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SUMMARY

Reputation mechanisms help peers in a peer-to-peer system avoid unreliable or malicious peers.
In application-level networks, however, short peer lifetimes mean reputations are often generated from
a small number of past transactions. These reputation values are less ‘reliable’, and more vulnerable to
bad-mouthing or collusion attacks. We address this issue by introducing proactive reputations, a first-hand
history of transactions initiated to augment incomplete or short-term reputation values. We present several
mechanisms to generate proactive reputations, along with a statistical similarity metric to measure their
effectiveness. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The growing success of peer-to-peer (P2P) networks makes securing them an increasingly difficult
research challenge. Popular P2P applications can support millions of users spread across numerous
administrative and network boundaries. The heterogeneous and distributed user population means
that, at any given time, some peers will be compromised by malicious users using viruses, worms,
or application-specific vulnerabilities. These threats pose significant risks to early adopters of
next-generation P2P applications such as users of distributed file systems [1,2], application-level
multicast [3,4], or Internet-scale query engines [5,6].

The use of reputation systems can help applications preserve correct operation despite the presence
of malicious users. A large body of literature has shown their impact on distributed applications in the
form of increased levels of cooperation and trustworthiness among peers. Researchers are also using
reputations to diagnose complex networking protocols such as the Border Gateway Protocol (BGP) [7].
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A reputation system quantifies a peer’s trustworthiness as an aggregation of ratings earned from
previous interactions. Such interactions can include message forwarding, remote storage, file transfer,
or financial transactions.

While reputations have been deployed in online shopping sites such as eBay [8], they are not
necessarily a natural fit for the dynamic nature of P2P networks. Since reputations assess a peer’s
trustworthiness using historical feedback of its past interactions, longer peer lifetimes lead to more
interactions, and a more accurate reputation. In P2P networks, however, peers are often short-lived as
they periodically exit the application or leave owing to failures. This high rate of peer turnover, or
churn, means a significant percentage of peers will have relatively ‘short-term’ reputations accrued
from a small number of past interactions.

For applications that rely on peers for data storage, message forwarding, or distributed computation,
choosing a peer based on short-term reputations is highly undesirable. How then can we provide
reliable reputation ratings for unknown peers or newcomers? To address this question, we propose the
idea of proactive reputations. Where traditional reputation systems rely on ratings assigned following
transactions performed during the normal execution of an application, proactive reputations allow
peers to proactively initiate transactions with one or more peers for the express purpose of generating
reputation ratings. The result is a mechanism to quickly generate reliable reputations for new peers or
those with short lifetimes.

This paper offers three key contributions. First, we introduce the concept of proactive reputations
and describe related research challenges in P2P networks. Then, we investigate information theoretic
metrics to assess the effectiveness of proactive reputation generation. Finally, we propose a set of
mechanisms to generate proactive reputations and conduct a set of experiments to measure their
effectiveness.

The remainder of the paper is organized as follows. We begin by describing the concept of
proactive reputations in Section 2. Then, we outline the generation of proactive reputations, and present
our methodology in Section 3. We then discuss our performance evaluation in Section 4 and the
implications of our results in Section 5. Finally, we present related work in Section 6 and conclude
in Section 7.

2. PROACTIVE REPUTATIONS

In a traditional reputation system, peers assign ratings to others after concluding transactions with
them. A peer looking to initiate a transaction, the initiator, can use reputations to choose the candidate
peer(s) with which to interact. Because peers who seek to access another’s reputation have no way to
directly influence the quality of that reputation, we call this traditional approach passive.

Since reputation values are generally aggregates of per transaction feedback values, the ‘reliability’
of a peer’s reputation depends very much on the number of past transactions taken into account.
In volatile P2P systems, however, the passive approach to reputations means peers will often base their
interaction choices on reputation values that are ‘short-term’, meaning they are derived from feedback
following a relatively small number of past transactions.

In this paper, we propose a proactive reputation model for networked systems with verifiable,
low-cost transactions. In a proactive reputation system, a peer initiates transactions with a
targeted peer for the express purpose of understanding the peer’s reliability for future transactions.
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For example, if peer X needs to interact with two new peers or peers with ‘short-term reputations’,
it can initiate a number of requests with these peers in order to gauge their reliability and
trustworthiness. Unlike challenge–response mechanisms where the candidate has a clear incentive to
respond correctly, the goal of proactive requests is to blend in with regular request traffic to measure
the candidate’s ‘normal’ response.

Proactive reputations are complementary to traditional, passive reputations. An initiator can
proactively probe those candidates it is less confident about, while undertaking normal transactions
with other peers known to be trustworthy.

There are two requirements that must be satisfied for proactive requests to be feasible. First,
transactions must have ‘low cost’, and carry uniform ‘value’. A low cost, where cost is measured by
the resource overhead required per transaction, ensures that proactive requests do not create significant
overhead for their initiators. Uniform value across transactions means proactive transactions have the
same ‘priority’ and will be treated similarly as a ‘typical’ transaction. For example, an online auction
system such as eBay would not satisfy this requirement. Its transactions vary widely in value, and
transactions of low value do not necessarily serve as useful indicators of peer behavior for high-
valued transactions. Transactions in cooperative P2P systems, such as structured overlays, in contrast,
generally incur low resource costs (bandwidth and processing time), and any variance in ‘value’ across
transactions is small.

The second key requirement is that transactions must be ‘verifiable’. That is, the initiator peer must
have a definitive mechanism for testing whether the transaction was performed properly. In the context
of online e-commerce communities, this is analogous to confirming the promised product or payment
was received on time. For P2P systems, the initiator can request that a trusted third party verify the
transaction result. For message routing, the initiator can route a message to a third party verifier via
the candidate peer, and wait for an acknowledgment. For storage, the peer or a trusted party can read the
stored data and confirm its contents. The third party verifier can be chosen in two ways. The initiator
can choose a trusted party based on existing trust relationships or reputation values. As an alternative,
it can exploit the free-cost nature of P2P identities to create a second virtual identity who appears
independent from its main identity. This mechanism leverages the Sybil attack [9] on a small scale to
improve security.

Augmenting a reputation system with proactive reputations has two main benefits. First, from the
initiator’s perspective, proactive reputations generate a more reliable credibility measure of the target
peer. Results from proactive requests are formed from ‘first-hand’ information or trusted observations,
and, thus, are less vulnerable to false ratings or collusion. Second, accruing passive ratings takes
time and depends on the target peer’s level of interaction with others during the normal execution
of an application. Consequently, a significant amount of time may be needed to establish a reliable
reputation value. With our proactive model, a peer controls its transaction rate with the target peer, and
can generate a reputation quickly.

We face several major challenges in designing a proactive reputation system. First, for the processing
of proactive requests to be fair and non-biased, the receiver must not be able to identify the request
initiator. Otherwise, a target peer can tailor its response based on the originator, i.e. only behave
well when being tested. Therefore, these proactive requests should be anonymous [10,11]. Second,
in order for proactive requests to generate accurate peer behavior, they must be indistinguishable from
normal application requests. Requests can come in the form of routing requests, storage directives,
or other application-specific actions. Once a malicious peer determines that the purpose of a request
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Figure 1. Proactive reputation generation: the initiator node injects proactive requests into the application stream
on its way to the candidate node. A trusted third party verifies the transaction outcome and informs the initiator.

is to measure its performance and reliability, it will always process these requests correctly to boost
its reputation. Finally, we must design proactive reputations to minimize computation and bandwidth
overhead.

In this work, we assume that proactive requests are sent as anonymous messages, and focus on
addressing the challenge of making proactive requests indistinguishable from other request traffic.
In the remainder of the paper, we present an architecture for proactive requests and evaluate its
effectiveness at evading detection. While this approach does impose communication and computation
overheads on the system, a detailed study of this overhead is the subject of ongoing work.

3. RESISTING TRAFFIC ANALYSIS

In this section, we describe how to generate proactive requests, and consider a variety of metrics
to quantify its success in evading detection. Consider an initiator, A, that wishes to test candidate
B’s behavior via proactive requests. As shown in Figure 1, A will forward a number of anonymous
messages to B, and enlist the help of a third-party verifier, C. Note that C can be a second virtual
identity belonging to the same user as A. For simplicity, we assume that each proactive request fits
inside a single overlay message.

Peer B can easily detect anonymous proactive requests injected into the network, since they stand out
from traffic with associated identities. Once detected, a malicious node can temporarily behave well
to boost its reputation. To make proactive requests indistinguishable from normal traffic, we require
that all nodes anonymize a portion of the messages they originate. The result is that any node will
see a mixed sequence of normal and anonymous messages. An initiator can then inject a sequence
of anonymous proactive requests that blend with normal traffic. For the target peer, it should be very
difficult to distinguish statistically whether an anonymous packet is part of a proactive request, or
simply part of a peer’s anonymized outgoing traffic.

A proactive reputation scheme should be resilient to traffic analysis by the target peer. While the
target peer can monitor all transaction requests it observes in the network, it should not be able to
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Figure 2. A binary representation of the distribution of anonymous messages inside a finite-sized
history window. The target node can compare a window of recently seen messages against a reference

window to detect proactive requests.

distinguish between normal application traffic and proactive requests. As a result, proactive reputations
would not only be able to detect malicious behavior, but also encourage peers to participate honestly at
all times.

3.1. A Stream similarity metric

With the goal of honest participation in mind, we investigate several metrics that could be employed
to accurately assess the generation of proactive reputations. Our objective is to quantify how ‘random’
a stream of open and anonymous requests looks to the target. Assuming that proactive requests are
indistinguishable from normal traffic at the application level, we use binary values of 0 and 1 to
represent open or anonymous requests received by the target peer, respectively. To detect proactive
requests statistically, the target peer would maintain a window of recently observed requests, and
compare its rate of anonymous versus normal messages against a reference window of ‘normal’ traffic.
As shown in Figure 2, if the current window of messages differs substantially from the reference
window, the target can assert that it is being probed with proactive requests, and behave differently.

We investigated three different information theoretic measures as possible metrics for a target peer
to use in detecting proactive bursts in the transaction stream. These metrics were conditional entropy,
relative entropy (or Kullback–Leibler (KL) distance), and histogram similarity. These metrics measure
the statistical similarity between two streams, and can be used to estimate the resilience of a stream
containing proactive requests against statistical traffic analysis. In each case, the buffer of recent
messages is used to gather statistics about the current message stream. A larger buffer provides a
bigger data set and increases accuracy in extracted statistics.

A distribution’s entropy is a measure of the randomness it contains. The first metric we examine,
conditional entropy, measures the likelihood of predicting the (N + 1)th value given the last N values.
Given the target peer’s buffer of recent messages, this metric represents the amount of auto-correlation
in the incoming stream, but not the statistical similarity between two streams.

A more appropriate metric is the relative entropy or the KL distance, an entropy-based measure of
dissimilarity between two probability distributions. The KL-distance metric, however, is known to lack
robustness for small sample set sizes. Given that history buffers at target nodes are finite in size, this
metric is unlikely to produce the most efficient detector of proactive requests.



160

Copyright   ©   2007  John  Wiley  &  Sons,  Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:155–166
DOI: 10.1002/cpe

G. SWAMYNATHAN, B. Y. ZHAO AND K. C. ALMEROTH

In investigating possible metrics, our search led us to the related areas of multimedia databases and
bioinformatics, where similarity metrics are used to index and retrieve documents, images, musical
pieces, and biological sequences [12–15]. Similarity between data sets is determined using frequency
histograms. Histogram similarity metrics include weighted Euclidean distance, square distance, and
absolute difference. Smaller values from these measures indicate a higher level of similarity between
two streams.

As shown in Figure 2, we need to determine the similarity between two traffic streams observed
by the target peer: a normal request stream without proactive bursts and the current request stream,
which is possibly injected with proactive requests. We found histogram similarity metrics to be the
best solution we found, and discuss their use in more detail in Section 4.

3.2. Producing anonymous cover-traffic

We now present three anonymizing schemes to shape normal application traffic in order to provide
sufficient cover for anonymous proactive requests. For simplicity, we assume a uniform request rate
across nodes in the network.

We now describe three candidate models that determine how nodes in the network anonymize their
outgoing traffic. In the first model, each peer in the network anonymizes outgoing traffic at a predefined,
constant rate. We will investigate the effectiveness of this model for a range of anonymization rates.
In our second model, peers in the network vary their rate of anonymous transactions at some predefined
time interval. The rate of change per hour is randomly chosen across a predefined range, e.g. 20–80%.
Finally, we consider a third and the most fine-grained model of traffic anonymization. In this model,
peers dynamically define a random number of messages, N , and a random anonymization rate, R, for
these messages. The peer applies R to the next N incoming messages, and then resets both values.

Our objective in developing these models is to choose the optimal anonymization scheme that will
allow a peer to inject the maximum-sized burst of proactive requests to a target peer without detection.
Therefore, our metric of success is how large a consecutive burst of proactive requests can be injected
before the target peer successfully detects a change in stream statistics.

4. EVALUATION

In this section, we evaluate our anonymizing schemes by performing two sets of initial experiments.
Our goal is to quantify the effect of specific anonymization models and system parameters on the ability
of a candidate peer to detect proactive requests.

4.1. Simulation setup

We have implemented a simulator in NS-2 using OTcl and C++. Table I summarizes the main
simulation parameters and the range of values tested. These ranges were selected based on their
coverage of the likely operating characteristics. In addition to these parameters, networks of nodes
were constructed using GT-ITM-based topologies [16]. In these networks, approximately 25% of the
nodes transact with the target peer as part of normal application execution. The target peer processes
approximately 5000 transactions in each simulation run. Our simulator currently generates a uniform
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Table I. Simulation parameters.

Parameter Range Default

Size of network 50–100 50
Average transaction set size 100–10 000 5000
Proactive burst size 0–70 40
Window size 50–500 100
Anonymization rate (Model 1) 0–70 30

request traffic across all network nodes. Each data point in our figures represents the average value of
three randomized runs.

The main focus of our evaluation is to determine the similarity between two traffic streams observed
by a target peer: a normal request traffic stream, and a request traffic stream with injected bursts of
proactive requests. We propose three models of application traffic: a preset anonymous rate, a per-hour
anonymous rate, and a per-set-of-transactions anonymous rate. A request stream is modeled as a series
of binary values, a ‘0’ represents an open transaction and a ‘1’ represents an anonymous transaction.
Out of the three candidate metrics described in Section 3, we choose the absolute difference (AD)
metric for our experiments. First, the weighted Euclidean distance does not apply to our data set, since
we give equal weight to all data values. Second, because our data streams are composed of binary
values, the square distance and AD metrics will produce identical results.

Let Ha(j) represent the histogram bin value of j consecutive 1’s in the application traffic. That is,
Ha(1) would be the frequency count of single 1’s in the traffic stream; Ha(2) would be the frequency
count of two consecutive 1’s in the stream; and so on. Similarly, let Hp(j) represent the histogram bin
value of j consecutive 1’s in the application stream with proactive bursts. We define the AD metric as

AD =
N∑

j=1

|Ha(j) − Hp(j)| (1)

The maximum number of histogram bins is represented by N. This maximum number of bins would
be equal to the window size at the target peer because the target could observe a stream of consecutive
1’s equal in length to the window size. The smallest values of the AD metric represent the best similarity
of the two data streams. Therefore, a good proactive reputation generation scheme is one that ensures
low AD values.

4.2. Simulation-based experiments

Our first set of experiments evaluates the preset anonymous rate model. In this model, each peer in the
network transacts anonymously at a predefined rate, X. This rate varies from 10 to 70% of the total
number of transactions.

Figures 3 and 4 illustrate the effect of increasing the rate of anonymous transactions, burst size, and
window size on the preset anonymous rate model. As seen in Figure 3, small proactive bursts are better
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Figure 3. The effect of increasing anonymous rate and burst size on the preset anonymous rate model.
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Figure 4. The effect of increasing window sizes on the preset anonymous rate model.

hidden than large bursts. Additionally, small bursts are better hidden as the number of anonymous
transactions increases. With an anonymous rate greater than 70%, small proactive bursts show a near
zero AD value, indicating that they go essentially undetected. On the other hand, large bursts perform
poorly with low anonymous transaction rates, but are better hidden as the amount of anonymous
traffic increases. As expected, hiding proactive requests is much easier among a higher percentage
of anonymous transactions.

Our next experiment evaluates the effect of the size of a target peer’s buffer window size. A larger
buffer window should give the target peer a better chance of identifying traffic as active probes.
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Figure 5. A comparison of the three application traffic models.

Figure 4 illustrates the effect of varying the window size on the preset anonymous rate model.
In this experiment, we employ two window sizes of 50 and 100 transactions. We maintain a 30%
anonymous rate for the experiment. For each window size, there is an increase in the AD value as the
burst size increases. This result occurs because a 30% anonymous rate is able to hide small bursts but
is not effective for large bursts. With an increase in window size, the AD values between the normal
application stream and the proactive stream increases. With a larger buffer, a target peer is better able
to detect that it is being probed for reputation assessment. We observe similar results when varying the
window size for the per-hour and per-transaction-set traffic models.

Our final experiment compares the three models of generating application traffic. This comparison
is conducted with respect to the size of proactive bursts. The traffic generated by the three models,
before proactive bursts are inserted, is modeled as follows. For the preset anonymous rate model, each
node in the network overlay generates approximately 30% anonymous traffic. For the per-hour and
per-transaction-set anonymous rate models, the rate varies randomly between 20 and 80% per hour,
and per set of transactions, respectively.

Given the three anonymization models, we examine the effect of varying the length of proactive
bursts injected into the network from 10 to 70 messages. The target peer maintains a window size of 100
transactions. The experiment proceeds by having network overlay nodes conduct normal transactions,
open and anonymous, as modeled by the application traffic models. Proactive requests targeted towards
a specific peer are routed by overlay nodes, and reach the target depending on the network topology
and background traffic.

As seen in Figure 5, the per-hour and per-transaction-set models perform significantly better than the
preset model. As observed earlier, a fixed anonymous rate of only 30% performs poorly with increasing
burst sizes. Thus, higher burst sizes result in a more dissimilar stream than lower burst sizes. The second
and third models, however, continue to perform well, even with higher proactive burst sizes. This result
occurs because both models are more dynamic than the first model. Each peer generates anonymous
transactions at a different rate, and varies this rate over each hour or over a specific set of transactions.
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Finally, we can make two interesting observations from these results. First, we were moderately
surprised to see that the per-transaction-set model did not perform significantly better than the per-hour
model. It seems that the mixing of streams prior to arrival at the target produced sufficient statistical
variance to cover the proactive requests. Second, both per-hour and per-transaction-set models saw
little change across different-sized proactive bursts. While these results are generally positive, we are
running more detailed experiments in order to better understand their underlying factors.

5. DISCUSSION

While this paper discusses the high-level concepts related to proactive reputations, the details of a
number of issues remain the focus of ongoing work. In this paper, we assume the availability of a fully
anonymous routing layer and focus on the challenge of hiding proactive requests inside normal request
traffic. One interesting question is, how much anonymity is required to satisfy our requirements of
evading detection? While prior work on anonymity measures anonymity against powerful colluding
attackers, we require a much weaker level of anonymity. Given the number of network messages, a
target peer cannot expend significant resources to determine the source of a single request. Therefore,
simple forwarding through one or more relay peers (who can be secondary identities for the same
physical user) should suffice.

Proactive reputations augment traditional global reputation systems with on-demand, first-hand
transaction feedback. They can provide guidance to peers interested in interacting with a target peer,
but are specific to the peer who initiated the requests. Ideally, they should be integrated into the global
reputation for the target peer so that other peers can benefit from a more reliable global reputation
value.

An interesting question is how to integrate proactive reputations with global reputations while
avoiding vulnerability to collusion. For example, a colluding peer could offer strong support for a
malicious peer in the form of positive proactive reputations. We believe that integration should be
handled on a per-peer basis, where a peer, A, interested in the reliability of another peer, B, can access
both B’s global and its per-peer proactive reputations, and use its own discretion in discarding or using
any of the proactive values.

6. RELATED WORK

Several reputation systems have been proposed to discourage maliciousness and motivate
trustworthiness and cooperation in P2P networks [17,18]. Protecting these systems against Sybil
attacks [9] remains a significant challenge [19]. Some solutions address the problem of false ratings
and dynamic peer personalities [20–22]. Finally, controlled anonymity has been shown to avoid peer
discrimination [23].

Research on similarity-based data retrieval and indexing has led to metrics that measure similarity
between documents, images, musical pieces, and biological sequences [12,13,15]. Multimedia
databases use histogram-based similarity metrics for image retrieval [14], while entropy-based metrics
are used to determine stationarity in Internet measurements [24].
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Finally, extensive work exists on the subject of anonymous communication. The majority of these
projects use the Chaum-Mix [25] model, including Onion Routing [26], Tor [10], and, most recently,
Cashmere [11]. In addition, P5 [27] and Herbivore [28] use the dining cryptographer model.

7. CONCLUSIONS

High churn rates in dynamic networks pose a serious challenge to the adoption of reputation systems
that depend on long-term participation for accuracy. In this paper, we propose a novel approach to
quickly generate reliable reputations through the use of proactive transaction requests. By blending in
with ordinary request traffic, these verifiable requests provide a first-hand estimate of the reliability
and trustworthiness of unknown peers. To ensure that these requests are treated like normal application
requests, we anonymize them and provide cover traffic by anonymizing a portion of normal application
traffic. We use a stream similarity metric to evaluate the effectiveness of these approaches and conduct
initial experiments to measure their resistance to detection. For small window sizes, our results
demonstrate that bursts of proactive requests blend well and are nearly undetectable under traffic
analysis by target peers.

We note that this work focuses on the feasibility of adopting long-term reputation systems for high-
churn networks, and does not address other shortcomings of general reputation systems. These include
vulnerability to collusion attacks, as well as attacks based on dynamic peer behavior, where an attacker
behaves well in order to build a sufficient reputation to launch a single focused attack. Addressing these
vulnerabilities using proactive reputations is the topic of ongoing research.
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