PNS(16) already achieves near optimal results for
the PNS scheme as discussed in [26]. The selection range of the PNS method is
limited (see [11] for a similar conclusion). PROP-G, on the other hand, can choose
peers’ positions to reduce the global stretch without constraints like ID prefix. Since
the basic idea of PNS is to achieve global optimization in a greedy way to satisfy
the requirement of each single node, whereas the peer-exchange method performs
reconstruction based on a series of cooperation between pairs of nodes, so it is not
surprising that exchange can complement PNS to a certain extent.

Although only PNS-Chord is presented in the experiment, we believe that the re-
sults will be similar when compared with other PNS schemes like Pastry or Tapestry
because they share common characteristics with PNS-Chord.

5.3 PROP-O

5.3.1 Effectiveness in unstructured systems

In this section, we will compare PROP-O with PROP-G and LTM under a Gnutella-
like environment. m is allowed to vary from 1 to 4, where 4 is the minimum average
degree in the system. In order to illustrate the features of PROP-O in a heterogeneous
environment, we further introduce node heterogeneity in our simulations. There are
many resource factors which result in node heterogeneity, including process speed,
storage and bandwidth supported. We merely use processing delay to represent node
heterogeneity because we are more interested in lookup latency in this paper. To
simulate processing delay, the bimodal distribution is used. There are two kinds of
nodes—fast and slow. The processing delay of the fast nodes is 10 ms, while the delay
of the slow ones is 100 ms. The fraction of fast nodes is 5% of the total population:
the overall setting is similar to that in [27]. Since the total delay is just the sum of the
link delay plus processing delay of nodes, the resulting absolute delay will be much
larger than the corresponding results for PROP-G. To avoid any confusion, we choose
a normalized value instead of real lookup delay which is measured by millisecond.

Figure 14 shows an important feature of PROP-O. In real-life P2P systems, power-
ful nodes provide much more services than poor ones. Accordingly, the destination of
lookup operations will be concentrated on the powerful nodes. We simulate this phe-
nomenon by increasing the fraction of lookups whose destination is a fast node in the
bimodal distribution environment. When all queries are directed to slow nodes, LTM
shows best routing performance. However, when more queries are directed to fast
nodes, the delay of both PROP-G and LTM increase. On the other hand, the delay for
PROP-O keeps decreasing. We will explain it from the following two perspectives.
On the one hand, given that the physical network we construct is “Internet-like,” only
a few nodes from the same edge network will join the overlay. So, the query with
largest latency is usually from a slow node to another slow one in different areas. As
a result, it is likely that the latency of a query to slow node tends to be larger than
the one to fast node. However, if the two slow end-nodes are connected by a number

Peer-exchange schemes to handle mismatch in peer-to-peer systems 35

Fig. 14 Average lookup latency for bimodal processing delay distribution, when varying the fraction of
fast node lookup

of fast intermediate nodes, maintaining the positions of these fast nodes will have a
more significant impact on the performance of the system. Because fast nodes have
more connections, it is more likely that they will be located in better positions after a
peer-exchange, and PROP-O is able to maintain the connection number of each node
so that the fast nodes can keep this kind of priority.

Another reason that we use PROP-O instead of PROP-G or LTM in unstructured
systems is that it brings less overhead. For an overlay network with n peers, we use cn

to denote the average number of neighbors. For each peer, one step of adjustment will
involve c2

n nodes for LTM, (nhop + cn) for PROP-G, and (nhop + m) for PROP-O.
The overhead of PROP-O is intuitively better especially when cn is much larger than
nhop and m. We use the number of additional messages to represent the overhead.
Figure 15 shows that PROP-O introduces less overhead, and the differences among
the three methods become significant when the system size increases, in other words,
when cn is larger.

5.3.2 Limitations in structured systems

The above simulations show that PROP-O is better than PROP-G in unstructured P2P
systems. So, another problem is that whether PROP-O can be applied to structured
systems. Theoretically speaking, because all structured systems have certain require-
ments about the identifications of the neighbors, peers cannot always select their m

neighbors to make an exchange. In practice, however, most structured systems allow
for some flexility in the selection of neighbors. We use the average number of neigh-
bors that each pair of nodes can exchange to show this kind of flexibility. Table 2

36 E. Chan et al.

Fig. 15 Overhead comparison between PROP-O, PROP-G and LTM

Table 2 The flexibility results for PNS-Chord

System size No PNS PNS(4) PNS(8) PNS all

300 0.3115 1.1145 1.3170 4.2759

600 0.2001 1.0367 1.1949 4.7972

1200 0.1238 1.0333 1.1398 5.2981

2400 0.7480 1.0122 1.1377 5.7988

illustrates the flexility of PNS-Chord. “PNS All” represents an ideal state where any
exchange can be performed. It is obvious that the more candidates exist, the greater
the flexibility. We can also see that nodes in a sparse network with fewer nodes have
more freedom to choose neighbors because a small inexactness will not matter when
most neighbors of nodes have similar identifications (e.g., 1111 and 1110), mapped
to the same physical machines. In short, PROP-O cannot be directly applied in struc-
tured systems, and its effectiveness relies heavily on the degree of flexibility allowed
in the specific system.

5.4 Performance in a dynamic environment

Dynamism is a very important property in P2P systems [28]. In this section, we will
examine the impact of dynamic changes in the system on the peer-exchange mech-
anism. We use the trace in [29] which recorded the lifespans of more than 500,000
peers over 7 consecutive days. Figures 16 and 17 show the effectiveness of PROP-G
and PROP-O in dynamic environment respectively. The ascending lines in both fig-
ures present the Lost Cumulative Distribution Function (LDCF) of the nodes, which

Peer-exchange schemes to handle mismatch in peer-to-peer systems 37

Fig. 16 Effectiveness in dynamic environment, PROP-G

Fig. 17 Effectiveness in dynamic environment, PROG-O (m = 4)

show that most nodes stay in the system for only a short period of time. Generally
speaking, peer-exchange is as effective in dynamic environment as in static one, and
sometimes can achieve even better results because not all join/leave are harmful to
the overlay. Moreover, we found that PROP-O can achieve better performance due to
its flexibility to choose neighbors.

Figures 18 and 19 show what happens when the network experiences a sudden
surge in the change of membership. We start with a nonoptimized network, and the
members of the network stay roughly the same except for two bursts of activity in
the intervals [20:40] and [60:80]. During these intervals, 100 nodes join and another

38 E. Chan et al.

Fig. 18 Effectiveness of PROP-G in a bursty network environment

Fig. 19 Effectiveness of PROP-O in a bursty network environment

100 nodes leave each minute. The two figures show network quality under these con-
ditions: without optimization, and when PROP-G (PROP-O) used. It further records
the number of probes initiated when PROP-G (PROP-O) is applied. We can see that
the number of probes increases dramatically when bursts occur, which illustrates the
short response time of overlay reconstruction. On the other hand, stretch tends to stay
at a low level for PROP-G (PROP-O) after a short period. After each bursty inter-
val, the number of probes decreases accordingly. In other words, the peer-exchange
scheme can adapt effectively to changes in the overlay without significant overhead.

Peer-exchange schemes to handle mismatch in peer-to-peer systems 39

6 Conclusion

This paper proposes a family of peer-exchange methods called PROP to solve the
mismatching problem in P2P systems. PROP is adaptive scheme which can be easily
embedded into most P2P systems without affecting the characteristics of the origi-
nal systems. Simulation experiments show that PROP is an efficient way to match
the physical network. By combining it with other recent methods, the overall perfor-
mance can be further improved. It is also adaptive to dynamic change of peers. Unlike
most previous studies that try to discover a better structure for P2P overlay, we accept
the fact that many different structures coexist and our approach is another choice to
make P2P systems more efficient.

A number of issues regarding PROP are still under study. For example, instead of
using purely random contact which fixes nhop, we could find a better candidate node
on the path of probing. Moreover, we merely focus on distance consideration. Actu-
ally, mismatch also includes other factors such as processing speed, storage capacity,
and so on. Moreover, it will be very interesting to test out our methods in a live sys-
tem, something that we are currently not equipped to do. We leave these issues for
future work.

Acknowledgements The work is partly supported by China NSF grants (60573131, 60673154,
60721002), Jiangsu High-Tech Research Project of China (BG2007039), and China 973 project
(2006CB303000) and a grant from CityU Project No. 7002115.

References

1. What is Gnutella. http://rfc-gnutella.sourceforge.net
2. Kazaa v3.2.5. http://www.kazaa.com
3. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H (2001) Chord: a scalable peer-to-peer

lookup service for Internet applications. In: SIGCOMM ’01: Proceedings of the 2001 conference on
applications, technologies, architectures, and protocols for computer communications. ACM Press,
New York, pp 149–160

4. Rowstron A, Drusche P (2001) Pastry: scalable, decentralized object location, and routing for large-
scale peer-to-peer systems. In: Middleware 2001: IFIP/ACM international conference on distributed
systems platforms, vol 2218/2001. Springer, Berlin, pp 329–350

5. Zhao BY, Huang L, Stribling J, Rhea SC, Anthony, Joseph D, Kubiatowicz JD (2004) Tapestry: a re-
silient global-scale overlay for service deployment. IEEE J Sel Areas Commun 22:41–53

6. Castro M, Costa M, Rowstron A (2004) Should we build Gnutella on a structured overlay? SIG-
COMM Comput Commun Rev 34(1):131–136

7. Liu Y, Xiao L, Liu X, Ni LM, Zhang X (2005) Location awareness in unstructured peer-to-peer
systems. IEEE Trans Parallel Distributed Syst 16(2):163–174

8. Ripeanu M, Iamnitchi A, Foster I (2002) Mapping the Gnutella network. IEEE Internet Comput
6(1):50–57

9. Liu Y, Xiao L, Ni L (2004) Building a scalable bipartite P2P overlay network. In: IPDPS ’04: 18th
international parallel and distributed processing symposium. IEEE Computer Society, pp 46–55

10. Liu Y, Zhuang Z, Xiao L, Ni L (2004) Distributed approach to solving overlay mismatching problem.
In: ICDCS ’04: 24th international conference on distributed computing systems. IEEE Computer
Society, pp 132–139

11. Gummadi K, Gummadiy R, Gribblez S, Ratnasamy S, Shenker S, Stoica I (2003) The impact of
DHT routing geometry on resilience and proximity. In: SIGCOMM ’03: Proceedings of the 2003
conference on applications, technologies, architectures, and protocols for computer communications.
ACM Press, New York, pp 381–394

http://rfc-gnutella.sourceforge.net
http://www.kazaa.com

40 E. Chan et al.

12. Ratnasamy S, Stoica I, Shenker S (2002) Routing algorithms for DHTs: some open questions. In:
IPTPS ’01: Revised papers from the first international workshop on peer-to-peer systems. Springer,
London, pp 45–52

13. Ratnasamy S, Handley M, Karp R, Shenker S (2002) Topologically-aware overlay construction and
server selection. In: INFOCOM 2002: Twenty-first annual joint conference of the IEEE computer and
communications societies, vol 3, pp 1190–1199

14. Waldvogel M, Rinaldi R (2003) Efficient topology-aware overlay network. SIGCOMM Comput Com-
mun Rev 33(1):101–106

15. Han J, Watson D, Jahanian F (2005) Topology aware overlay networks. In: INFOCOM 2005: 24th
annual joint conference of the IEEE computer and communications societies, vol 4, pp 2554–2565

16. Fan J, Ammar MH (2006) Dynamic topology configuration in service overlay networks: a study of
reconfiguration policies. In: INFOCOM 2006

17. Zhao BY, Duan Y, Huang L, Joseph AD, John, Kubiatowicz D (2002) Brocade: Landmark routing
on overlay networks. In: Peer-to-peer systems: first international-workshop, IPTPS 2002, vol 2429.
Springer, Berlin/Heidelberg, pp 34–44

18. Xu Z, Mahalingam M, Karlsson M (2003) Turning heterogeneity into an advantage in overlay routing.
In: INFOCOM 2003: Twenty-second annual joint conference of the IEEE computer and communica-
tions societies, vol 2, pp 1499–1509

19. Li J, Stribling J, Morris R, Kaashoek MF (2005) Bandwidth-efficient management of DHT routing
tables. In: NSDI 05: 2nd symposium on networked systems design and implementation. USENIX,
pp 99–114

20. Hu J, Li M, Zheng W, Wang D, Ning N, Dong H (2004) SmartBoa: Constructing P2P overlay network
in the heterogeneous Internet using irregular routing tables. In: IPTPS 2004: International workshop
on peer-to-peer systems, vol 3279. Springer, Berlin, pp 278–287

21. Chawathe Y, Ratnasamy S, Breslau L (2003) Making Gnutella-like P2P systems scalable. In: SIG-
COMM ’03: Proceedings of the 2003 conference on applications, technologies, architectures, and
protocols for computer communications. ACM Press, New York, pp 407–418

22. Ren S, Guo L, Jiang S, Zhang X (2004) SAT-Match: a self-adaptive topology matching method to
achieve low lookup latency in structured P2P overlay networks. In: IPDPS ’04: 18th international
parallel and distributed processing symposium. IEEE Computer Society, pp 83–91

23. Rowstron A, Druschel P (2001) Storage management and caching in past, a largescale, persistent peer-
to-peer storage utility. In: SOSP ’01: Proceedings of the eighteenth ACM symposium on operating
systems principles. ACM Press, New York, pp 188–201

24. Dabek F, Kaashoek M, Karger D, Morris R, Stoica I (2001) Wide-area cooperative storage with CFS.
In: SOSP ’01: Proceedings of the eighteenth ACM symposium on operating systems principles. ACM
Press, New York, pp 202–215

25. Zegura EW, Calvert KL, Bhattacharjee S (1996) How to model an internetwork. In: INFOCOM’96:
Fifteenth annual joint conference of the IEEE computer societies, vol 2, pp 594–602

26. Dabek F, Li J, Sit E, Robertson J, Kaashoek MF, Morris R (2004) Designing a DHT for low latency
and high throughput. In: USENIX symposium on networked systems design and implementation

27. Chun S-G, Zhao BY, Kubiatowicz JD (2005) Impact of neighbor selection on performance and re-
silience of structured P2P networks. In: IPTPS 2005: 4th international workshop of P2P systems.
Springer, Berlin, pp 264–274

28. Rhea S, Geels D, Roscoe T, Kubiatowicz J (2004) Handling churn in a DHT. In: USENIX annual
technical conference

29. Bustamante F, Qiao Y (2003) Friendships that last: peer lifespan and its role in P2P protocols. In: Web
content caching and distribution: proceedings of the 8th international workshop. Kluwer Academic,
Norwell, pp 233–246

30. Qiu T, Wu F, Chen G (2005) A generic approach to make structured peer-to-peer systems topology-
aware. In: Proceedings of ISPA, pp 816–826

31. Qiu T, Chen G, Ye M, Chan E (2007) Towards location-aware topology in both unstructured and
structured P2P systems. In: Proceedings of ICPP

Peer-exchange schemes to handle mismatch in peer-to-peer systems 41

Tongqing Qiu received his B.Sc. and M.Sc. degrees in computer science
from Nanjing University, China. He served as a research assistant in the
Department of Computer Science at City University of Hong Kong from
April 2006 to February 2007. He is now a Ph.D. student in the Depart-
ment of Computer Science at Georgia Tech, USA. His research interests
are in the areas of network measurement, peer-to-peer computing and
distributed systems.

Edward Chan received his B.Sc. and M.Sc. degrees in Electrical En-
gineering from Stanford University, and his Ph.D. in Computer Science
from Sunderland University. He worked in the Silicon Valley for a num-
ber of years in the design and implementation of computer networks and
real-time control systems before joining City University of Hong Kong
where he is now an Associate Professor. His current research interests
include performance evaluation of high speed networks, mobile data
management, power-aware computing, and network management.

Mao Ye received his B.Sc. degrees in Department of Computer Science
of Nanjing University, in 2004. Since then, he was enrolled in the Ph.D.
program in Department of Computer Science of Nanjing University. His
research interests include distributed system and pervasive computing,
particularly in the area of peer-to-peer network and wireless sensor net-
work.

42 E. Chan et al.

Guihai Chen obtained his B.Sc. degree from Nanjing University, M.
Engineering from Southeast University, and Ph.D. from University of
Hong Kong. He visited Kyushu Institute of Technology, Japan in 1998
as a research fellow, and University of Queensland, Australia in 2000 as
a visiting professor. During September 2001 to August 2003, he was a
visiting professor in Wayne State University. He is now a full professor
and deputy chair of the Department of Computer Science, Nanjing Uni-
versity. Prof. Chen has published more than 120 papers in peer-reviewed
journals and refereed conference proceedings in the areas of wireless
sensor networks, high-performance computer architecture, peer-to-peer
computing and performance evaluation. He has also served on techni-
cal program committees of numerous international conferences. He is a
member of the IEEE Computer Society.

Ben Y. Zhao is an Assistant Professor in the Computer Science depart-
ment at UC Santa Barbara. Professor Zhao completed his M.Sc. and
Ph.D. degrees in Computer Science at UC Berkeley. His research spans
the areas of large scale networks and distributed systems, security and
privacy, and mobile and wireless networks. He received his B.Sc. de-
gree from Yale University (BR’97). Additionally, Professor Zhao is a
recent recipient of the National Science Foundation’s CAREER award,
MIT Tech Review’s TR-35 Award (35 Young Innovators Under 35), and
ComputerWorld’s Top 40 Technology Innovators.

	Peer-exchange schemes to handle mismatch in peer-to-peer systems
	Abstract
	Introduction
	Related work
	Design description
	Motivation
	PROP-G and PROP-O
	Description of basic method
	Technical details
	Synchronization
	Data movement

	Theoretical analysis
	Characteristics of peer-exchange
	Effectiveness of the peer-exchange mechanism
	Stability
	Overhead analysis

	Performance evaluation
	Simulation methodology
	The effectiveness of PROP-G
	Generic mechanism
	Comparison with PIS
	Comparison with PNS

	PROP-O
	Effectiveness in unstructured systems
	Limitations in structured systems

	Performance in a dynamic environment

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

