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Abstract such as eBay and knowledge forums such as SlashDot and
Yahoo Answers. On these centralized platforms, reputation
A new generation of distributed systems and applications mechanisms have significantly improved system reliability
rely on the cooperation of diverse user populations moti-  When applied to large-scale distributed systems, how-
vated by self-interest. While they can utilize “reputation ever, reputation systems and their associated protooss fa
systems” to reduce selfish behaviors that disrupt or manipu- a significant challenge: user collusion. Reputation system
late the network for personal gain, current reputationsffac  generally assume that each online identity represents-a sin
a key challenge in large dynamic networks: vulnerability to gle user. However, recent work has shown that given the
peer collusion. In this paper, we propose to dramatically relative low cost of online identities, users often generat
improve the accuracy of reputation systems with the usemultiple “Sybil” identities to gain benefits beyond the fair
of a statistical metric that measures the “reliability” of a  allocation for a single identity [27]. The Sybil attack, &asst
peer’s reputation taking into account collusion-like beha s known, also allows these multiple identities to “collabo
ior. Trace-driven simulations on P2P network traffic show rate” or collude for the good of the user, thereby decreasing
that our reliability metric drastically improves systemrpe  the effectiveness of online reputation systems. For exampl
formance. We also apply our metric to 18,000 randomly ysers can collude to artificially boost the reputation value
selected eBay user reputation profiles, and surprisingdy di  of one or more peers [15], or falsely accuse well-behaved
cover numerous users with collusion-like behaviors worthy ysers of misbehavior. Either way, multiple Sybil identtie
of additional investigation. allow the user to obtain significant advantages over other
users with single identities.

Any practical application of reputations at the network
level must first address the key challenges of user collu-

Recent work has proposed a number of highly scalablesion. In this paper, we seek to address this challenge by
peer-to-peer routing protocols [2, 20, 22, 30] that support augmenting traditional reputation systems with a “reliabi
Internet-scale network applications such as distributed s ity metric.” Our approach helps users make more accurate
age systems [19] and content distribution networks [12]. decisions based on trust by quantifying the risk that a given
However, reliable protocol operation relies on peer coop- reputation value has been affected by collusion or collusio
eration, a difficult challenge given that these heterogaseo like behavior. This serves as an estimate of the reputation
peers are distributed over many distinct networks and ad-value’s accuracy. As a basis for our metric, we leverage a
ministrative domains. The use of cheap and anonymous onJair of well-studied mechanisms used in economic studies,
line identities frees users from the consequences of theira the Lorenz curve [16] and the Gini coefficient [5]. Applied
tions. Studies have shown that without accountabilityrpee 1o reputations, they characterize how far a peer’s pempart
in these open networks can act selfishly, often disrupting ordistribution of transactions deviates from the ideal. dsin
manipulating the network for personal gain [15, 21]. our metric, a user can easily distinguish between reputa-

To limit the impact of selfish users who exploit their tions generated by truthful transactions and those thatimig
online anonymity for personal gain, researchers have pro-be strongly influenced by user collusion.
posed introducing limited accountability through the uke o The work in this paper makes three key contributions.
reputation systems [1, 14]. By producing a statistical-esti First, we propose and describe in Section 3 a reliability-met
mate of trustworthiness based on feedback from past trans+ic for reputation systems that protects users from user col
actions, reputation systems can guide peer interactions tdusion attacks. Second, we evaluate in Section 4 our pro-
reduce risk. They have been deployed on e-commerce siteposed mechanism via detailed simulations of peer collusion

1 Introduction



models based on recent measurements of a deployed P2®-peer systems [11]. A recent study by Lian et al. found
system [15], and show how our enhancements greatly im-strong evidence of collusion behavior between users of a
prove the accuracy of traditional reputation systems underfile-sharing network with the express goal of manipulating
peer collusion. Finally in Section 5, we apply our reputatio the incentive system for personal gain [15].

metric to users of a highly successful online marketplace
eBay. We test the reliability of 18,000 randomly selected
eBay reputation profiles. Examination of the results shows
a surprisingly large number of users who exhibit “collusion
like” behavior. While it is impossible to determine a user’s
true intention, users identified using filters based on our re
liability metric show highly unusual patterns in their tsean
action histories. This “circumstantial evidence” is highl
indicative of forged transactions, and definitely justifigs

ther investigation.

' Related Work on Incentives and ReputationsPrior work
has shown that reputation systems, if reliable, can effec-
tively motivate trustworthiness and cooperation [1, 4, 6, 7
14, 17, 25]. However, designing reliable reputation in the
presence of collusion and user dynamics is a challenge.
The EigenTrust algorithm applies a global feedback rep-
utation system for P2P networks, and attempts to address
the problem of malicious collectives by assuming pre-
trusted peers in the network [14]. Zhang et al. improve
eigenvector-based reputations by capturing the amount of
2 Background and Related Work PageRank inflation obtained by collusions [29]. They ob-
serve that colluding nodes cheat the algorithm by stalling
Background on Reputation Systems. A traditional rep- the Page_Rank random walk in a_?ma” web graph, and thus
. are sensitive to the reset probability of the random walk.
utation system collects and aggregates feedback about the . o
Feldman et al. suggest a “stranger adaptive” strategy to

behavior of each network peer into a reputation profile. A A ifish behavi d work d ics 1101 U
service requesteR, uses a provideP’s reputation profile to pourr:_ etr s€ 'Sf € a\t”tor un etf ne qtrh tynam|cs[ ]. Us-
determine whether to transact with Following the trans- It?rgatss?c;:zs ?ol;ea(lza(ialﬂ (E?EZ?: I?:EZ;\ge dzr?ﬁgigt&}sg&ﬁr o
action, R gives its feedback aP to the reputation system. P 'ty g y ange
. . : . and uses this to decide whether to trust the next stranger. Fi
Reputation systems generate trust relationships using . :
nally, two recent projects apply reputation systems toprac
one of two approaches. One approach, referred ttpas . . o :
tical networks. Yu et al. examined the feasibility of using

cal reputation uses only firsthand interactions to evaluate : .
. X reputations to establish trust between Internet autonemou
peers. Each peer aggregates its own experiences and does

not share its opinion with others. A second and more pop- Systems [28]. Credence associates reputations with ohdivi

ular approach, referred to agobal reputation computes ualfiles in a file-sharing network [24].
a peer’s reputation by aggregating feedback from all of its 3 A Reliability Metric for Reputations
past transaction partners. While global reputations ate vu
nerable to false ratings, they provide significantly more in  Despite their effectiveness in traditional controlledienv
formation than local reputations. ronments, current reputation systems can be highly inaccu-
Our reputation model shares basic mechanisms commorrate in large dynamic networks such as online communities
to most reputation systems: we employ global reputationsand P2P networks. The biggest contributing factor to inac-
and compute peer trustworthiness as an average of all ratcurate reputation values is the increasing presence of peer
ings received by a peer over its lifetime. Each peer in the collusion behavior. Most online communities lack strong
network has a third-partyrust managetthat maintains its  authentication, allowing users to obtain multiple “indepe
reputation ratingand reliability rating computed from its  dent” online identities. Prior work has shown that a user can
transaction history. We assume a secure storage and exuase these identities to collude and artificially inflate higio
change protocol that ensures the integrity of the trust datareputation to monopolize service, lure users into scams, or
being stored, updated, and communicated [8, 17]. Otherotherwise gain performance benefits from the system [15].
optimizations such as avoiding malicious feedback [23]and  We address peer collusion by proposing a “reliability”
making reputations incentive-compatible [13] are orthogo metric that estimates theccuracyof a network reputation.
nal and complementary to our system. Our metric stems from the observation that reputation val-

Related Work on Online Attacks. The Sybil attack occurs ~ U€S are most accurate when computed from numerous past
in the absence of a centrally trusted party, when a user withtransactions distributed across many distinct partners.
sufficient resources can e_stabli_s_h a potentially unbou_nded3.1 Peer Collusion Behavior

number of distinct online identities [9, 27], and was first

identified in the context of peer-to-peer protocols. A col- Before defining our collusion-resistant metric, we need
luding attacker will likely launch a Sybil attack to obtahet to first clearly define our collusion attack model. We begin
number of virtual identities necessary for collusion. @the this section by quantifying the potential impact of collursi
studies have focused on measuring attacks in deployed peebehavior on system-wide performance. We then describe
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Figure 1. Impact of user collusion on per-
ceived reputations.

Collusion Model.
assumptions. First, we assume that peers cannot modify the
application, and must provide verifiable proof of a trans-
action along with its transaction feedback. This prevents
02 | | colluders from spoofing an unlimited number of transac-
tions, and can be achieved using reasonable secure signa-
ture mechanisms. Second, we assume that while colluders
cannot forge transactions, they can perform collusionstran
actions with resource costs lower than legitimate transac-
tions. For example, data transfers between two application
instances on the same machine generally incur much lower
processing and 1/O overhead compared to typical transac-
tions between distant peers. To model the lower cost of

Our collusion model begins with two

collusion transactions, we useallusion cost factoto rep-
resent the ratio of resource costs between a legitimats-tran

action and a colluding transaction. We use this factor to
estimate the number of illegitimate transactions that @n b
reasonably performed by colluders in our experiments.

To accurately evaluate our metric, we require a test

® © framework with realistic models of user collusion. For
this purpose, we leverage the results of a recent measure-

Figure 2. Three different collusion models.
(A): pairwise collusion; (B): Sybil-based col-
lusion; (C): group-based mesh collusion.

ment study on the Maze peer-to-peer file-sharing network
that showed user behavior strongly indicative of multituse
collusion. Maze is a popular file-sharing system in Asia,

and uses a centralized architecture that logs all trarmsas;ti
crediting users for each successful file upload while con-
suming credits for downloads based on file size [26].

our assumptions and models for colluding attackers, with
models drawn from previous measurement studies.

Impact of User Collusion. To better understand the
threat that collusion attacks pose to reputation systems

This study [15] examined a complete log of the Maze
system over a period of one month, including 32 mil-
lion file transfers totaling more than 437 terabytes between
161,000 users. It observed several types of highly probable
'collusion-like behavior, including how multiple peers per

WE perforrg an exgerlme;]t using alr(1 e]:/f(r)lt(—)%r(;ven S|mulﬁ\t<(ajr formed repetitive or faulty transactions to artificiallyflate
where random subsets of a network of 10, peers Collub&ha gownload credits of certain peers. The results support

to improve their reputation values. We define reputations as

the prevalence of three popular collusion models. We use

values between 0 and 1, where 0 indicates no trust, and 1these models to drive the test framework used in Section 4.

indicates absolute trust. For each peer, we define an “i
sic trust value” that guides the peer in its transactions. Fo
example, a peer with an intrinsic trust value of 0.8 has a ran-
dom 80% chance of behaving honestly on any given trans-
action. We set malicious peers with trust values less than
0.3. We then allow random peer pairs to perform transac-
tions in the system, with the subsequent feedback recorded
to compute the participants’ reputations. We assume a uni-
form distribution of transactions with an average of 15 nor-
mal transactions initiated per peer. In addition to these no
mal transactions, we allow a subset of 2-5 peers to per-
form collusion by performing transactions within the group
which is always followed by mutual positive feedback. Fig-
ure 1 plots the collusion-induced error for affected peers a
computed by the difference in reputation values with and
without colluding transactions. Clearly, even a relatjvel
low rate of collusion can have a dramatic impact on a peer’s
perceived reputation values.

NN \we llustrate these models in Figure 2:

e Pairwise Collusion. The simplest model where two

peers collude to mutually boost reputation values, e.g.
repeatedly download the same content from each other.
This can be performed by two distinct users, or by two
Sybil identities.

Sybil-Based Collusion.A user boosts its reputation
with help from a large number of “slave peers” ob-
tained via a Sybil attack [9]. Slaves exist only to trans-
act with the “master peer” and improve its reputation.
Group-Based Mesh Collusiorfinally, multiple peers
can form cliques where all members collaborate to mu-
tually boost reputation values. Peers maximize their
benefit by performing pairwise collusion with all other
peers in the clique. While the aggregate benefit in-
creases with clique size, clique sizes are limited by
non-trivial maintenance and coordination costs.
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Figure 4. A Lorenz curve graphically repre-

3.2 A Statistical Reliability Metric sents the proportionality of a distribution.

To quantify the likelihood that a reputation value has
been influenced by possible collusion, we propose a peer Formally, the Lorenz curve can be expressed as
reliability metric based on the distribution of transacso Y
among a peer’s partner set. A reputation is “less reliable” Z(y) = fo zdF (z)
if a significant fraction of transactions are performed véth
small number of peers, and “more reliable” when all trans-
actions are distributed evenly across many distinct pestne
Intuitively, we can compute such a reliability by represent
ing a peelP’s reputation as a Cumulative Function (CF) of
its transaction history. That is, if we plot on the X-axis the
cumulative percent dP's distinct partners (sorted by num-
ber of transactions undertaken wihand on the Y-axis the
cumulative percent oP’s transactions, then the most reli-
able distribution is represented by the 45 degree line. A

Figure 3 plots transaction distributions of 3 peers that G= (m) (2)
each conduct 100 transactions with 20 peers. A peer maxi-
mizes its reputation reliability by spreading its trangas
evenly across all 20 peers in the system (shown by distribu-
tion A). A colluder who performs 82% of its total transac-
tions with two colluding partners obtains a much lower reli-
ability value for the same total number of transactions-(dis
tribution C). Finally, an average peer might obtain a partner
distribution better than the colluder (distributi&.

We investigated the effectiveness of several different Q=(1-0) 3)
measures as potential reliability metrics. Our search led
us to the area of economic statistics, where statistical-mod  Here,Q denotes a peer reputation’s reliability score.
els are used to compute and compare the proportionality of We performed detailed experimental evaluation of this
such distributions. The Lorenz curve [16], in particularai metric in Section 4. Then in Section 5, we use it as an
graphical representation of the cumulative distributiond- anomaly detection filter to detect mishehaving eBay users
tion of a probability distribution. Developed by Max Lorenz  from their online reputation profiles.
in 1905, it is used in economics and ecology to describe in-  We note that colluders seeking to boost their aggregate
equality in income or size (for example, bottotfo of so- reputation value can easily achieve a high reputation re-
ciety hasY% of the total income). As shown in Figure 4, liability (Q) at the same time, by distributing its transac-
the Lorenz curve of a given dataset is compared with the tions evenly between its colluding partners. This tactisfa
perfect equality line In our case, this represents a perfect however, when a colluder actually seeks to make use of its
distribution of transactions among a peer’s entire transac reputation by cheating (and interacting) with a normal user
tion partner set. The further the Lorenz curve lies below The more a user colludes with his friends to inflate his rep-
the line of equality, the more skewed is the distribution of utation, the more significant his drop in reliability after i
transactions. teracting with a non-colluder. In Figure 5, we show how

1)

where F(y) is the cumulative distribution function of or-
dered individuals and. is the average size. The total
amount of inequality is summarized by the Gini coeffi-
cient [5] (G). The Gini coefficient of a given data set is the
ratio between the area enclosed by the line of equality and
its Lorenz curve, and the total triangular area under the lin
of equality. That is (from Figure 4),

The Gini coefficient ranges between 0 to 1. 0 corre-
sponds to perfect equality,e. all partners have had the
same number of transactions with the given peer. 1 cor-
responds to maximum inequalitye. all transactions were
undertaken with one single partner. Since higher values are
favored by our metric, we compute reliability (or reputatio
quality) from the Gini coefficient as the following.
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Figure 5. The reliability of an inflated reputa-
tion brought down by collusion.

the reliability values of three colluders change as they pe-
riodically interact with honest peers. Each colluder start
by building their reputation through collusion, then goes
through periodic phases of interacting with normal users
followed by more collusion. We compute each colluder’s
reliability scoreQ after each transaction. During collusion,
the colluder cycles through its partner set in a round-robin
fashion to evenly distribute its transactions among them.
As the plot shows, transacting uniformly with its partner
set produces perfect reliability scores for each user. How-
ever, the scores fall dramatically when they interact with
non-colluders. Reducing the number of colluding partners

or transactions per partner does not result in any improve-

ment in reliability scores of the colluder. Once a repu-
tation’s reliability drops, it is hard to re-build afterwdar
Therefore, a user that colludes frequently with a singlé-par

ner is permanently damaging his chances for obtaining a

high reliability score. Colluders must choose between col-
luding for higher reputations or spreading out its transac-
tions for a higher reliability score.

4 Performance Evaluation

In this section, we perform detailed evaluation of our re-
liability metric and demonstrate its role in improving ef-
fectiveness of traditional reputation systems. We begin by
discussing our simulation setup, including the peer com
munity, reputation schemes employed, and metrics used t
evaluate the reputation mechanisms.

4.1 Simulation Setup

Our experiments are performed on an event-driven net-
work simulator of5, 000 peers. We simulate a large number
of peer transactions, where each peer utilizes our reputati
framework to choose partners with which to transact. A
transactionis a two step process: the service requester
chooses, then performs a transaction with a service provide
P. Rthen assign#® a binary feedback rating of(negative)
or 1 (positive). Our “transactions” are general and effec-
tively represent any type of peer-to-peer requests, inagd

financial transactions, information exchange, file reaéwnr
or message forwarding operations.

Before each simulation run, we assign each peer a ran-
dom intrinsic trust valuebetween 0 and 1 that represents
the rate at which a peer behaves honestly. For instance, an
intrinsic trust value 0f).45 means the peer will provide ser-
vices or ratings honestly with a probability 6f45. Since
colluders are likely malicious peers with low reliabilitye
set intrinsic trust values for colluders to random values le
than0.30.

Each experiment run includes two distinct phases: a
bootstrap phase and an experiment phase. The bootstrap
phase initializes peer reputations for all peers. In thizgeh
each peer performs transactions with random partners, and
rates each provider according to its own intrinsic trustreal
We fix the number of bootstrap transactiond@n our ex-
periments. We assume that colluders can perform more col-
lusion transactions than regular peers, since colluseomstr
actions often consume less resources. We usecollu-
sion cost factorparameter (see Section 3.1) to determine
the number of collusion transactions undertaken by collud-
ers during the bootstrap phase. For example, a cost factor of
1:1 means colluders can collude at the same transaction rate
as normal network peers, while a cost factor of 5:1 means
colluders can perform 5 times as many colluding transac-
tions as normal peers.

Once reputation values have been initialized, we begin
our experiment phase. In each run, we conduct 150,000
transactions over 5,000 peers for an average of 30 requests
per peer. For each transaction, a peer makes a transaction
request, an@5 random peers respond. The initiating peer
then uses our reputation framework to choose a transaction
partner. We use the partner’s intrinsic value to determfine i
the resulting transaction is a success or failure.

Peer Selection Algorithms.  To quantify the benefits of
our reputation framework, we compare the performance of
two reputation systems in our experiments: basic reputa-
tions (denoted byR) and reputations with reliability met-
ric (L). In the basic schemdR], a peer chooses the service

dprovider with the highest reputation value. We compute

peer:’s reputation valueR;, as the average of all of its past
transaction feedback values. Reputations range between 0
and 1. In the reputations with reliability. scheme, a peer
chooses the provider with the highest weighted combination
of reputation and reliability value.

Li=(1-a) - Ri+a-Q; (4)

Q:, peeri’s reliability score, is computed using Equa-
tions 2 and 3. The weight parametet, can be tuned by
each application to favor higher reputations or more accu-
rate reputations. We sat= 0.5 in our experiments.
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4.2 Effectiveness, Accuracy and Overhead also a compressed transaction history (in order to compute
its reliability value). The transaction history only nedds
keep the identity of its past partners and the total number
of transactions performed with each partner. We compute
this storage overhead as the number of unique transaction
Transaction Success Rate. We measure the rate of suc- partners per peer. Computational and communication over-
cessful transactions experienced by all peers in the n&twor heads for generating our reliability metric are comparable
A transaction is deemed successful if the provider behavedto a traditional reputation system.

honestly. The success rate is the ratio of the number of suc- We now present the effectiveness of our reliability mech-
cessful transactions over the total number of transactions anism in countering collusion. Each data point represants a
the system, and increases when users can avoid untrustworaverage of results from at least three randomized runs.

thy partners by making more accurate trust decisions.

We quantify the impact of our reliability mechanisms us-
ing three key metrics: transaction success rate, trust temp
tation error, and metric overheads.

4.3 Resistance to Collusion
Trust Computation Error (TCE). This metric represents

how accurately a peer's computed reputation reflects its in-
trinsic trust value. We use our metric as a relative metric

to choose between pairs of partners. We define the TCE 'nluders in the network from 10% to 50% on the X-axis, and

terms of a peer’s position in an ordered list of peers sorted . i

. . plot the transaction success rate on the Y-axis. As shown
by computed reputation. For each reputation system, Wein Figure 6(a), our reliability-based reputations schemes
compute a sorted list of all network peers based on their 9 ' Y P

. . . demonstrate a 80% average success rate, and a 30-40% im-
reputation values. We then compare this ordered list to the rovement in network productivity as compared to a pure
sorted list of all peers based on their intrinsic trust value P . Kp yas P apu
A peer’'s TCE is the difference in its position from one list reputa_t|or_13 mechamsm. Our mechanism observes little im-
to the other. For example, if, in a network of 10 peers, the pact with increasing percentage of network colluders. Also

most reliable peer (according to intrinsic trust values3 ha as seen in Figure 6(b), we observe higher accuracy of peer

the third highest computed reputation, its per-peer TCE is reputauons using our reliability scheme despite the iaste

(3 —1)/10. The TCE of a network is the average TCE of ing amount of collusion n the ne_twork.
all peers, defined as: We also observe that increasing the amount of bootstrap

collusion and collusion cost ratios results in a drastiqpdro

Pairwise collusion is the most basic form of collusion,
where two peers undertake fake transactions to raise each
other’s reputation. We vary the percentage of pairwise col-

1N [pe(k) — pi(k)] in performance of the pure reputations scheme (graphs for
TCE= — Z e A (5) bootstrap experiment not included due to brevity consid-
"= K erations). On the other hand, increasing the magnitude of

collusion has little to no effect on the success rate of our
proposed mechanism. In fact, we observe more accurate
results when the amount of pairwise collusion rises in the
network, because the inequality in the Lorenz curves for
Overheads. Our reliability metric requires that the net- colluders rises sharply when a colluder transacts with even
work store not only each peer’'s aggregated trust value, butone normal user. Therefore, while these colluders possess

Here,p. andp; respectively refer to positions of pek's
computed trust and intrinsic trust values in the ordered lis
of all peers sorted on the basis of their reputation values.
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4.4 Storage Overhead

thc;gbher?(f ;fst;)%r;srj the reliability of their reputationsitsiout . Our objectiv_e is_ to compute additi_onal storage overheads
. _ imposed by reliability-based reputations. As part of our pe
Next_, we_evaluate _the effe_ctlveness of re||ab|||ty-ba§ed formance evaluations, we test our reliability solutionggs
reputations in countering Sybil colluders. A user launghin transaction histories of eBay sellers (Section 5). In Fig-
a Syhil aFtack can establis_h muItipIg slave identities aswl u ure 8, we plot the number of unique transaction partners
them to |nﬂat(=T its reputation. We fix the number of boot- as observed by 18,000 eBay sellers. We observe that 60%
strap transactions to 10 and the number of slgves 10 5 Pelyt the sellers had less than 100 unigue transaction partners
attacker. These slaves only behave as service requesterg,j ggo, had less than 1,000 unique transaction partners.
to the mgster peer and are not a part of th_e regular PE€€Ne believe that storing an average of 100-1000 transaction
community. We vary the percentage of Sy_b'l colluders in records per peer is an acceptable overhead given the im-
the network from 10% to 50% on the.X-aX|s, and p'F’t th_e proved system productivity we observe from our reliability
transaction success rate on the Y-axis. As shown in F'g'mechanisms.
ure 7, the pure reputations scheme performs badly with in-
creasing amounts of Sybil attacks and collusion cost ratios . .
in the network. Though we observe a general drop in perfor- 5 User Misbehavior in eBay
mance with increasing percentage of users launching these The previous section evaluated our proposed mecha-
attacks, our mechanism is effective in Countering the Sybl' nisms using a simulated peer Community_ In this section,
attack. We observe a 30% improved success rate even WhEWe evaluate our techniques by app|y|ng them on real repu-
the Sybils conduct five times as many transactions as nor+ation profiles of eBay users found in the public domain.
mal peers. Similar to our experiment on pairwise collusion,  eBay (www.ebay.com) is a large and highly successful
our mechanism observes greater trust computation accurapnline marketplace. At any given time, eBay boasts an av-
cies as compared to a pure reputations scheme (graph naérage of 100 million listings across a diverse community of
included for brevity). 233 million users worldwide. The eBay reputation system
A greater number of colluding slaves helps Sybils in- (a.k.a. the Feedback Forum) enables users to leave feed-
flate their reputations with higher reliability scores (as back following each interaction. An eBay user’s reputation
pared to pairwise colluders). However, transacting with is computed as the sum of its lifetime ratings (+1 positive,
even one non-colluder results in a highly disproportionate 0 neutral, -1 negative). Each user can affect another user’s
Lorenz distribution for the Sybil colluder and a sharp drop feedback score by no more than one point, i.e. multiple
in its reliability score. Increasing the magnitude of celan transactions with a single partner can only result in a maxi-
with each of its slaves further aggravates the poor relighil  mum of 1 point change in either direction.
score of the Sybil. A Sybil is challenged to maintain trans-  While its reputation system is generally viewed as a suc-
actions rates per slave comparable to the rates with othercess, eBay acknowledges several limitations in its feddbac
non-colluding peers. But this drastically reduces the iobpa system. First, feedback of all transactions carry the same
of each colluding partner, resulting in a reputation thateno  weight regardless of the transaction value. Second, feed-
accurately reflects the user’s real behavior. We observe sim back is almost always positive, possibly driven by users
ilar results for our experiments on the group-based meshfearful of negative retaliatory feedback. A recent study



Table 1. eBay Transaction Logs )
| Userl| Role [ User2 [ Rating| Date/Time | Type ] S gl
A Seller B +1 10-12-07 16:10] Open 2
A Seller B +1 10-12-07 10:14| Open g 067
A Buyer | D (NR) -1 10-12-07 10:10| Private 2
B Seller | E (PR) +1 10-10-07 9:40 | Private s 041
B Seller | E (PR) +1 10-10-07 9:55 | Private ° 02| Mean — |
2 Median -
shows that sellers receive negative feedback only 1% of < ‘ 10th and 90th percentiles -
the time, indicating that the negative feedback has a much 1 10 100 1000 10000 100000
stronger impact in determining a seller’s overall reputa- Avg number of transactions per seller

tion [18]. Finally, eBay’s feedback score computes a user’s

reputation as a buyer and a seller within the same metric  Figure 9. Reliability scores of eBay users calcu-
which makes it hard to interpret its performance as a buyer lated using the Gini coefficients.

and seller alone.

The eBay transaction histories provide us with arealdata 2 __ 90
. ope . . . =)
set to test the reliability mechanisms proposed in thispape 85 80 r
In this section, our goal is to investigate the reliabilitfy o gg 70 ¢
i i i i 2 60 >10 transactions
user repl_Jtatlons on eBay, gnd possibly |deqt|fy colluders §§ oo | 510 transactions, <0.6 reliability
(and Sybils accounts) by taking a deeper behind-the-scenes; = 20
look into the transaction histories of real eBay users. Whil &8
. . [ . . S+« 30 r
conclusively identifying colluders from transaction loist g\g 20 |
ries is impossible, we present strong empirical evidenat th g% 10 1
suggests user misbehavior. }g‘“ 0 ‘
= 0.1 1 10 100

5.1 The eBay Crawler

%age of eBay sellers

We use a web crawler to traverse the graph of trans- ] ) )
action histories available at eBay.com. For each user, we Figureé 10. Maximum number of transactions
obtain detailed transactions of all available transactiisa conducted with a single partner calculated as
tories and parse them for transaction partners, download & Percent of the seller's total transactions.
their feedback profiles and add them to our breadth-first

search. We terminated our crawler upon downloading com- 4 conducted transactions and plot their reliability ssdre
plete transaction histories of approximately 18,000 v Figure 9. We make the following observations. First, users
ual eBay users spanning overall 5 million eBay webpages. wjth short transaction histories:(10 transactions) exhibit
We list the format of the eBay transaction logs in Table 1. poor reliability scores. Maximum inequality of a Lorenz
UserlandUser2refer to the identifiers of the ratee and rater (istribution occurs when all transactions are conducteid wi
respectively.Rolerefers to the transaction rdiéor which a single user. Almost 25% of the users with less than 10
the ratee is getting a feedback rating (as giverRayind. transactions conducted only one transaction, and therefor
Typerepresents the transaction type (“Open” or “Private”) haye a reliability score of 0. In general, users with lessitha
depending on whether the item transacted was made public1g transactions should find it easier to distribute transac-
Finally, a user's status can be either: normal, private, or tjgons evenly and generate a high reliability score.
unregistered. Private users (shown as “PR” in logs) hold Next, we observe that sellers with 10 to 1000 trans-

their feedbaqk profiles private from the world. .SUCh USETS 4 ctions have high reliability scores-61% sellers). Sell-
are not permitted to sell items on eBay. Unregistered users

(shown as “NR” in logs) have canceled their membership or ers with greater than 1000 transactions have significantly
had their membership been suspended by eBay lower reliability scores. Almost half of the sellers with

greater than 10000 transactions have scores less than 0.8.
5.2 Analysis of eBay Transaction Data This result is counter-intuitive, since we expect userdiwit
more transactions to interact more widely, thereby smooth-

) We compute the_re_:llabthy_of eac_h eBay seller's reputa- ing their Lorenz distribution and improving their score. On
t!on based on the Gini coefficient of its Lorenz curve (Equa- 4,4 contrary, we observe that many “power users” in eBay
tions 2 and 3). We sort all sellers based on the total numberyq 1\ strate highly uneven transaction distributions, and

1We focus only on seller histories in our work. Buyers andesslfeed- consequently, have poor reliability scores. This may be in
backs are generally symmetric for each transaction. part due to repeat business from frequent shoppers. Further




Table 2. Detailed eBay Transaction Histories 100 T

LL
[a)
Reliability (R)=0.1] R=1 2
User1 [ User2 [ User3 g é -
Total transactions 3599 6051 3793 2 C
- As seller 1868 42 3436 S R
Max txns with 1 partner (%) | 68.68% | 22.5% | 0.26% . [=RN—
Total private transactions 3463 4 6 ‘ ‘ ‘ LG —
Unique partners as sellers 19 23 3436 10 15 20 25 30 35
Private feedback partners 4 104 0 Feedback rate per minute
Unregistered partners 209 102 0
% of positive feedback 100% | 99.7% | 100% Figure 11. Feedback rates per minute for 7 eBay
eBay feedback score 152 707 1 3609 sellers with reliability scores of less than 0.2.
Partners who left positive 152 708 3609
Partners who left negative 0 2 0
Peak feedback rate per minute 25 19 2 100
S 80 b
investigation on possible false positives in our data, how- 3
ever, revealed that only 11% of this set 85 sellers) were 8 0|
registered storefronts on eBay. %’ 0 |
We take a closer look at the outliers by examining all g
sellers with greater than 10 transactions that have extyeme € 20 | Qfg'gg -
low reliability scores & 0.6). They account for 2.9% of 8;0f20 :
the population. Again, users with less than 10 transactions 0 1 5 3 4

do not have sufficient transaction history to make an accu-
rate judgment on their reliability. Figure 10 plots, for bac
seller, the maximum number of transactions conducted with  Figure 12. Network distance between suspi-

any single partner as a percent of the seller’s total transac  cious eBay sellers as computed by the Dijk-

tions. We observe that the outliers have a greater percentag  stra’s shortest path algorithm.

of repeat transactions with one single partner as compared

to all eBay sellers. In fact, 5% of these sellers2{ sell-

ers) examined had about 35% of their transactions with onePercent of feedback received at those rates. As seen in Fig-

single partner. The Lorenz distributions for these seliges ~ Ure 11, these suspicious users receive less than 15% of total
highly disproportionate resulting in their low reliabjlit feedbacks at rates slower than 2 feedbacks per minute, and

To determine if our filter has found any misbehaving about 50% of their feedbacks are received at a rate greater
users, we manually examined the online transaction histo-than 8 feedbacks per minute! While an automated script [3]
ries of the eBay sellers identified flagged by our reliability that generates such feedback is possible, suspicioussselle
filter. We observe some interesting commonalities betweenfiltered from our metric demonstrate bursts of transactions
these sellers. Table 2 summarizes salient feedback itsitist With more than 19 consecutive feedbacks from the same
of some of the worst and best eBay sellers as identified byPartner within 1 minute. We are unclear as to the real mo-
our reliability metric. First, the table shows that peerghwi  tve behind these actions, since multiple transactionk wit
poor reliability scores conduct a high percentage of teirt ~ Single partner only produces 1 point in the feedback score.
tal transactions with a single user, which suggests rejoutat e suspect the goal is to receive other incentives such as
inflation via pairwise collusion. We also observe that some the title of aneBay Power User

Avg. network hops from all users

of these sellers repeatedly transact with private usereeSi The objective of our last experiment is to determine the
private users have very little public information postdubyt existence any malicious cliques in the eBay network. In
are ideal candidates in a Sybil-collusion attack. this experiment, we seed our web crawler with a 0.45 relia-

A look at the feedback logs of these suspicious sellers bility seller and traverse (in breadth-first manner) thepfyra
reveals another trend. These users tend to perform transacef all eBay users that also demonstrate a reliability score
tions with the same partner at an incredible rate of speedof 0.45 or less. Our crawl stops when no more users are
in short time periods. We plot 7 eBay sellers from our fil- discovered in the crawler run. We repeat our crawler for
tered user set that hold reliability scores of 0.2 or lessl, an reliability scores less than 0.30 and 0.20. Our experiment
evaluate their overall feedback rates per minute and tlaé tot observed a negligible amount of direct interactions betwee



two suspicious sellers. Therefore, we compute the average[7] P. Dewan and P. Dasgupta. Pride: Peer-to-Peer reputatio

distance between two suspicious sellers as follows: we first  infrastructure for decentralized environments. Rroc. of

create a network graph with all suspicious sellers as nodes. = WWW May 2004. _ _ _

For every pair of sellers, we investigate whether the two [8] P-Dewan and P. Dasgupta. Securing reputation data i pee
llers have any buyers common to them. If one (or more) to-peer networks. liproc. of PDCSNovember 2004.

se y .y . [9] J. Douceur. The sybil attack. Froc. of IPTPS$March 2002.

common buyers exist, we create a network link between the[10] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust in-

two sellers. We then compute shortest distance between all  centive techniques for peer-to-peer networksPtac. of EG

seller pairs using Dijkstra’s shortest path algorithm oa th May 2004.

network graph. [12] M. Fe]dman, C. ngadimi.triou., J. Chuang, and I. Stoica.
Figure 12 plots the average shortest distance between of E:gi-r(;?|\?\§;E?$r1&gvh2|tg(\;\2ashmg In peer-to-peer systems. In

all sellers with the rest of the network. We observe that [12] ' y '

_ ; M. J. Freedman, E. Freudenthal, and D. Mazies. Democ-
the average distance between two sellers decreases with de-  ratizing content publication with coral. IRroc. of NSD)

creasing reliability scores. Almost all sellers with lekar December 2004.
0.45 reliability (~300 sellers) are fewer than 3 hops away [13] R.Jurca and B. Faltings. An incentive compatible ragioh
from similar sellers. Almost 80% of the sellers with reli- mechanism. IProc. of AAMASJune 2003.

ability less than 0.30~23 sellers) are observed to have at [14] S. D. Kamvar, M. T. Schlosser,_ and H. Garma—M_oIma. The
least one common buyer between then. This indicates a very eigentrust algorithm for reputation management in P2P net-

. - . . works. InProc. of WWWMay 2003.
clustering among suspicious sellers. This could also ib par [15] Q. Lian et al. An empirical study of collusion behaviarthe

be because the sellers crawled are typically trading within maze p2p file-sharing system. Roc. of ICDCS June 2007.

the same auction category (like electronics, books, etc).  [16] M. Lorenz. Methods for Measuring the Concentration of
Wealth. American Statistical Associatip8:209-219, 1905.

6 Conclusions [17] B.C. Oai, C.Y. Liau, and K.-L. Tan. Managing trust in pee
to-peer systems using reputation-based techniqueBrda

Applying reputation systems to large-scale dynamic net- of WAIM, August 2003.

works can produce erroneous and misleading values dud18] P- Resnick, R. Zeckhauser, J. Swanson, and K. Lockwood.

to collusion between misbehaving users. By leveraging | "€ value of reputation on ebay: A controlled experiment.

the well-accepted Lorenz curve and Gini coefficient, we Experimental Economie$(2):79-101, June 2006.

. _p - ’ . ’ [19] S. Rheaetal. Pond: The OceanStore prototypeRrtic. of

provide a reliability metric designed to detect and penal- FAST, April 2003.

ize collusion-like behavior, and encourage peers to inter-[20] A. Rowstron and P. Druschel. Pastry: Scalable, distat

act with diverse groups of peers across the network. Our object location and routing for large-scale peer-to-pger s

evaluations find that our metric complements traditional tems. InProc. of MiddlewareNov 2001.

reputations well and quickly isolates a number of users [21] St.gar?lu, P. tK' Gumead;], and S. Ct;nbtsﬁ'nA n;&a'\jgement

with highly suspicious behavior. Our reputation mechanism ~ S.-cY Ofpeer-to-peertiie sharing systems=ine. o N

- L January 2002.
helps enable trust and accountability for both application [22] 1. Stoica et al. Chord: A scalable peer-to-peer lookep s

level networks like eBay, as well as network-level protsgol vice for internet applications. IRroc. of SIGCOMMAugust
including message routing, distributed storage and cénten 2001.
distribution networks. [23] G. Swamynathan, B. Y. Zhao, and K. C. Almeroth. Decou-

pling service and feedback trust in a peer-to-peer reprati
system. InProc. of AEPR2005.
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