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Abstract—Searching for objects is a fundamental problem for
popular peer-to-peer file-sharing networks that contribute to
much of the traffic on today’s Internet. While existing protocols
can effectively locate highly popular files, studies show it they
fail to locate a significant portion of existing files in the néwork.
High recall for these “rare” objects would drastically impr ove the
user experience, and make these networks the ideal distrilhion
infrastructure for user-generated content such as home vidos
and photo albums. In this paper, we examine simple technique
that can improve search recall for rare objects while minimizing
the overhead incurred by participating peers. We propose seeral
strategies for multi-hop index replication, and demonstrde their
effectiveness and efficiency through both analysis and sinfation.
We further evaluate our simple techniques using detailed taces
from a real Gnutella network, and show that they improve the
performance of these overlays by orders of magnitude in both
lookup success and overhead.

I. INTRODUCTION

We believe intelligent index replication can provide th&iso
tion to this question. Not only does proactive index replma
incur much lower overhead compared with data replication,
previous work has shown it to be effective at improving the
scalability of unstructured networks [6], [11], [22]. Ourovk
explores the use of multi-hop index replication, which can
significantly improve the cover region or effective searphce
of these overlays, while incurring low overhead compared to
alternatives such as data replication. We explore the effec
tiveness of two-hop index replication, and propose diffiere
variants that traverse the overhead-performance tradgoff
guantify the impact and feasibility of our proposed teclueis}
we evaluate them in a full-system Gnutella simulation using
real measurement traces.

This paper makes four main contributions. First in Sec-
tion 1ll, we introduce Supernode-Constrained Random Walk
(SCRW) and several two-hop index replication techniquas th

Searching for objects is a fundamental problem faced Ryork well together, improving search recall of unstructire

unstructured peer-to-peer file-sharing networks. Varialg®-

overlays by more than two orders of magnitude. Second, we

rithms such as Flooding, Random Walks and their variangove asymptotical bounds for their various performance an
have been proposed to address this problem. However, mosb@érhead metrics in Section IV. Third, we experimentally

these algorithms are only effective for locating populgects,

evaluate our proposals and show that they apply to both

including algorithms used by popular deployed networkssugarge (100K) power-law networks as well as state-of-thte-ar
as Gnutella and Kazaa. Studies have shown that in the widehgtworks proposed in research. Finally, in Section V, we
used Gnutella network, as much as 18% of all queries retufiplement these techniques in a large (72K) measurement-
no responses even when results are available [14]. Compaggiden simulation of a Gnutella network, and show that our

to similar operations in their structured counterpartsdifig

techniques can significantly improve the performance of de-

rare objects (those with few replicas) in unstructured 1weks' ployed networks. Our proposed techniques are simple, easy
is generally ineffective (in terms of search success) amg deploy, and incur low overheads in storage and updates of
inefficient (in terms of overhead and response time) [24]. data indices under network churn.

Existing work has explored several approaches to improve
search recall. One approach is to use higher Time To Live Il. BACKGROUND AND RELATED WORK
('_FTL) for §earch algorithms. Hovx_/ever, higherT_TL vaIut_as—sigA_ Searching in Unstructured Overlays
nificantly increase overall bandwidth consumption and fmev
diminishing returns, particularly for coarse-granularas Search Algorithms Flooding, the earliest search algorithm
algorithms such as flooding [14]. An alternative is to ugliz for unstructured networks, has limited control over theakot
object replication strategies to improve search succels [Aumber of messages generated in the network, incurs vehy hig
[16]. But these techniques require replicating entire oisje Search overhead, and produces significant number of dimlica
incurring significant overheads in both storage and netwofkessages. Recent studies [6], [11], [12] have shown random
bandwidth, thereby limiting their applicability. walks to be significantly more efficient than Flooding.

Because these unstructured file-sharing systems accauntlfalex Replication One-hop index replication, where every
a major portion of traffic in today’s Internet [4], [25], anynode stores just the metadata of its data on all of its one-
technique to improve search recall for rare objects must bep neighbors, is a valuable technique in scaling unstradtu
light-weight, effective, and easily deployable. Our fodns networks [6]. Index replication enables a random walker to
this paper is to answer the following questi@an we develop cover a larger portion of the network in fewer hops, thus
simple techniques to improve the search effectivenessafer rimproving the search success. In terms of bandwidth con-
items, and also reduce the bandwidth overhead incurred? sumed, index replication is not only much cheaper than full-



object replication [7], [16], but also more practical. Oitfje To achieve our goal, we need to find rare objects with low

replication strategies require additional state mainterato overhead, otherwise the total load on the network becomes

correctly implement in a decentralized environment. unbearable, potentially limiting the scalability of thetwerk.
Since existing index replication algorithms always regiec  We begin the description of our contributions by providihg t

a node’s index to all one-hop neighbors, naively extendiig) t reasons that carved our design.

technique to multiple hops would incur heavy overheads. In ) )

this paper, we seek a thorough analysis to fully understaed {A Design Rationale

various costs of two-hop replication. Two main techniques lie at the core of our design:

Exploiting Heterogeneity It has been observed that nodesUpernode-Constrained Random Walk (SCRW) and two-hop

in the Internet are heterogeneous in node capacity, defirlBe€x replication. The main intuition behind them is to use t

as the amount of resources at the node, e.g. bandwidifffh-capacity nodes to build concentrated clusters ofciesi

Recent protocols have exploited this to improve the schitiabi then constraining the propagation of queries to these nodes

of unstructured networks [5], [6], by biasing random walkd0 ensure .that queries terminate with high success rate, we

towards high-capacity nodes. As a result, searching foe rdreed to efficiently placg the indices on thesg clustered s1ode

items stored on low-capacity nodes suffer heavy overhea@¥!l topology construction and search algorithms address th

since they are less likely to be reached by random walk@rmer while our two-hop replication achieves the latter.

Even one-hop index replication does not help, since it doesl) Topology Construction and SearchPrevious work

not guarantee that the indices of low-capacity nodes reaeh showed that node degree in Internet topologies and unstruc-
high-capacity nodes. tured overlay network topologies follow power-Law distrib

Hybrid Networks Hybrid networks [14] improve the searchtio.ns_' and hence contain sign_ificant heterogeneity. Eﬁptjpi .
for rare objects by using a combination of structured antg.IS |mpr0ves.netwlork scalgblllty by orders of magthde n
unstructured networks. The key idea is to identify rare otgje ia [6]. The |<_jea s to assign wo_rk (through m_—degree) to
and insert them into a structured network to improve th%Odes proportional to_ their capacity and organize the n_et-
chances of lookup while use an unstructured network fé%o”‘ so all Iow-capacny n(_)des_ are closeby o hlgh-f:apacny
finding popular objects. While effective, this requires ldgp nodes. Because of the_lr high |.n-degree, hlgh-capaf:lty siode
ing and maintaining a new overlay network along with rargave large amountl of mformaypn, and hence provide bett(.ar.
objects, making this approach very expensive. responses to queries. In addition, these supernodes txhibi

much low churn rates compared to other nodes [13], naturally
B. Power-law networks forming a stable core of the network.

Faloutsos et al. [9] showed that the Internet follows power- Our topology construction algorithm is motivated by these
law both at the router level and inter-domain level. It isoalstWO observations. A careful inspection reveals that these t
argued that Gnutella-like networks follow power-law [1]. approaches are similar in that they use high capacity nosles a

Random graphs with a given degree sequence are WERIN paths for search and try to propagate the _mdex from Iqw
studied [15], [18], [19]. A Random graph amvertices with Capacity nodes to these main pathg. Our.al_gonthm uses Gia’s
power-law degree distribution shows the following projest topology adaptatlc_)n _algo_nthm while building the network _
the fraction of vertices of degre 1,2... is asymptotically topology and assigning in-degree to nodes based on their
M, Ao, ..., where theX's sum to 1. It is shown in [18] that capacity. Along with _this, it tags the nod_es with high ca_gaci
if Q =3,i(i—2)\; > 0 (and the maximum degree is notaS supernodes f_orm_mg a stable path Wl_th large capacity.
too large), then such random graphs have a giant componer®) Index Replication:One-hop replication has been shown
with probability tending tol asn goes to infinity. While if o significantly improve scalability for unstructured netis.

Q < 0 (and the maximum degree is not too large), then Ve extend this one-hop replication to two hops in this work.
components are small with probability tending to Inass co. Note that extending index replication to two hops might lead

In these networks, foR < v < 3.475, where~ is the toan explosion in the amount of index stored on high-capacit
exponent of the power-law distribution, a Largest Conng:ctdodes. Thus managing the index replication and storage
Component (LCC) is shown to exist [2], and LCC containgverheads becomes critical. We propose different reptinat
the majority of the nodes of the original graph and most &frategies and study their performance in detail.
the links. In [10] the authors show that this giant componept
of a power-law random graph matches several characteristic
of real complex networks, and hence is a good candidate fo

Two-hop Index Replication Strategies
(We explore three two-hop index replication strategies.

generating synthetic Internet topologies. Full replication.  In this strategy, each node sends its index
to all of its one-hop neighbors in its routing table, justelik
IIl. SYSTEM DESIGN in one-hop replication. All of the one-hop neighbors, inntur

Existing unstructured networks have one main problerforward this index to all of their one-hop neighbors excdyet t
they are highly limited in their ability to locate rare itemssource node. This strategy effectively reduces to a two-hop
The goal of our work is to develop techniques that improvilooding of indices around the nodes. We use SCRW with this
the chances of finding rare objects in unstructured networkeplication strategy.



Square-root replication. In this strategy, each node performs Since prior work has shown that power-law properties hold
one-hop replication. Supernodes then replicate the isdide on both the Internet and peer-to-peer topologies [6], [9, w
their one hop neighbors to a random subset of their supernad# base our analysis on a power-law network context. Iis thi
neighbors. Each supernode’s two-hop replica set size ialegmodel, a node’s maximum connectivity is roughly proporéibn

to the square-root of the number of its supernodes neighbdisits “capacity,” which is modeled in practice using bandithui
Thus, this is simple one-hop replication augmented wittapacity. Given the heterogeneity across node capacities,
square-root replication only at the supernodes. The iotuis divide all peers into those with a relatively low degree |exl
that by replicating on the supernodes, we are favoring SCRtandard peers,” which are connected by a set of highly
to find objects quickly. At the same time, we are reducing thennected nodes we call superpeers.

amount of replication and its cost. Specifically, we will compare one-hop replication against
Constant replication.  Finally, we use a strategy wherethree variants of two-hop replication. In one-hop indexlirep
each supernodes does two-hop index replication to a cansté@tion, each node maintains an index of objects stored by its
number of supernode neighbors. After each node does of8e-hop neighbors. This significantly improves the average
hop index replication, supernodes propagate the index ip o@nd maximum search size when the random walk is forced
a constant number of their supernodes. This reduces ingextd 9o through superpeers. The cost for this performance
load on supernodes. We further reduce the load further Bjprovement is that highly connected nodes incur overhead
using normal random walk instead of SCRW with this strategtfiat scales linearly with the number of queries. We compare
Since each peer has the indices of its one-hop neighborho@@e-hop replication against three of our proposed two-hop
it can forward the query to a different neighborhood withoug€plication strategies and show how we can navigate the

having to go through a superpeer. overhead and performance tradeoff.
We analyze these strategies in the next section with a focug-ormally, we can consider a network as a graph=
on the following three properties: {V, E}, whereV is a set ofN nodes andF is a set of edges

« Cover Time. We define cover time as the number of hofidat connect two elements &f. Using the generating function
taken by a query to walk through all the supernodes formalism introduced by [21] for graphs with arbitrary degr
the network. distribution, we now analytically evaluate the performerod

o Supernode Load. The average amount of load (in terrAYr strategies on power-la_w networks. o
of the number of queries processed) on the supernodes &€t Go(x) be a generating function for the distribution of
called the supernode load. nodes degreé such that

o Storage Load. The average amount of index stored on k=00
supernodes is the Storage Load. This also gives us Go(z) = Zpkzk
an estimate of the amount of index transfer overhead k=0
incurred in the network. where p;, is the probability that a random chosen node has

degreek. In our model we use a power-law distribution with

C. Supernode-Constrained Random Walk : o
exponenty, so that, the above generating function is given
We use supernode-constrained random walk (SCRW) as gt G (z) = zf’gmaz ck—7z*, where ¢ is a normaliza-

search algorithm. The main difference between SCRW andign constantthat satisfies the following equatiof,(1) =
normal random walk is that in SCRW nodes always forwavz‘i‘:jgmam k=7 = 1. Note that the maximum value of

the query to one of its randomly selected supernode neighb@gs to bek,,,, = N'/7 and the exponent of our power-law

— not just any random neighbor. If no supernodes are fouggktribution on the nodes degree &k « < 3.475, as shown

in its routing table, then the node forwards the query to oRg the experiments done in [2].

of its neighbor selected at random. _ . We characterize our network by a two-level hierarchical
Since random walks could lead to duplicate queries atsgycture, where we have “superpeerse(nodes with high

node, avoiding revisiting nodes is important. To do this, Weonnectivity and high computational capability) on the top

embed a small history in each query to keep track of recenflye|, and all remaining “standard peers” on the bottom lleve

visited nodes. This history is a moving window is updateflor generality, we cannot fix a single threshold value to @efin

when a query reaches a new node. If the query reaches a ngge minimum degree of a superpeer. We solve this problem
that has a degree of just one, then the query jumps backyfih the following definition:

the least recently visited node and continues the walk.il2eta

ananlysis of this new random walk technique is, however, nB€finition 1. Superpeers have a degreeuch thatV'/7=* <
the focus of this paper. kE < NY7 with § €]0,1/~[* and letS be the set of superpeers

that we will call the network core.

IV. THEORETICAL ANALYSIS i ) L
Applying one- and two-hop index replication changes our

hlnth|s s_egnon,;/v(ej:feekto _bedtterundl_erstand the performange., of the network. Most nodes in a power-law network
characteristics of different index replication strategieVe iy pe clearly grouped into clusters, where nodes in each
compare several index replication strategies in terms aifcbe

performance, per-node query load, and index storage oadrhe !Note that the notatiof0, 1/~v[ means that the extremes are not included.



cluster share knowledge of stored objects in the clusteutin with the values of our system and letbe % we obtain the
replicated indices. We define a cluster as follows. following:

CNl=(-DA/y=8)

Definition 2. Let C be a cluster of nodes such thét: | z € S P[X < lNl—(v—l)(l/v—é)] <e "= <1/N.
thenC, ={v | v has an edge that connects v and xThe 2

number of clusters in the network is proportional to numbdror each choice ofy in its definition interval there is
of superpeers. a set of 6 values that satisfy the inequality. The proof
i ] shows that the number of superpeers in the network is

For each superpeer € S we define the following sets: QN'-(-D(/3-0)) = Q(N%faJré)' -

Definition 3. Let V;(z) be a set of all distinct superpeers in To cover the core of the network we first have to reach one
one-hop distance from, and letVs(z) be a set of all distinct superpeer and then go through each node in the core. Indeed,
superpeers in two-hop distance fram we want to reach a superpeer using a minimal number of
o routing hops. We use a random walk to perform routing so
Definition 4. Let o = (1/y = d)(y — 2) and 6]070;425[2' the problem is: starting from a randomly chosen node, how
Note thata is used only as a way to simplify notation here.many random walk steps must we take to reach a superpeer?

As described earlier, we use the following three perforneangheorem 2. The number of routing steps to reach a superpeer
metrics to compare different index replication strateg@ser sing random walk i€ (N?).

time on the network corequery loadon superpeers and the

size of index cacheat nodes. We omit the details of the proof for brevity. The full version
of the proofs can be found in our technical report [23].
A. One-hop Index Replication We need to estimate how many superpeers arginthat

. . _ ~ will tell us the number of superpeers who are one hop away
Our theoretical analysis aims to bound the time 10 finflo each other. If we are able to reach a superpeer, then by
objects in the network. We will focus on the case of an U'E;'oing through each superpeer in the core we will be able to

common object: an object with a constant number of replicag, 5 |arge fraction of peers. This gives us a high protigbil
independent of the network size. We will show that a query finding the desired object.

will locate an object with high probability if it covers the L
network core. Theorem 3. Letx be a superpeer, theli; (z)] isO(N™7 ~9)

. e —a . ‘7;1 —2a .
Theorem 1. Let §, v and « be three parameters that charac-w.Ith probab!l!ty Q(N") and [Vi(x)] is QN ) with
high probability.

terize our system, and in particulare]0,1/v[, v €]2, 3.475]
anda €]0, 0.425[, then the number of superpeers in our system  Proof: Sketch of the prodf The probability that a super-
is Q(Nww;]*‘”‘;), peer is connected to “s” different other superpeers, isgiso

, , bound to the number of links that end in superpeers. That is:
Proof: Let d be the degree of a generic node in the = 2=l-avs 105 yi/n S N Gt

system, then the probability that this node is a superpeerdsi=1

L——a

N

i for eachs <
conditioned on the fact that has to be more theiv!/~—9. Using the Chernoff bound [20] we show that the lower bound

So, the probability that a nodewith degreed is a superpeer " the number of different superpeers connected to another

=194

is P[d > N'/7=9]. Thus, P[d > N/7—9] = Ziﬁf&/w L~ superpeer i$3(N ™5 ), with high probab.iIiFy. u
For all decreasing function like—", it is possible to bound it | eorem 3 shows the degree of connectivity of nodes in the
as following: network core. We use this to prove the next result.
¥ Theorem 4. The time to cover the superpeers in the network
N/ Nl/'y i E*OH»(;
Z BT s / Kd(k) is O(N™~ log N).
k=N1/7—6 Nt/7=3 Proof: We consider the core nodese( the superpeers
Ca in the network) as a subgraph. On this subgraph we have to
N7 N9+ NO-DE=1/7) bound the number of steps to cover all nodes. We use the
—+1 o —y+1 - 2(y — 1) degree of connection between nodes from theorem 3 to define

N _ _ s the network’s core as d-random regular graph. Indeed, by
so the probability that is a superpeer i€2(N ~(1/7=90=1) congiryction each superpeer chooses ahlyeighbor super-

Let Xy, Xo,..., Xy be N random variables such that:  peers that considers as real superpeer (i.e. SCRW is routed
y,— J L ifiisasuperpeer; using one random choice among thelseeighbor superpeer).
! 0, otherwise. RECER P

)

Let p; be the probability thatt; — 1 and lety — E[X] In our case, the value aof is N~ and the number of

ol PRI ol SN .
N o — SN N-@/y=8)(v-1) nodes to cover aré&v > . Letn be N7 . Using
iz Pi iz N ' Bxﬂtﬂ)ez Chemoff bound the argument in [8], we find that the cover time in our system

[20] we have P (X < (1 —7)u) < e™ 2 ~. Substitutingu js asymptotic to=1n logn, with high probability. Therefore,

2Note that thex interval is derived fromy’s interval and definition. 3A full version of all proofs is included in our technical rep23].



gjénlogn < 4nlogn = 2nlogn. Substitutingn with our superpeers we could know all superpeers in the network.gJsin

value we have: theorem 5, we can consider the network’s core as a set of
different N°*< sets with degre@(Nww;]_““) among them.
If ﬂfV:;a C; = ¢ then the cover time iO(N°*®log N),
wherec is a constant. We have to ggd the time to reachuing the assumption in [8]. The point is that we cannot
superpeer and so the total time d&/ 5 ~“*°log N 4+ N guarantee that the previous intersection is empty. So we& mus
that is still O(NWT_“” log N), which is sub-linear. B prove that going int@)(N°+ log N) clusters, we will check

It is easy to show that covering the core superpeers ali superpeers at least once with high probability. We can
enough to find an uncommon item, because indices at sugermulate our problem as a random selection with replacemen
peers cover the large majority of the network via one-hggroblem: let N5+ pe the number of balls, for each
index replication. The main problem is that in the worst ¢casgraw we selectV 5" 2% palls. We need to prove that after
a query for an uncommon item must cross all superpeers ip+o oo N draws each ball has been selected at least one
the network and lead to high query load on superpeers. time. For each draw the probability that one ball is not chose

Fact 1. The load is proportional to the number of queries fofs (1 — ﬁ)]\ﬂ”—da, After N°t>log N draws the

uncommon item, because for each of these queries the quﬁr@babilig/ that comes out is:
must traverse through superpeers until the item is found.

N7 ot jog N5 matd o (NI et 00

1 ZL],OH,J

)N Y log N __ 1 1 1

Fact 2. The cache size.of a suE)erpeer is proportional to thd1 — 7]\]%1_%5 = g N < elog. N — N
superpeer’s degree, which @(N1/7). S
L Therefore the total time is gives frolv°+t>log N steps to

B. Two-hop Index Replication cover the network’s core plusv® steps to reach the first

We analyze three variants of two-hop index replicatiéatl  superpeer that i©) (N log V). [ |
two-hop Constant two-hoandSquare root two-hopNe com-  We now analyze the query load on the superpeers. In our
pare these index replication strategies on search perforeja system we know that for an uncommon item, the way to find
per-node query load, and index storage overhead. it is to visit all superpeers in the network.

Full Two-hop Index Replication :
X . . o Th 7.Th load on th -
The first approach is the full two-hop index replication. I'?ior?glr(te(;n# qmﬁoz“fverage oad on the SUperpeers 1s propor
Ty laa

this strategy each node maintains an index of objects stored N
all neighbors within two_hop. We use Theorem 5 to support  proof: As shown in theorem 6, each query crosses
our result on the cover time for this strategy. Note]og N superpeers in the network such that the overhead

Theorem 5. Let = be a superpeer, then|Vi(z)| is in the system is proportional to the crossed nodes . Thexefor
e e ; o —2a the load on each superpeer is sub-linear on the number of

O(N 5 ~2*) with probability Q(N—2%) and |Va(z)| ) query log

(N5 12) with high probabiliy. query for uncommon items, and {§-2ucryloe N ]

3;17204
_ _ o _ o The size of indices cached at each superpeer is proportional
The proof is omitted for brevity since it follows a similarig the number of superpeers in each cluster.

formulation done in theorem 3. Additional details are in][23 ) e
Full two-hop index replication guarantees that each supdibeorem 8. The cache size of superpeersQ$N=—).

peer does not need to visit its neighbor superpeers because pygof: Let z be a superpeer, the maximum number of the
it already knows all their neighbors. We are interested tﬁeers inC. is N'/7. and at mostN ">~ —° are superpeers as
x 1

prove how many hops are needed to cover the network’s CQigowed in theorem 3,hence the superpeéas to store:

leveraging the assumption that each superpeer know object§ for each of its neighbor superpeers all their neighbors that
stored by its two-hop neighbors.

are at mostV'/7 N5~ = N1-o:
Theorem 6. The cover time on the network’s core, by full + for all standard peers in its clusté¥, a constant num-

index replication, isO(N°**log N), with high probability. ber of their neighbors. Its neighbor standard peers are
. . 1/ i ion i
Proof: As we argued in theorerp13, in each clustérthe Iesks,];rlt/e?]\f 7 and so the amount of information is
number of superpeers i§ = Q(NVT_QQ). Each superpeer _< o . .
Adding this together, the amount of information that a super

selects, by construction, exactly superpeers in order to Ny —a o
build the network core as a-random regular graph andPEer® has to store isk N7/ 4 N°7¢ = O(N'~7) u

keep the random walks, of the routing algorithm, inside tHeonstant Two-hop Index Replication

network core. Moreover, each superpeerreceives indices ~The main problem of full two-hop index replication is that
from all clusters rooted in each of the superpee€in Since, caches at superpeers could become too big. Here the idea

Q(NVT*LM) superpeers are into each cluster then with : is to reduce the ind_ex r_eplif:a_tion at superpeer._WhiIe we
guarantee the cover time is similar to one-hop replicatoa,

_ Nt reduce cache size compared to two-hop strategy and query
NG 2 load on superpeers compared to both one and two-hop index

N%—a-ﬁ-&



Cover Time Load Cache size for Superpeers
N’s Exponent N’s Exponent N’s Exponent
=T
One-hop index repl.| O(N"7 "0 10g N <1 ueries O(NY/ <05
P p g #4q
Two-hop full O(N%+%log N) <05 % <0.7 O(N1=2) <1
N~
—T
Two-hop constant O(NwTﬂ”‘s log N) <1 # query <1 O(N/7) <05
=145 # querieslog N =T )2
Two-hop square roof O(N 27 " “log N) < 0.75 %ﬁi‘f <0.35 O(N 27 ) < 0.75
N 27
TABLE |

COMPARING THE KEY PERFORMANCE AND OVERHEAD METRICS FOR ALL FOR INDEX REPLICATION STRATEGIES

replication. The idea is to implement the routing going tigb  one hop replication. Now we want to prove the properties of
each cluster using standard peers. Square root two-hop index replication.

Lemma 1. Each normal peer that lives in a cluster canTheorem 12. Th? cover time using Square root index repli-
reach another cluster in constant hops, with high (congtantation, isO(NWz_v” log N), with high probability.

probability. We omit the proof for brevity, since it follows the same
This lemma proves that each standard peer that lives irpatline shown in theorem 6. With the same argument as

cluster has the possibility to reach another. This is done ito theorem 7, we can assert that the average load on the

show the capability that queries can go through clustensgusisuperpeers, in Square root index replication, is propoaio

standard peer, and yet cover the same amount of information?—“<cs e X,

as that of walking through superpeers with one hop replica- ~ ™ ) )

tion. Therefore, constant replication obtains an optineaidl Theorem 13. The cache size for each superpeers is

o

balancing. It is possible because the standard peers teat ﬁ)(NgT_ 2).
in a cluster have the complete knowledge of all other peerspg proof is similar to theorem 8 and is omitted for brevity.
index in their cluster. Finally, we summarize all of our analytical results in
Theorem 9. The cover time, in constant two-hop replicationJable 1. We want to emphasize the substantial difference
is O(NVW;LM& log N). between our three two-hop replication stratggps and one-
hop replication. Two-hop constant strategy maintains tmes
The proof is similar to that of Theorem 4. cover time compared to one-hop replication, since only the
In the constant two-hop strategy, the routing hops requiredn-superpeers nodes do two-hop replication. While twp-ho
is greater than full two-hop. Compared to one-hop repliati constant reduces load for superpeers, it does not imprave th
it significantly reduces query load at the superpeers, aoldeca cover time. We prove that the best cover time can be reached
size at superpeers is asymptotically the same. using two-hop full replication. Since all nodes do two-hop
flooding, the concentration of indices at superpeers makes
the SCRW very efficient, despite the larger cache loads for
superpeers. Finally, square-root two-hop replicatioranist the
The proof is omitted for brevity. The intuition is that inaté best tradeoff between cover time and cache size.
of biased random walks on superpeers, we use random walks V. EXPERIMENTAL EVALUATION
through standard peers to cover at least one peer per clustgr Experimental Setup

The cache size of superpeers is drastically reduced becaus\(;Ve present our experimental results on OverSim [3], an

onl)_/ a constant number of neighbor superpeers are C0ns"deé\e/ent—based overlay network simulator. For our simulatjon
during the index storage phase, and all others are treated

W& modified an implementation of Gia [6] included with
standard peers. OverSim to use the same parameters as the Gia paper. In
Theorem 11. The cache size of superpeers, for the consta@dition to Gia, we implemented a simple unstructured ayer!
two-hop strategy, i@(Nl/v)_ protocol to experiment with different search and replicati

. algorithms. We also added support in OverSim to import

The proof follows the same technique as Theorem 8. itfarent network topologies to build overlay networks.
Square Root Index Replication We used the bandwidth measurement traces from the

Our analysis shows that compared to one-hop index repGnutella study [26] to derive the node capacities for Gia,
cation, full two-hop index replication improves both coveallowed the network to stabilized, and generate a 100K node
time on the network core and query load on each superpasstwork topology. We used this Gia topology for all our
But the cache size for each superpeer is significantly largekperiments, and refer to it as Gia in our graphs. In addiiion
Constant two-hop index replication shows a smaller cacte sthis topology, we also evaluated our algorithms using pewer
per superpeer than full two-hop, but similar cover time ttaw network topologies generated by BRITE [17].

Theorem 10. The average load on each superpeers less
than #£-4uery,



We simulated our 100K large overlay network on a quadvhile the constant replication is better than one-hop oapilon
core Dell server with 16GB memory and four 2.3GHz CPU$ut much worse than sqrt and full two-hop replication. Recal
The large simulation size was necessary to provide realisthat these results are for all objects with only 3 replicag. W
and representative results. In our Gia tests, we initialim can expect higher search success in practice by incredsing t
overlay on the pre-built topology, store a constant numbsgplication factor. While full two-hop replication is thdear
of randomly selected objects on each node, and then issui@aner thus far, we need to fully understand its other effect
qgueries from each node for random objects in the networefore choosing a variant for practical deployment.

Our object assignment algorithm ensures that each object irFigures 3 and 4 show the query load experienced by
the network has 3 copies distributed among random nodesniades in the network. Figure 3 shows the load distribution on
the network. In addition, we fix the number of supernodesdl nodes for different combination of search and replimati

in the network at approximately around 3%, following thalgorithms. We see that with their use of SCRW, Sqgrt and
measurement results from [26]. We use just one copy of thell have uneven load distribution, with most search querie
random walk for all search experimentse( 1-SCRW) and processed by the supernodes. Both the normal RW one-hop
terminate the walk when a copy is found or when the TTl(inherently biased towards high-degree nodes) and two-hop
expires. Each experiment submitted 100K queries into tleenstant strategies spread the load more evenly in the netwo
network and evaluates different aspects of search perfuecea Explicitly biasing the RW towards high degree nodes, like in
Gia, takes the distribution away from the normal RW, towards
SCRW. Figure 4 shows the average query load just on the

We use the following metrics to study the performance &upernodes. Sqrt experiences slightly higher load thah Ful
our proposed algorithms. strategy. Two-hop constant replication, however, incaadl

« Lookup Success. This metric describes the effectiveneggmparable to that of just one-hop replication. Studyingf ju

of a search strategy in locating objects. This is expresst# query load indicates that two-hop constant replicaison
as a percentage of total search queries that return sdesirable for distributing load evenly in the network, vehitll
cessfully. and sqrt replication strategies are good for two-tier dehi

o Lookup Overhead. The number of hops taken by tires where supernodes have significant resources.

search query before it terminates is defined as the lookupFigure 5 presents the total index storage (one-hop + two-
overhead of that query. The overhead is always less thb@p) overhead on all the nodes in the network for different
or equal to the maximum random walk depth. We useplication strategies. We see that the storage overheatl (a

the average of all lookup query overheads in a test fignce the index transfer overhead) in Full and Constant
quantify the search cost. replication is nearly ten times more than that of one-hop

o Query Load. We measure the number of queries pregplication. Sqrt replication incurs the same overheachas t

cessed by each node in the network during a test run@bone-hop on all nodes except supernodes which incur almost
understand query load per node. In addition to the lodde same load as that of Constant replication (this explhi&s

on all nodes, while using SCRW, we also quantify thepike in the Sqrt overhead). Figure 6 presents the sametsesul

load on each supernodes. for a BRITE topology and we see that Sqgrt overhead is the

« Index Storage Cost. We use this to measure the péswest. The main reason for the variations in these graphs

node storage overhead from two-hop replication. This that in the Gia topology, superpeer degrees deviate from
also quantifies the amount of index data transferred the power-law distribution, and is less connected thanrthei

B. Performance Metrics

the network during network churn. counterparts in BRITE.
) ] We see from these graphs that Full replication provides high
C. Simulation Results lookup success, but also incurs high query load and index

We present the simulation results in three parts. We stanterhead. Constant replication is desirable for spreattieg
with an evaluation of search effectiveness and efficied®nt index transfer cost across the network or for even balancing
evaluate our system under a full-system simulation of thef query load, but has poor lookup success and high lookup
Gnutella network, and finally present the index replicatioaverhead. Sqrt replication provides a mix of the good prop-
overhead incurred because of churn. We ran all tests on betiies of Full and Constant strategies. Its high lookup essc
Gia and Brite overlays, and present only the Gia results wheiith low lookup overhead while the total index overhead
results from both topologies are similar. is only slightly higher than that of one-hop replication. We

1) Search Effectiveness and Efficiendyigures 1 and 2 argue that Sqrt is the best variant for practical deployment
compare the lookup success and lookup overhead of twmecause the supernodes chosen in deployed networks have
hop replication strategies using SCRW with that of one-hdpgh bandwidth and processing capacity, and index trassfer
replication using standard random walk. We see that fudhn be amortized across time. Additionally, the significant
two-hop replication with SCRW provides the highest lookupavings in the bandwidth spent on processing queries should
and the lowest overhead, while one-hop replication with RWwore than offset the cost of index replication. Also note,tha
provides the lowest lookup with highest overhead. Sqrtxndas shown in Table |, Sqrt replication’s cover time is sukedin
replication’s performance is very close to that of full thop, on the network size, indicating as network size grows, the
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lookup overhead continues to improve relative to Constadt aoverall performance of the network, we explicitly limiteklet
One-hop replication strategies. From here on, we will use Sdpandwidth that can be consumed by our tests. We limited the

two-hop as our chosen index replication technique. number of messages that can be forwarded in the entire net-
) , work. Once this overhead cap is reached, all search messages
D. Gnutella Full-System Simulation are dropped wherever they are, and no additional messages or

To understand the performance of various search and reglearch queries are processed.
cation algorithms in a real unstructured network, we sirrela  We examine the performance of three different search
a complete Gnutella-like network. To make our simulatioalgorithms in this setup, SCRW with Sqrt two-hop index
realistic, we obtained the network topology, the files sloreeplication, Gia’s biased randomwalk, and a simple flooding
in the nodes, the number of files stored, and the file diatgorithm. Unlike early versions of Gnutella, our flooding
tribution from Gnutella measurement study traces [27]. Wenly occurs between superpeer nodes. We experimented with
extracted a Gnutella network topology with approximatelgifferent flooding depths and found that a flooding depth of
72K superpeers and 760K leafpeers from one of these top®lprovides the best performance in our experiment setup. We
ogy traces. Since the leafpeers do not participate in quesympare this against a random walk depth of 500 for the Gia
forwarding in Gnutella, we considered only the superpeessid SCRW. Note that random walk with depth of 500 incurs
in our network topology. Then we extracted the list of filesignificantly less overhead than flooding with TTL of 3, which
stored on 72K random nodes in the Gnutella trace and am average reaches 42K nodes.
signed them to the nodes in our topology. Researchers haveigures 7 and 8 show the performance of the three al-
empirically shown that this randomized placement of filegorithms for same overhead. Figure 7 shows the absolute
on nodes approximately represents the real network, sineekup success rates while the Figure 8 shows the relative
there is very little correlation between file locations ahé t improvement in search success. We see clearly that SCRW
network topology [27]. There were approximately 27 milliorwith Sqrt replication is more than 600 times better than $&mp
files, in total, with 7 million unique files assigned to nodas iflooding, and nearly 200 times better than normal RW with
our network. Since we are using the real traces to build ojurst one-hop replication. The improvement decreases &iehig
network, the object popularity in the network follows therea TTL values mainly because of the diminishing returns in
popularity we see in a real network. lookup success experienced by SCRW.

To evaluate the search recall for rare objects, we pre-
processed the files on the nodes in our network and queried for Churn Measurements
only the files with exactly 3 replicas in the network (approx. Finally, we want to quantify the bandwidth costs of pushing
300K of them). Furthermore, to make a fair comparisoimdex updates across the network following changes in net-
across the different search techniques and to understand work membership. Using our full-system Gnutella simulafio
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Fig. 8.
strategies.

we evaluated the effect of churn on Sqrt replication index2]
transfer overhead. Since Sqrt index replication mainlpines
supernodes, we study only the effect of supernode churn. I[ﬁ]
order to do that in a practical manner, we use the measurement
results from a recent Skype study which measured the chuffi
characteristics of Skype supernodes. We assign lifetime
supernodes from this measurement data [13], stabilize the
network, then perform two-hop Sqrt replication to reach df!
stable state. We then run the Skype trace, and measure tﬁf}
bandwidth required by nodes in index replication follow leac
supernode join or leave event. We assume that each data obj&t
entry including all metadata fields is 100 bytes. [9]
Figure 9 presents the CDF of the index replication overhead
incurred by the supernodes in the Gnutella topology. In ol#©l
72K topology we had approximately 2700 highly-connectqgl]
supernodes. In a 5 day run of our churn experiments, nearly
26% of the nodes died. The overhead CDF shows that the J&#
two-hop replication overhead is very low, only a few nodes
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Fig. 9. CDF of index transfer overhead per
supernode per second under Skype trace.
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is approximately 10 Bytes/sec per supernode. This shows tha
deploying Sqrt index replication will not incur a signifidan

bandwidth cost for index replication updates. [15]

VI. CONCLUSIONS [16]

While unstructured file-sharing networks have been suecegs
ful at delivering popular content to its users, they are tadi
by their low search recall of rare objects. We explore tHee]
effectiveness of multi-hop index replication, which is iBas [19]
deployable and lightweight in overhead. We derive anadytic
results that quantify the search time and overheads foraevd’”
variant protocols, and choose the best performance and oyef;
head tradeoff. We evaluate our approach on both extremely
large simulation networks (100,000 peers) and moderate[¥é]
sized (72,000 peers) topologies from Gnutella measuresnent
Using the same bandwidth as flooding, our technique improvés]
lookup of rare objects from less than 0.1% to more than 80%.
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