
Searching for Rare Objects using Index Replication
Krishna P. N. Puttaswamy, Alessandra Sala and Ben Y. Zhao

Computer Science Department, U. C. Santa Barbara
{krishnap, ravenben}@cs.ucsb.edu sala@dia.unisa.it

Abstract—Searching for objects is a fundamental problem for
popular peer-to-peer file-sharing networks that contribute to
much of the traffic on today’s Internet. While existing protocols
can effectively locate highly popular files, studies show that they
fail to locate a significant portion of existing files in the network.
High recall for these “rare” objects would drastically impr ove the
user experience, and make these networks the ideal distribution
infrastructure for user-generated content such as home videos
and photo albums. In this paper, we examine simple techniques
that can improve search recall for rare objects while minimizing
the overhead incurred by participating peers. We propose several
strategies for multi-hop index replication, and demonstrate their
effectiveness and efficiency through both analysis and simulation.
We further evaluate our simple techniques using detailed traces
from a real Gnutella network, and show that they improve the
performance of these overlays by orders of magnitude in both
lookup success and overhead.

I. I NTRODUCTION

Searching for objects is a fundamental problem faced by
unstructured peer-to-peer file-sharing networks. Variousalgo-
rithms such as Flooding, Random Walks and their variants
have been proposed to address this problem. However, most of
these algorithms are only effective for locating popular objects,
including algorithms used by popular deployed networks such
as Gnutella and Kazaa. Studies have shown that in the widely-
used Gnutella network, as much as 18% of all queries return
no responses even when results are available [14]. Compared
to similar operations in their structured counterparts, finding
rare objects (those with few replicas) in unstructured networks
is generally ineffective (in terms of search success) and
inefficient (in terms of overhead and response time) [24].

Existing work has explored several approaches to improve
search recall. One approach is to use higher Time To Live
(TTL) for search algorithms. However, higher TTL values sig-
nificantly increase overall bandwidth consumption and provide
diminishing returns, particularly for coarse-granular search
algorithms such as flooding [14]. An alternative is to utilize
object replication strategies to improve search success [7],
[16]. But these techniques require replicating entire objects,
incurring significant overheads in both storage and network
bandwidth, thereby limiting their applicability.

Because these unstructured file-sharing systems account for
a major portion of traffic in today’s Internet [4], [25], any
technique to improve search recall for rare objects must be
light-weight, effective, and easily deployable. Our focusin
this paper is to answer the following question:Can we develop
simple techniques to improve the search effectiveness for rare
items, and also reduce the bandwidth overhead incurred?

We believe intelligent index replication can provide the solu-
tion to this question. Not only does proactive index replication
incur much lower overhead compared with data replication,
previous work has shown it to be effective at improving the
scalability of unstructured networks [6], [11], [22]. Our work
explores the use of multi-hop index replication, which can
significantly improve the cover region or effective search space
of these overlays, while incurring low overhead compared to
alternatives such as data replication. We explore the effec-
tiveness of two-hop index replication, and propose different
variants that traverse the overhead-performance tradeoff. To
quantify the impact and feasibility of our proposed techniques,
we evaluate them in a full-system Gnutella simulation using
real measurement traces.

This paper makes four main contributions. First in Sec-
tion III, we introduce Supernode-Constrained Random Walk
(SCRW) and several two-hop index replication techniques that
work well together, improving search recall of unstructured
overlays by more than two orders of magnitude. Second, we
prove asymptotical bounds for their various performance and
overhead metrics in Section IV. Third, we experimentally
evaluate our proposals and show that they apply to both
large (100K) power-law networks as well as state-of-the-art
networks proposed in research. Finally, in Section V, we
implement these techniques in a large (72K) measurement-
driven simulation of a Gnutella network, and show that our
techniques can significantly improve the performance of de-
ployed networks. Our proposed techniques are simple, easy
to deploy, and incur low overheads in storage and updates of
data indices under network churn.

II. BACKGROUND AND RELATED WORK

A. Searching in Unstructured Overlays

Search Algorithms Flooding, the earliest search algorithm
for unstructured networks, has limited control over the total
number of messages generated in the network, incurs very high
search overhead, and produces significant number of duplicate
messages. Recent studies [6], [11], [12] have shown random
walks to be significantly more efficient than Flooding.

Index Replication One-hop index replication, where every
node stores just the metadata of its data on all of its one-
hop neighbors, is a valuable technique in scaling unstructured
networks [6]. Index replication enables a random walker to
cover a larger portion of the network in fewer hops, thus
improving the search success. In terms of bandwidth con-
sumed, index replication is not only much cheaper than full-

2

object replication [7], [16], but also more practical. Object
replication strategies require additional state maintenance to
correctly implement in a decentralized environment.

Since existing index replication algorithms always replicate
a node’s index to all one-hop neighbors, naively extending this
technique to multiple hops would incur heavy overheads. In
this paper, we seek a thorough analysis to fully understand the
various costs of two-hop replication.

Exploiting Heterogeneity It has been observed that nodes
in the Internet are heterogeneous in node capacity, defined
as the amount of resources at the node, e.g. bandwidth.
Recent protocols have exploited this to improve the scalability
of unstructured networks [5], [6], by biasing random walks
towards high-capacity nodes. As a result, searching for rare
items stored on low-capacity nodes suffer heavy overheads,
since they are less likely to be reached by random walks.
Even one-hop index replication does not help, since it does
not guarantee that the indices of low-capacity nodes reach the
high-capacity nodes.

Hybrid Networks Hybrid networks [14] improve the search
for rare objects by using a combination of structured and
unstructured networks. The key idea is to identify rare objects
and insert them into a structured network to improve the
chances of lookup while use an unstructured network for
finding popular objects. While effective, this requires deploy-
ing and maintaining a new overlay network along with rare
objects, making this approach very expensive.

B. Power-law networks

Faloutsos et al. [9] showed that the Internet follows power-
law both at the router level and inter-domain level. It is also
argued that Gnutella-like networks follow power-law [1].

Random graphs with a given degree sequence are well
studied [15], [18], [19]. A Random graph onn vertices with
power-law degree distribution shows the following properties:
the fraction of vertices of degree0, 1, 2... is asymptotically
λ1, λ2, ..., where theλ’s sum to 1. It is shown in [18] that
if Q =

∑

i i(i − 2)λi > 0 (and the maximum degree is not
too large), then such random graphs have a giant component
with probability tending to1 as n goes to infinity. While if
Q < 0 (and the maximum degree is not too large), then all
components are small with probability tending to 1 asn → ∞.

In these networks, for2 < γ < 3.475, where γ is the
exponent of the power-law distribution, a Largest Connected
Component (LCC) is shown to exist [2], and LCC contains
the majority of the nodes of the original graph and most of
the links. In [10] the authors show that this giant component
of a power-law random graph matches several characteristics
of real complex networks, and hence is a good candidate for
generating synthetic Internet topologies.

III. SYSTEM DESIGN

Existing unstructured networks have one main problem:
they are highly limited in their ability to locate rare items.
The goal of our work is to develop techniques that improve
the chances of finding rare objects in unstructured networks.

To achieve our goal, we need to find rare objects with low
overhead, otherwise the total load on the network becomes
unbearable, potentially limiting the scalability of the network.
We begin the description of our contributions by providing the
reasons that carved our design.

A. Design Rationale

Two main techniques lie at the core of our design:
Supernode-Constrained Random Walk (SCRW) and two-hop
index replication. The main intuition behind them is to use the
high-capacity nodes to build concentrated clusters of indices,
then constraining the propagation of queries to these nodes.
To ensure that queries terminate with high success rate, we
need to efficiently place the indices on these clustered nodes.
Our topology construction and search algorithms address the
former while our two-hop replication achieves the latter.

1) Topology Construction and Search:Previous work
showed that node degree in Internet topologies and unstruc-
tured overlay network topologies follow power-Law distribu-
tions, and hence contain significant heterogeneity. Exploiting
this improves network scalability by orders of magnitude in
Gia [6]. The idea is to assign work (through in-degree) to
nodes proportional to their capacity and organize the net-
work so all low-capacity nodes are closeby to high-capacity
nodes. Because of their high in-degree, high-capacity nodes
have large amount of information, and hence provide better
responses to queries. In addition, these supernodes exhibit
much low churn rates compared to other nodes [13], naturally
forming a stable core of the network.

Our topology construction algorithm is motivated by these
two observations. A careful inspection reveals that these two
approaches are similar in that they use high capacity nodes as
main paths for search and try to propagate the index from low
capacity nodes to these main paths. Our algorithm uses Gia’s
topology adaptation algorithm while building the network
topology and assigning in-degree to nodes based on their
capacity. Along with this, it tags the nodes with high capacity
as supernodes forming a stable path with large capacity.

2) Index Replication:One-hop replication has been shown
to significantly improve scalability for unstructured networks.
We extend this one-hop replication to two hops in this work.
Note that extending index replication to two hops might lead
to an explosion in the amount of index stored on high-capacity
nodes. Thus managing the index replication and storage
overheads becomes critical. We propose different replication
strategies and study their performance in detail.

B. Two-hop Index Replication Strategies

We explore three two-hop index replication strategies.

Full replication. In this strategy, each node sends its index
to all of its one-hop neighbors in its routing table, just like
in one-hop replication. All of the one-hop neighbors, in turn,
forward this index to all of their one-hop neighbors except the
source node. This strategy effectively reduces to a two-hop
flooding of indices around the nodes. We use SCRW with this
replication strategy.

3

Square-root replication. In this strategy, each node performs
one-hop replication. Supernodes then replicate the indices of
their one hop neighbors to a random subset of their supernode
neighbors. Each supernode’s two-hop replica set size is equal
to the square-root of the number of its supernodes neighbors.
Thus, this is simple one-hop replication augmented with
square-root replication only at the supernodes. The intuition is
that by replicating on the supernodes, we are favoring SCRW
to find objects quickly. At the same time, we are reducing the
amount of replication and its cost.

Constant replication. Finally, we use a strategy where
each supernodes does two-hop index replication to a constant
number of supernode neighbors. After each node does one-
hop index replication, supernodes propagate the index to only
a constant number of their supernodes. This reduces indexing
load on supernodes. We further reduce the load further by
using normal random walk instead of SCRW with this strategy.
Since each peer has the indices of its one-hop neighborhood,
it can forward the query to a different neighborhood without
having to go through a superpeer.

We analyze these strategies in the next section with a focus
on the following three properties:

• Cover Time. We define cover time as the number of hops
taken by a query to walk through all the supernodes in
the network.

• Supernode Load. The average amount of load (in terms
of the number of queries processed) on the supernodes is
called the supernode load.

• Storage Load. The average amount of index stored on
supernodes is the Storage Load. This also gives us
an estimate of the amount of index transfer overhead
incurred in the network.

C. Supernode-Constrained Random Walk

We use supernode-constrained random walk (SCRW) as our
search algorithm. The main difference between SCRW and a
normal random walk is that in SCRW nodes always forward
the query to one of its randomly selected supernode neighbors
– not just any random neighbor. If no supernodes are found
in its routing table, then the node forwards the query to one
of its neighbor selected at random.

Since random walks could lead to duplicate queries at a
node, avoiding revisiting nodes is important. To do this, we
embed a small history in each query to keep track of recently
visited nodes. This history is a moving window is updated
when a query reaches a new node. If the query reaches a node
that has a degree of just one, then the query jumps back to
the least recently visited node and continues the walk. Detailed
ananlysis of this new random walk technique is, however, not
the focus of this paper.

IV. T HEORETICAL ANALYSIS

In this section, we seek to better understand the performance
characteristics of different index replication strategies. We
compare several index replication strategies in terms of search
performance, per-node query load, and index storage overhead.

Since prior work has shown that power-law properties hold
on both the Internet and peer-to-peer topologies [6], [9], we
will base our analysis on a power-law network context. In this
model, a node’s maximum connectivity is roughly proportional
to its “capacity,” which is modeled in practice using bandwidth
capacity. Given the heterogeneity across node capacities,we
divide all peers into those with a relatively low degree, called
“standard peers,” which are connected by a set of highly
connected nodes we call superpeers.

Specifically, we will compare one-hop replication against
three variants of two-hop replication. In one-hop index repli-
cation, each node maintains an index of objects stored by its
one-hop neighbors. This significantly improves the average
and maximum search size when the random walk is forced
to go through superpeers. The cost for this performance
improvement is that highly connected nodes incur overhead
that scales linearly with the number of queries. We compare
one-hop replication against three of our proposed two-hop
replication strategies and show how we can navigate the
overhead and performance tradeoff.

Formally, we can consider a network as a graphG =
{V, E}, whereV is a set ofN nodes andE is a set of edges
that connect two elements ofV . Using the generating function
formalism introduced by [21] for graphs with arbitrary degree
distribution, we now analytically evaluate the performance of
our strategies on power-law networks.

Let G0(x) be a generating function for the distribution of
nodes degreek such that

G0(x) =
k=∞
∑

k=0

pkxk

where pk is the probability that a random chosen node has
degreek. In our model we use a power-law distribution with
exponentγ, so that, the above generating function is given
by G0(x) =

∑k=kmax

k=0 ck−γxk, where c is a normaliza-
tion constantthat satisfies the following equation:G0(1) =
∑k=kmax

k=0 ck−γ = 1. Note that the maximum value ofk
has to bekmax = N1/γ and the exponent of our power-law
distribution on the nodes degree is:2 < γ < 3.475, as shown
in the experiments done in [2].

We characterize our network by a two-level hierarchical
structure, where we have “superpeers” (i.e. nodes with high
connectivity and high computational capability) on the top
level, and all remaining “standard peers” on the bottom level.
For generality, we cannot fix a single threshold value to define
the minimum degree of a superpeer. We solve this problem
with the following definition:

Definition 1. Superpeers have a degreek such thatN1/γ−δ ≤
k ≤ N1/γ with δ ∈]0, 1/γ[1 and letS be the set of superpeers
that we will call the network core.

Applying one- and two-hop index replication changes our
view of the network. Most nodes in a power-law network
will be clearly grouped into clusters, where nodes in each

1Note that the notation]0, 1/γ[means that the extremes are not included.

4

cluster share knowledge of stored objects in the cluster through
replicated indices. We define a cluster as follows.

Definition 2. Let C be a cluster of nodes such that:∀x | x ∈ S
then Cx ={v | v has an edge that connects v and x}. The
number of clusters in the network is proportional to number
of superpeers.

For each superpeerx ∈ S we define the following sets:

Definition 3. Let V1(x) be a set of all distinct superpeers in
one-hop distance fromx, and letV2(x) be a set of all distinct
superpeers in two-hop distance fromx.

Definition 4. Let α = (1/γ − δ)(γ − 2) and α ∈]0, 0.425[2.
Note thatα is used only as a way to simplify notation here.

As described earlier, we use the following three performance
metrics to compare different index replication strategies: cover
time on the network core,query loadon superpeers and the
size of index cachesat nodes.

A. One-hop Index Replication

Our theoretical analysis aims to bound the time to find
objects in the network. We will focus on the case of an un-
common object: an object with a constant number of replicas
independent of the network size. We will show that a query
will locate an object with high probability if it covers the
network core.

Theorem 1. Let δ, γ andα be three parameters that charac-
terize our system, and in particularδ ∈]0, 1/γ[, γ ∈]2, 3.475[
andα ∈]0, 0.425[, then the number of superpeers in our system
is Ω(N

γ−1
γ −α+δ).

Proof: Let d be the degree of a generic node in the
system, then the probability that this node is a superpeer is
conditioned on the fact thatd has to be more thenN1/γ−δ.
So, the probability that a nodex with degreed is a superpeer

is P [d > N1/γ−δ]. Thus,P [d > N1/γ−δ] =
∑N1/γ

k=N1/γ−δ k−γ

For all decreasing function likek−γ , it is possible to bound it
as following:

N1/γ
∑

k=N1/γ−δ

k−γ >

∫ N1/γ

N1/γ−δ

k−γd(k)

=
N

−γ+1
γ

−γ + 1
−

N (1/γ−δ)(−γ+1)

−γ + 1
>

N (γ−1)(δ−1/γ)

2(γ − 1)

so the probability thatx is a superpeer is,Ω(N−(1/γ−δ)(γ−1)).
Let X1, X2, ..., XN be N random variables such that:

Xi =

{

1, if i is a superpeer;
0, otherwise.

Let pi be the probability thatXi = 1 and letµ = E[X] =
∑N

i=1 pi =
∑N

i=1 N−(1/γ−δ)(γ−1). By the Chernoff bound

[20] we haveP (X < (1 − τ)µ) < e
−µ(τ)2

2 . Substitutingµ

2Note that theα interval is derived fromγ’s interval and definition1.

with the values of our system and letτ be 1
2 , we obtain the

following:

P [X <
1

2
N1−(γ−1)(1/γ−δ)] < e−

N1−(γ−1)(1/γ−δ)

8 < 1/N.

For each choice ofγ in its definition interval there is
a set of δ values that satisfy the inequality. The proof
shows that the number of superpeers in the network is
Ω(N1−(γ−1)(1/γ−δ)) = Ω(N

γ−1
γ −α+δ).

To cover the core of the network we first have to reach one
superpeer and then go through each node in the core. Indeed,
we want to reach a superpeer using a minimal number of
routing hops. We use a random walk to perform routing so
the problem is: starting from a randomly chosen node, how
many random walk steps must we take to reach a superpeer?

Theorem 2. The number of routing steps to reach a superpeer
using random walk isO(Nα).

We omit the details of the proof for brevity. The full version
of the proofs can be found in our technical report [23].

We need to estimate how many superpeers are inV1, that
will tell us the number of superpeers who are one hop away
from each other. If we are able to reach a superpeer, then by
going through each superpeer in the core we will be able to
scan a large fraction of peers. This gives us a high probability
of finding the desired object.

Theorem 3. Letx be a superpeer, then|V1(x)| is O(N
γ−1

γ −α)

with probability Ω(N−α) and |V1(x)| is Ω(N
γ−1

γ −2α) with
high probability.

Proof: Sketch of the proof3. The probability that a super-
peer is connected to “s” different other superpeers, is strongly
bound to the number of links that end in superpeers. That is:
∑s

i=1
N

γ−1
γ

−α+δ
N1/γ−δ

−iN1/γ

N ≥ N−α

2 for eachs ≤ N
γ−1

γ
−α

2 .
Using the Chernoff bound [20] we show that the lower bound
on the number of different superpeers connected to another
superpeer isΩ(N

γ−1
γ −2α), with high probability.

Theorem 3 shows the degree of connectivity of nodes in the
network core. We use this to prove the next result.

Theorem 4. The time to cover the superpeers in the network
is O(N

γ−1
γ −α+δ log N).

Proof: We consider the core nodes (i.e. the superpeers
in the network) as a subgraph. On this subgraph we have to
bound the number of steps to cover all nodes. We use the
degree of connection between nodes from theorem 3 to define
the network’s core as ad-random regular graph. Indeed, by
construction each superpeer chooses onlyd neighbor super-
peers that considers as real superpeer (i.e. SCRW is routed
using one random choice among thesed neighbor superpeer).
In our case, the value ofd is N

γ−1
γ −2α and the number of

nodes to cover areN
γ−1

γ −α+δ. Let n be N
γ−1

γ −α+δ. Using
the argument in [8], we find that the cover time in our system
is asymptotic tod−1

d−2n log n, with high probability. Therefore,

3A full version of all proofs is included in our technical report [23].

5

d−1
d−2n log n < d

d
2

n logn = 2n logn. Substitutingn with our
value we have:

N
γ−1

γ −α+δ log N
γ−1

γ −α+δ < cN
γ−1

γ −α+δ log N

where c is a constant. We have to add the time to reach a
superpeer and so the total time iscN

γ−1
γ −α+δ log N + Nα

that is still O(N
γ−1

γ −α+δ log N), which is sub-linear.
It is easy to show that covering the core superpeers is

enough to find an uncommon item, because indices at super-
peers cover the large majority of the network via one-hop
index replication. The main problem is that in the worst case,
a query for an uncommon item must cross all superpeers in
the network and lead to high query load on superpeers.

Fact 1. The load is proportional to the number of queries for
uncommon item, because for each of these queries the query
must traverse through superpeers until the item is found.

Fact 2. The cache size of a superpeer is proportional to the
superpeer’s degree, which isO(N1/γ).

B. Two-hop Index Replication

We analyze three variants of two-hop index replication:Full
two-hop, Constant two-hopandSquare root two-hop. We com-
pare these index replication strategies on search performance,
per-node query load, and index storage overhead.
Full Two-hop Index Replication

The first approach is the full two-hop index replication. In
this strategy each node maintains an index of objects storedby
all neighbors within two hop. We use Theorem 5 to support
our result on the cover time for this strategy.

Theorem 5. Let x be a superpeer, then|V2(x)| is
O(N

γ−1
γ −2α) with probability Ω(N−2α) and |V2(x)| is

Ω(N
γ−1

γ −4α) with high probability.

The proof is omitted for brevity since it follows a similar
formulation done in theorem 3. Additional details are in [23].

Full two-hop index replication guarantees that each super-
peer does not need to visit its neighbor superpeers because
it already knows all their neighbors. We are interested to
prove how many hops are needed to cover the network’s core
leveraging the assumption that each superpeer know objects
stored by its two-hop neighbors.

Theorem 6. The cover time on the network’s core, by full
index replication, isO(N δ+α log N), with high probability.

Proof: As we argued in theorem 3, in each clusterCx the
number of superpeers isd = Ω(N

γ−1
γ −2α). Each superpeer

selects, by construction, exactlyd superpeers in order to
build the network core as ad-random regular graph and
keep the random walks, of the routing algorithm, inside the
network core. Moreover, each superpeerx receives indices
from all clusters rooted in each of the superpeer inCx. Since,
Ω(N

γ−1
γ −2α) superpeers are into each cluster then with :

N
γ−1

γ −α+δ

N
γ−1

γ −2α
= N δ+α

superpeers we could know all superpeers in the network. Using
theorem 5, we can consider the network’s core as a set of
different N δ+α sets with degreeΩ(N

γ−1
γ −4α) among them.

If
⋂Nδ+α

i=1 Ci = φ then the cover time isO(N δ+α log N),
using the assumption in [8]. The point is that we cannot
guarantee that the previous intersection is empty. So we must
prove that going intoO(N δ+α log N) clusters, we will check
all superpeers at least once with high probability. We can
formulate our problem as a random selection with replacement
problem: let N

γ−1
γ −α+δ be the number of balls, for each

draw we selectN
γ−1

γ −2α balls. We need to prove that after
N δ+α log N draws each ball has been selected at least one
time. For each draw the probability that one ball is not chosen

is (1 − 1

N
γ−1

γ
−α+δ

)N
γ−1

γ
−2α

. After N δ+α log N draws the

probability that comes out is:

(1 −
1

N
γ−1

γ −α+δ
)N

γ−1
γ

−α+δ
log N =

1

elog N
<

1

eloge N
=

1

N

Therefore the total time is gives fromN δ+α log N steps to
cover the network’s core plusNα steps to reach the first
superpeer that isO(N δ+α log N).

We now analyze the query load on the superpeers. In our
system we know that for an uncommon item, the way to find
it is to visit all superpeers in the network.

Theorem 7. The average load on the superpeers is propor-
tional to # query log N

N
γ−1

γ
−2α

.

Proof: As shown in theorem 6, each query crosses
N δ+α log N superpeers in the network such that the overhead
in the system is proportional to the crossed nodes . Therefore,
the load on each superpeer is sub-linear on the number of
query for uncommon items, and is# query log N

N
γ−1

γ
−2α

.

The size of indices cached at each superpeer is proportional
to the number of superpeers in each cluster.

Theorem 8. The cache size of superpeers isO(N1−α).

Proof: Let x be a superpeer, the maximum number of the
peers inCx is N1/γ , and at mostN

γ−1
γ −α are superpeers as

showed in theorem 3,hence the superpeerx has to store:
• for each of its neighbor superpeers all their neighbors that

are at mostN1/γN
γ−1

γ −α = N1−α;
• for all standard peers in its clusterCx a constant num-

ber of their neighbors. Its neighbor standard peers are
less thenN1/γ and so the amount of information is
< k

′

N1/γ .
Adding this together, the amount of information that a super-
peerx has to store is:k

′

N1/γ + N1−α = O(N1−α)

Constant Two-hop Index Replication
The main problem of full two-hop index replication is that

caches at superpeers could become too big. Here the idea
is to reduce the index replication at superpeer. While we
guarantee the cover time is similar to one-hop replication,we
reduce cache size compared to two-hop strategy and query
load on superpeers compared to both one and two-hop index

6

Cover Time Load∝ Cache size for Superpeers
N ′s Exponent N ′s Exponent N ′s Exponent

One-hop index repl. O(N
γ−1

γ
−α+δ

log N) < 1 #queries O(N1/γ) < 0.5

Two-hop full O(Nδ+α log N) < 0.5 # query log N

N
γ−1

γ
−2α

< 0.7 O(N1−α) < 1

Two-hop constant O(N
γ−1

γ
−α+δ

log N) < 1 # query
N

≤ 1 O(N1/γ) < 0.5

Two-hop square root O(N
γ−1
2γ

+δ
log N) < 0.75 # queries log N

N
γ−1
2γ

−α
< 0.35 O(N

2γ−1
2γ

−α/2
) < 0.75

TABLE I
COMPARING THE KEY PERFORMANCE AND OVERHEAD METRICS FOR ALL FOUR INDEX REPLICATION STRATEGIES.

replication. The idea is to implement the routing going through
each cluster using standard peers.

Lemma 1. Each normal peer that lives in a cluster can
reach another cluster in constant hops, with high (constant)
probability.

This lemma proves that each standard peer that lives in a
cluster has the possibility to reach another. This is done to
show the capability that queries can go through clusters using
standard peer, and yet cover the same amount of information
as that of walking through superpeers with one hop replica-
tion. Therefore, constant replication obtains an optimal load
balancing. It is possible because the standard peers that live
in a cluster have the complete knowledge of all other peer’s
index in their cluster.

Theorem 9. The cover time, in constant two-hop replication,
is O(N

γ−1
γ −α+δ log N).

The proof is similar to that of Theorem 4.
In the constant two-hop strategy, the routing hops required

is greater than full two-hop. Compared to one-hop replication,
it significantly reduces query load at the superpeers, and cache
size at superpeers is asymptotically the same.

Theorem 10. The average load on each superpeerx is less
than # query

N .

The proof is omitted for brevity. The intuition is that instead
of biased random walks on superpeers, we use random walks
through standard peers to cover at least one peer per cluster.

The cache size of superpeers is drastically reduced because
only a constant number of neighbor superpeers are considered
during the index storage phase, and all others are treated as
standard peers.

Theorem 11. The cache size of superpeers, for the constant
two-hop strategy, isO(N1/γ).

The proof follows the same technique as Theorem 8.

Square Root Index Replication
Our analysis shows that compared to one-hop index repli-

cation, full two-hop index replication improves both cover
time on the network core and query load on each superpeer.
But the cache size for each superpeer is significantly larger.
Constant two-hop index replication shows a smaller cache size
per superpeer than full two-hop, but similar cover time to

one hop replication. Now we want to prove the properties of
Square root two-hop index replication.

Theorem 12. The cover time using Square root index repli-
cation, isO(N

γ−1
2γ +δ log N), with high probability.

We omit the proof for brevity, since it follows the same
outline shown in theorem 6. With the same argument as
in theorem 7, we can assert that the average load on the
superpeers, in Square root index replication, is proportional
to # queries log N

N
γ−1
2γ

−α
.

Theorem 13. The cache size for each superpeers is
O(N

2γ−1
2γ −

α
2).

The proof is similar to theorem 8 and is omitted for brevity.
Finally, we summarize all of our analytical results in

Table I. We want to emphasize the substantial difference
between our three two-hop replication strategies and one-
hop replication. Two-hop constant strategy maintains the same
cover time compared to one-hop replication, since only the
non-superpeers nodes do two-hop replication. While two-hop
constant reduces load for superpeers, it does not improve the
cover time. We prove that the best cover time can be reached
using two-hop full replication. Since all nodes do two-hop
flooding, the concentration of indices at superpeers makes
the SCRW very efficient, despite the larger cache loads for
superpeers. Finally, square-root two-hop replication obtains the
best tradeoff between cover time and cache size.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We present our experimental results on OverSim [3], an
event-based overlay network simulator. For our simulations,
we modified an implementation of Gia [6] included with
OverSim to use the same parameters as the Gia paper. In
addition to Gia, we implemented a simple unstructured overlay
protocol to experiment with different search and replication
algorithms. We also added support in OverSim to import
different network topologies to build overlay networks.

We used the bandwidth measurement traces from the
Gnutella study [26] to derive the node capacities for Gia,
allowed the network to stabilized, and generate a 100K node
network topology. We used this Gia topology for all our
experiments, and refer to it as Gia in our graphs. In additionto
this topology, we also evaluated our algorithms using power-
law network topologies generated by BRITE [17].

7

We simulated our 100K large overlay network on a quad-
core Dell server with 16GB memory and four 2.3GHz CPUs.
The large simulation size was necessary to provide realistic
and representative results. In our Gia tests, we initializethe
overlay on the pre-built topology, store a constant number
of randomly selected objects on each node, and then issue
queries from each node for random objects in the network.
Our object assignment algorithm ensures that each object in
the network has 3 copies distributed among random nodes in
the network. In addition, we fix the number of supernodes
in the network at approximately around 3%, following the
measurement results from [26]. We use just one copy of the
random walk for all search experiments (i.e. 1-SCRW) and
terminate the walk when a copy is found or when the TTL
expires. Each experiment submitted 100K queries into the
network and evaluates different aspects of search performance.

B. Performance Metrics

We use the following metrics to study the performance of
our proposed algorithms.

• Lookup Success. This metric describes the effectiveness
of a search strategy in locating objects. This is expressed
as a percentage of total search queries that return suc-
cessfully.

• Lookup Overhead. The number of hops taken by a
search query before it terminates is defined as the lookup
overhead of that query. The overhead is always less than
or equal to the maximum random walk depth. We use
the average of all lookup query overheads in a test to
quantify the search cost.

• Query Load. We measure the number of queries pro-
cessed by each node in the network during a test run to
understand query load per node. In addition to the load
on all nodes, while using SCRW, we also quantify the
load on each supernodes.

• Index Storage Cost. We use this to measure the per-
node storage overhead from two-hop replication. This
also quantifies the amount of index data transferred in
the network during network churn.

C. Simulation Results

We present the simulation results in three parts. We start
with an evaluation of search effectiveness and efficiency, then
evaluate our system under a full-system simulation of the
Gnutella network, and finally present the index replication
overhead incurred because of churn. We ran all tests on both
Gia and Brite overlays, and present only the Gia results when
results from both topologies are similar.

1) Search Effectiveness and Efficiency:Figures 1 and 2
compare the lookup success and lookup overhead of two-
hop replication strategies using SCRW with that of one-hop
replication using standard random walk. We see that full
two-hop replication with SCRW provides the highest lookup
and the lowest overhead, while one-hop replication with RW
provides the lowest lookup with highest overhead. Sqrt index
replication’s performance is very close to that of full two-hop,

while the constant replication is better than one-hop replication
but much worse than sqrt and full two-hop replication. Recall
that these results are for all objects with only 3 replicas. We
can expect higher search success in practice by increasing the
replication factor. While full two-hop replication is the clear
winner thus far, we need to fully understand its other effects
before choosing a variant for practical deployment.

Figures 3 and 4 show the query load experienced by
nodes in the network. Figure 3 shows the load distribution on
all nodes for different combination of search and replication
algorithms. We see that with their use of SCRW, Sqrt and
Full have uneven load distribution, with most search queries
processed by the supernodes. Both the normal RW one-hop
(inherently biased towards high-degree nodes) and two-hop
constant strategies spread the load more evenly in the network.
Explicitly biasing the RW towards high degree nodes, like in
Gia, takes the distribution away from the normal RW, towards
SCRW. Figure 4 shows the average query load just on the
supernodes. Sqrt experiences slightly higher load than Full
strategy. Two-hop constant replication, however, incurs load
comparable to that of just one-hop replication. Studying just
the query load indicates that two-hop constant replicationis
desirable for distributing load evenly in the network, while full
and sqrt replication strategies are good for two-tier architec-
tures where supernodes have significant resources.

Figure 5 presents the total index storage (one-hop + two-
hop) overhead on all the nodes in the network for different
replication strategies. We see that the storage overhead (and
hence the index transfer overhead) in Full and Constant
replication is nearly ten times more than that of one-hop
replication. Sqrt replication incurs the same overhead as that
of one-hop on all nodes except supernodes which incur almost
the same load as that of Constant replication (this explainsthe
spike in the Sqrt overhead). Figure 6 presents the same results
for a BRITE topology and we see that Sqrt overhead is the
lowest. The main reason for the variations in these graphs
is that in the Gia topology, superpeer degrees deviate from
the power-law distribution, and is less connected than their
counterparts in BRITE.

We see from these graphs that Full replication provides high
lookup success, but also incurs high query load and index
overhead. Constant replication is desirable for spreadingthe
index transfer cost across the network or for even balancing
of query load, but has poor lookup success and high lookup
overhead. Sqrt replication provides a mix of the good prop-
erties of Full and Constant strategies. Its high lookup success
with low lookup overhead while the total index overhead
is only slightly higher than that of one-hop replication. We
argue that Sqrt is the best variant for practical deployment
because the supernodes chosen in deployed networks have
high bandwidth and processing capacity, and index transfers
can be amortized across time. Additionally, the significant
savings in the bandwidth spent on processing queries should
more than offset the cost of index replication. Also note that,
as shown in Table I, Sqrt replication’s cover time is sub-linear
on the network size, indicating as network size grows, the

8

 0

 20

 40

 60

 80

 100

 100 200 300 400 500

%
 o

f S
uc

ce
ss

fu
l L

oo
ku

ps

Max Hop Count for the Random Walk

Gia-SCRW-2hop-Full
Gia-SCRW-2hop-Sqrt

Gia-NormalRW-2hop-Constant
Gia-NormalRW-1hop

Fig. 1. The lookup success achieved by
different replication strategies in a 100K Gia
network.

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500A
vg

. o
ve

rh
ea

d/
qu

er
y

(#
 o

f h
op

s)

Max Hop Count of the Random Walk

Gia-NormalRW-1hop
Gia-NormalRW-2hop-Constant

Gia-SCRW-2hop-Sqrt
Gia-SCRW-2hop-Full

Fig. 2. Average number of hops to find an
object, in a 100K Gia network, for different
replication strategies.

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000

%
 Q

ue
ry

 lo
ad

 o
n

no
de

s

Node Id

NormalRW-1hop
NormalRW-2hop-Constant

BiasedRW-1hop
SCRW-2hop-Full
SCRW-2hop-Sqrt

Fig. 3. CDF of query load for different
replication strategies and random walks in a
100K Gia network. Plots ordered as legend.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 100 200 300 400 500

A
ve

ra
ge

 s
up

er
no

de
 q

ue
ry

 lo
ad

Max Hop Count

Gia-SCRW-2hop-Sqrt
Gia-SCRW-2hop-Full
Gia-NormalRW-1hop

Gia-NormalRW-2hop-Constant

Fig. 4. Average number of queries processed
by Supernodes, in a 100K Gia network, for
different replication strategies.

 1

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

S
to

ra
ge

 C
os

t (
Lo

g
sc

al
e)

Node Id

Gia-2hop-Full
Gia-2hop-Constant

Gia-2hop-Sqrt
Gia-1hop

Fig. 5. Comparison of index storage overhead
(sorted values) incurred by nodes, in a 100K
Gia network, for different replication strate-
gies. Plots ordered in the order of legends.

 1

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

S
to

ra
ge

 C
os

t (
Lo

g
sc

al
e)

Node Id

BRITE-2hop-Full
BRITE-2hop-Constant

BRITE-2hop-Sqrt
BRITE-1hop

Fig. 6. Comparison of index storage overhead
(sorted values) incurred by nodes for different
replication strategies in a 100K BRITE net-
work. Plots ordered in the order of legends.

lookup overhead continues to improve relative to Constant and
One-hop replication strategies. From here on, we will use Sqrt
two-hop as our chosen index replication technique.

D. Gnutella Full-System Simulation

To understand the performance of various search and repli-
cation algorithms in a real unstructured network, we simulated
a complete Gnutella-like network. To make our simulation
realistic, we obtained the network topology, the files stored
in the nodes, the number of files stored, and the file dis-
tribution from Gnutella measurement study traces [27]. We
extracted a Gnutella network topology with approximately
72K superpeers and 760K leafpeers from one of these topol-
ogy traces. Since the leafpeers do not participate in query
forwarding in Gnutella, we considered only the superpeers
in our network topology. Then we extracted the list of files
stored on 72K random nodes in the Gnutella trace and as-
signed them to the nodes in our topology. Researchers have
empirically shown that this randomized placement of files
on nodes approximately represents the real network, since
there is very little correlation between file locations and the
network topology [27]. There were approximately 27 million
files, in total, with 7 million unique files assigned to nodes in
our network. Since we are using the real traces to build our
network, the object popularity in the network follows the same
popularity we see in a real network.

To evaluate the search recall for rare objects, we pre-
processed the files on the nodes in our network and queried for
only the files with exactly 3 replicas in the network (approx.
300K of them). Furthermore, to make a fair comparison
across the different search techniques and to understand the

overall performance of the network, we explicitly limited the
bandwidth that can be consumed by our tests. We limited the
number of messages that can be forwarded in the entire net-
work. Once this overhead cap is reached, all search messages
are dropped wherever they are, and no additional messages or
search queries are processed.

We examine the performance of three different search
algorithms in this setup, SCRW with Sqrt two-hop index
replication, Gia’s biased randomwalk, and a simple flooding
algorithm. Unlike early versions of Gnutella, our flooding
only occurs between superpeer nodes. We experimented with
different flooding depths and found that a flooding depth of
3 provides the best performance in our experiment setup. We
compare this against a random walk depth of 500 for the Gia
and SCRW. Note that random walk with depth of 500 incurs
significantly less overhead than flooding with TTL of 3, which
on average reaches 42K nodes.

Figures 7 and 8 show the performance of the three al-
gorithms for same overhead. Figure 7 shows the absolute
lookup success rates while the Figure 8 shows the relative
improvement in search success. We see clearly that SCRW
with Sqrt replication is more than 600 times better than simple
flooding, and nearly 200 times better than normal RW with
just one-hop replication. The improvement decreases at higher
TTL values mainly because of the diminishing returns in
lookup success experienced by SCRW.

E. Churn Measurements

Finally, we want to quantify the bandwidth costs of pushing
index updates across the network following changes in net-
work membership. Using our full-system Gnutella simulation,

9

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

%
 o

f S
uc

ce
ss

fu
l L

oo
ku

ps

Total message forwarding limit (X 1000000 msgs)

SCRW-2hop-Sqrt
NormalRW-1hop

Flooding

Fig. 7. Lookup success of under a bandwidth
cap. Note the log scale on the y-axis.

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10

R
el

at
iv

e
lo

ok
up

 im
pr

ov
em

en
t

Total message forwarding limit (X 1000000 msgs)

SCRW-2hop-Sqrt Vs. Flooding
SCRW-2hop-Sqrt Vs. 1hop-NormalRW

Fig. 8. Ratio of lookup success of different
strategies.

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

of
 S

up
er

no
de

s

Bandwidht (Bytes/sec)

One-hop bandwidth overhead
Two-hop bandwidth overhead

Fig. 9. CDF of index transfer overhead per
supernode per second under Skype trace.

we evaluated the effect of churn on Sqrt replication index
transfer overhead. Since Sqrt index replication mainly involves
supernodes, we study only the effect of supernode churn. In
order to do that in a practical manner, we use the measurement
results from a recent Skype study which measured the churn
characteristics of Skype supernodes. We assign lifetime to
supernodes from this measurement data [13], stabilize the
network, then perform two-hop Sqrt replication to reach a
stable state. We then run the Skype trace, and measure the
bandwidth required by nodes in index replication follow each
supernode join or leave event. We assume that each data object
entry including all metadata fields is 100 bytes.

Figure 9 presents the CDF of the index replication overhead
incurred by the supernodes in the Gnutella topology. In our
72K topology we had approximately 2700 highly-connected
supernodes. In a 5 day run of our churn experiments, nearly
26% of the nodes died. The overhead CDF shows that the Sqrt
two-hop replication overhead is very low, only a few nodes
have overhead above 500 Bytes/sec and the average overhead
is approximately 10 Bytes/sec per supernode. This shows that
deploying Sqrt index replication will not incur a significant
bandwidth cost for index replication updates.

VI. CONCLUSIONS

While unstructured file-sharing networks have been success-
ful at delivering popular content to its users, they are limited
by their low search recall of rare objects. We explore the
effectiveness of multi-hop index replication, which is easily-
deployable and lightweight in overhead. We derive analytical
results that quantify the search time and overheads for several
variant protocols, and choose the best performance and over-
head tradeoff. We evaluate our approach on both extremely
large simulation networks (100,000 peers) and moderately-
sized (72,000 peers) topologies from Gnutella measurements.
Using the same bandwidth as flooding, our technique improves
lookup of rare objects from less than 0.1% to more than 80%.

ACKNOWLEDGEMENTS

We thank Prof. R. Rejaie’s group for their Gnutella traces.
This work is supported by the DARPA Control Plane program
(BAA04-11) and NSF CAREER Award #0546216.

REFERENCES

[1] A DAMIC , L., LUKOSE, R., PUNIYANI , A., , AND HUBERMAN, B.
Search in power law networks.Phy Rev E, 64(2001).

[2] A IELLO , W., CHUNG, F., AND LU, L. A random graph model for
massive graphs. InProc. of STOC(2000), pp. 171–180.

[3] BAUMGART, I., HEEP, B., AND KRAUSE, S. Oversim: A flexible
overlay network simulation framework. InProc. of IEEE Global Internet
(May 2007).

[4] CacheLogic research: Peer-to-peer in 2005. http://www.cachelogic.com/
home/pages/research/p2p2005.php.

[5] CASTRO, M., COSTA, M., AND ROWSTRON, A. Debunking some myths
about structured and unstructured overlays. InProc. of NSDI(2005).

[6] CHAWATHE , Y., ET AL . Making gnutella-like p2p systems scalable. In
Proc. of SIGCOMM(August 2003).

[7] COHEN, E., AND SHENKER, S. Replication strategies in unstructured
peer-to-peer networks. InProc. of SIGCOMM(2002).

[8] COOPER, C.,AND FRIEZE, A. The cover time of random regular graphs.
SIAM J. Discrete Mathematics(2004).

[9] FALOUTSOS, M., FALOUTSOS, P.,AND FALOUTSOS, C. On power-law
relationships of the internet topology. InProc. of SIGCOMM(1999).

[10] GKANTSIDIS, C., MIHAIL , M., AND SABERI, A. Conductance and
congestion in power law graphs. InProc. of Sigmetrics(2003), ACM.

[11] GKANTSIDIS, C., MIHAIL , M., AND SABERI, A. Random walks in
peer-to-peer networks. InProc. of INFOCOM(2004).

[12] GKANTSIDIS, C., MIHAIL , M., AND SABERI, A. Hybrid search
schemes for unstructured peer-to-peer networks. InProc. of INFOCOM
(Miami, FL, March 2005).

[13] GUHA , S., DASWANI , N., AND JAIN , R. An experimental study of the
skype peer-to-peer voip system. InProc. of IPTPS(February 2004).

[14] LOO, B. T., ET AL . Enhancing p2p file-sharing with an internet-scale
query processor. InProc. of VLDB(2004).

[15] LUCZAK , T. Sparse random graphs with a given degree sequence, vol. 2.
Wiley, New York, 1992.

[16] LV, Q., ET AL . Search and replication in unstructured peer-to-peer
networks. InProc. of Supercomputing(June 2002).

[17] MEDINA , A., ET AL . Brite: An approach to universal topology
generation. InProc. of MASCOTS(August 2001).

[18] MOLLOY, M., AND REED, B. A critical point for random graphs with
a given degree sequence, vol. 6. 1995.

[19] MOLLOY, M., AND REED, B. The size of the giant component of a
random graph with a given degree sequence, vol. 7. 1998.

[20] MOTWANI , R., AND RAGHAVAN , P. Randomized Algorithms. Cam-
bridge International Series on Parallel Computation, 1995.

[21] NEWMAN , M. E. J., STROGATZ, S. H.,AND WATTS, D. J. Random
graphs with arbitrary degree distributions and their applications. Phys.
Rev. E 64(2001).

[22] PUTTASWAMY, K., AND ZHAO, B. A case for unstructured distributed
hash table. InProc. of IEEE Global Internet(May 2007).

[23] PUTTASWAMY, K. P. N., SALA , A., AND ZHAO, B. Y. Searching for
rare objects using index replication. Tech. Rep. 2007-12, UC Santa
Barbara, January 2008.

[24] QIAO , Y., AND BUSTAMANTE, F. E. Structured and unstructured
overlays under the microscope. InUSENIX (2006).

[25] SAROIU, S., ET AL . An analysis of internet content delivery systems.
In Proc. of OSDI(December 2002).

[26] SAROIU, S., GUMMADI , P. K.,AND GRIBBLE, S. A measurement study
of peer-to-peer file sharing systems. InProc. of MMCN(January 2002).

[27] ZHAO, S., STUTZBACH, D., AND REJAIE, R. Characterizing files in
the modern gnutella network: A measurement study. InProc. of MMCN
(January 2006).

