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Abstract

A new generation of distributed systems and applications
rely on the cooperation of diverse user populations moti-
vated by self-interest. While they can utilize “reputation
systems” to reduce selfish behaviors that disrupt or manipu-
late the network for personal gain, current reputations face
a key challenge in large dynamic networks: vulnerability to
peer collusion. In this paper, we propose to dramatically
improve the accuracy of reputation systems with the use
of a statistical metric that measures the “reliability” of a
peer’s reputation taking into account collusion-like behav-
ior. Trace-driven simulations on P2P network traffic show
that our reliability metric drastically improves system per-
formance. We also apply our metric to 18,000 randomly
selected eBay user reputation profiles, and surprisingly dis-
cover numerous users with collusion-like behaviors worthy
of additional investigation.

1 Introduction

Recent work has proposed a number of highly scalable
peer-to-peer routing protocols [2, 20, 22, 30] that support
Internet-scale network applications such as distributed stor-
age systems [19] and content distribution networks [12].
However, reliable protocol operation relies on peer coop-
eration, a difficult challenge given that these heterogeneous
peers are distributed over many distinct networks and ad-
ministrative domains. The use of cheap and anonymous on-
line identities frees users from the consequences of their ac-
tions. Studies have shown that without accountability, peers
in these open networks can act selfishly, often disrupting or
manipulating the network for personal gain [15, 21].

To limit the impact of selfish users who exploit their
online anonymity for personal gain, researchers have pro-
posed introducing limited accountability through the use of
reputation systems [1, 14]. By producing a statistical esti-
mate of trustworthiness based on feedback from past trans-
actions, reputation systems can guide peer interactions to
reduce risk. They have been deployed on e-commerce sites

such as eBay and knowledge forums such as SlashDot and
Yahoo Answers. On these centralized platforms, reputation
mechanisms have significantly improved system reliability.

When applied to large-scale distributed systems, how-
ever, reputation systems and their associated protocols face
a significant challenge: user collusion. Reputation systems
generally assume that each online identity represents a sin-
gle user. However, recent work has shown that given the
relative low cost of online identities, users often generate
multiple “Sybil” identities to gain benefits beyond the fair
allocation for a single identity [27]. The Sybil attack, as this
is known, also allows these multiple identities to “collabo-
rate” or collude for the good of the user, thereby decreasing
the effectiveness of online reputation systems. For example,
users can collude to artificially boost the reputation values
of one or more peers [15], or falsely accuse well-behaved
users of misbehavior. Either way, multiple Sybil identities
allow the user to obtain significant advantages over other
users with single identities.

Any practical application of reputations at the network
level must first address the key challenges of user collu-
sion. In this paper, we seek to address this challenge by
augmenting traditional reputation systems with a “reliabil-
ity metric.” Our approach helps users make more accurate
decisions based on trust by quantifying the risk that a given
reputation value has been affected by collusion or collusion-
like behavior. This serves as an estimate of the reputation
value’s accuracy. As a basis for our metric, we leverage a
pair of well-studied mechanisms used in economic studies,
the Lorenz curve [16] and the Gini coefficient [5]. Applied
to reputations, they characterize how far a peer’s per-partner
distribution of transactions deviates from the ideal. Using
our metric, a user can easily distinguish between reputa-
tions generated by truthful transactions and those that might
be strongly influenced by user collusion.

The work in this paper makes three key contributions.
First, we propose and describe in Section 3 a reliability met-
ric for reputation systems that protects users from user col-
lusion attacks. Second, we evaluate in Section 4 our pro-
posed mechanism via detailed simulations of peer collusion



models based on recent measurements of a deployed P2P
system [15], and show how our enhancements greatly im-
prove the accuracy of traditional reputation systems under
peer collusion. Finally in Section 5, we apply our reputation
metric to users of a highly successful online marketplace,
eBay. We test the reliability of 18,000 randomly selected
eBay reputation profiles. Examination of the results shows
a surprisingly large number of users who exhibit “collusion-
like” behavior. While it is impossible to determine a user’s
true intention, users identified using filters based on our re-
liability metric show highly unusual patterns in their trans-
action histories. This “circumstantial evidence” is highly
indicative of forged transactions, and definitely justifiesfur-
ther investigation.

2 Background and Related Work

Background on Reputation Systems. A traditional rep-
utation system collects and aggregates feedback about the
behavior of each network peer into a reputation profile. A
service requesterR, uses a providerP ’s reputation profile to
determine whether to transact withP . Following the trans-
action,R gives its feedback ofP to the reputation system.

Reputation systems generate trust relationships using
one of two approaches. One approach, referred to aslo-
cal reputation, uses only firsthand interactions to evaluate
peers. Each peer aggregates its own experiences and does
not share its opinion with others. A second and more pop-
ular approach, referred to asglobal reputation, computes
a peer’s reputation by aggregating feedback from all of its
past transaction partners. While global reputations are vul-
nerable to false ratings, they provide significantly more in-
formation than local reputations.

Our reputation model shares basic mechanisms common
to most reputation systems: we employ global reputations
and compute peer trustworthiness as an average of all rat-
ings received by a peer over its lifetime. Each peer in the
network has a third-partytrust managerthat maintains its
reputation ratingand reliability rating computed from its
transaction history. We assume a secure storage and ex-
change protocol that ensures the integrity of the trust data
being stored, updated, and communicated [8, 17]. Other
optimizations such as avoiding malicious feedback [23] and
making reputations incentive-compatible [13] are orthogo-
nal and complementary to our system.

Related Work on Online Attacks. The Sybil attack occurs
in the absence of a centrally trusted party, when a user with
sufficient resources can establish a potentially unbounded
number of distinct online identities [9, 27], and was first
identified in the context of peer-to-peer protocols. A col-
luding attacker will likely launch a Sybil attack to obtain the
number of virtual identities necessary for collusion. Other
studies have focused on measuring attacks in deployed peer-

to-peer systems [11]. A recent study by Lian et al. found
strong evidence of collusion behavior between users of a
file-sharing network with the express goal of manipulating
the incentive system for personal gain [15].

Related Work on Incentives and Reputations.Prior work
has shown that reputation systems, if reliable, can effec-
tively motivate trustworthiness and cooperation [1, 4, 6, 7,
14, 17, 25]. However, designing reliable reputation in the
presence of collusion and user dynamics is a challenge.

The EigenTrust algorithm applies a global feedback rep-
utation system for P2P networks, and attempts to address
the problem of malicious collectives by assuming pre-
trusted peers in the network [14]. Zhang et al. improve
eigenvector-based reputations by capturing the amount of
PageRank inflation obtained by collusions [29]. They ob-
serve that colluding nodes cheat the algorithm by stalling
the PageRank random walk in a small web graph, and thus
are sensitive to the reset probability of the random walk.

Feldman et al. suggest a “stranger adaptive” strategy to
counter selfish behavior under network dynamics [10]. Us-
ing histories of recent transactions with strangers, a peeres-
timates the probability of being cheated by the next stranger,
and uses this to decide whether to trust the next stranger. Fi-
nally, two recent projects apply reputation systems to prac-
tical networks. Yu et al. examined the feasibility of using
reputations to establish trust between Internet autonomous
systems [28]. Credence associates reputations with individ-
ual files in a file-sharing network [24].

3 A Reliability Metric for Reputations

Despite their effectiveness in traditional controlled envi-
ronments, current reputation systems can be highly inaccu-
rate in large dynamic networks such as online communities
and P2P networks. The biggest contributing factor to inac-
curate reputation values is the increasing presence of peer
collusion behavior. Most online communities lack strong
authentication, allowing users to obtain multiple “indepen-
dent” online identities. Prior work has shown that a user can
use these identities to collude and artificially inflate his own
reputation to monopolize service, lure users into scams, or
otherwise gain performance benefits from the system [15].

We address peer collusion by proposing a “reliability”
metric that estimates theaccuracyof a network reputation.
Our metric stems from the observation that reputation val-
ues are most accurate when computed from numerous past
transactions distributed across many distinct partners.

3.1 Peer Collusion Behavior

Before defining our collusion-resistant metric, we need
to first clearly define our collusion attack model. We begin
this section by quantifying the potential impact of collusion
behavior on system-wide performance. We then describe
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Figure 1. Impact of user collusion on per-
ceived reputations.
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Figure 2. Three different collusion models.
(A): pairwise collusion; (B): Sybil-based col-
lusion; (C): group-based mesh collusion.

our assumptions and models for colluding attackers, with
models drawn from previous measurement studies.

Impact of User Collusion. To better understand the
threat that collusion attacks pose to reputation systems,
we perform an experiment using an event-driven simulator
where random subsets of a network of 10,000 peers collude
to improve their reputation values. We define reputations as
values between 0 and 1, where 0 indicates no trust, and 1
indicates absolute trust. For each peer, we define an “intrin-
sic trust value” that guides the peer in its transactions. For
example, a peer with an intrinsic trust value of 0.8 has a ran-
dom 80% chance of behaving honestly on any given trans-
action. We set malicious peers with trust values less than
0.3. We then allow random peer pairs to perform transac-
tions in the system, with the subsequent feedback recorded
to compute the participants’ reputations. We assume a uni-
form distribution of transactions with an average of 15 nor-
mal transactions initiated per peer. In addition to these nor-
mal transactions, we allow a subset of 2-5 peers to per-
form collusion by performing transactions within the group
which is always followed by mutual positive feedback. Fig-
ure 1 plots the collusion-induced error for affected peers as
computed by the difference in reputation values with and
without colluding transactions. Clearly, even a relatively
low rate of collusion can have a dramatic impact on a peer’s
perceived reputation values.

Collusion Model. Our collusion model begins with two
assumptions. First, we assume that peers cannot modify the
application, and must provide verifiable proof of a trans-
action along with its transaction feedback. This prevents
colluders from spoofing an unlimited number of transac-
tions, and can be achieved using reasonable secure signa-
ture mechanisms. Second, we assume that while colluders
cannot forge transactions, they can perform collusion trans-
actions with resource costs lower than legitimate transac-
tions. For example, data transfers between two application
instances on the same machine generally incur much lower
processing and I/O overhead compared to typical transac-
tions between distant peers. To model the lower cost of
collusion transactions, we use acollusion cost factorto rep-
resent the ratio of resource costs between a legitimate trans-
action and a colluding transaction. We use this factor to
estimate the number of illegitimate transactions that can be
reasonably performed by colluders in our experiments.

To accurately evaluate our metric, we require a test
framework with realistic models of user collusion. For
this purpose, we leverage the results of a recent measure-
ment study on the Maze peer-to-peer file-sharing network
that showed user behavior strongly indicative of multi-user
collusion. Maze is a popular file-sharing system in Asia,
and uses a centralized architecture that logs all transactions,
crediting users for each successful file upload while con-
suming credits for downloads based on file size [26].

This study [15] examined a complete log of the Maze
system over a period of one month, including 32 mil-
lion file transfers totaling more than 437 terabytes between
161,000 users. It observed several types of highly probable
collusion-like behavior, including how multiple peers per-
formed repetitive or faulty transactions to artificially inflate
the download credits of certain peers. The results support
the prevalence of three popular collusion models. We use
these models to drive the test framework used in Section 4.
We illustrate these models in Figure 2:

• Pairwise Collusion. The simplest model where two
peers collude to mutually boost reputation values, e.g.
repeatedly download the same content from each other.
This can be performed by two distinct users, or by two
Sybil identities.

• Sybil-Based Collusion.A user boosts its reputation
with help from a large number of “slave peers” ob-
tained via a Sybil attack [9]. Slaves exist only to trans-
act with the “master peer” and improve its reputation.

• Group-Based Mesh Collusion.Finally, multiple peers
can form cliques where all members collaborate to mu-
tually boost reputation values. Peers maximize their
benefit by performing pairwise collusion with all other
peers in the clique. While the aggregate benefit in-
creases with clique size, clique sizes are limited by
non-trivial maintenance and coordination costs.
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Figure 3. Cumulative Transaction % repre-
sentation of reputation reliability.

3.2 A Statistical Reliability Metric

To quantify the likelihood that a reputation value has
been influenced by possible collusion, we propose a peer
reliability metric based on the distribution of transactions
among a peer’s partner set. A reputation is “less reliable”
if a significant fraction of transactions are performed witha
small number of peers, and “more reliable” when all trans-
actions are distributed evenly across many distinct partners.
Intuitively, we can compute such a reliability by represent-
ing a peerP’s reputation as a Cumulative Function (CF) of
its transaction history. That is, if we plot on the X-axis the
cumulative percent ofP’s distinct partners (sorted by num-
ber of transactions undertaken withP) and on the Y-axis the
cumulative percent ofP’s transactions, then the most reli-
able distribution is represented by the 45 degree line.

Figure 3 plots transaction distributions of 3 peers that
each conduct 100 transactions with 20 peers. A peer maxi-
mizes its reputation reliability by spreading its transactions
evenly across all 20 peers in the system (shown by distribu-
tion A). A colluder who performs 82% of its total transac-
tions with two colluding partners obtains a much lower reli-
ability value for the same total number of transactions (dis-
tributionC). Finally, an average peer might obtain a partner
distribution better than the colluder (distributionB).

We investigated the effectiveness of several different
measures as potential reliability metrics. Our search led
us to the area of economic statistics, where statistical mod-
els are used to compute and compare the proportionality of
such distributions. The Lorenz curve [16], in particular, is a
graphical representation of the cumulative distribution func-
tion of a probability distribution. Developed by Max Lorenz
in 1905, it is used in economics and ecology to describe in-
equality in income or size (for example, bottomX% of so-
ciety hasY% of the total income). As shown in Figure 4,
the Lorenz curve of a given dataset is compared with the
perfect equality line. In our case, this represents a perfect
distribution of transactions among a peer’s entire transac-
tion partner set. The further the Lorenz curve lies below
the line of equality, the more skewed is the distribution of
transactions.

0% 50% 100%

50%

100%

% of Transactions

% of Users

line of perfect
equality

Lorenz 
curve

A

B

Figure 4. A Lorenz curve graphically repre-
sents the proportionality of a distribution.

Formally, the Lorenz curve can be expressed as

Z(y) =

∫ y

0
xdF (x)

µ
(1)

whereF(y) is the cumulative distribution function of or-
dered individuals andµ is the average size. The total
amount of inequality is summarized by the Gini coeffi-
cient [5] (G). The Gini coefficient of a given data set is the
ratio between the area enclosed by the line of equality and
its Lorenz curve, and the total triangular area under the line
of equality. That is (from Figure 4),

G = (
A

A + B
) (2)

The Gini coefficient ranges between 0 to 1. 0 corre-
sponds to perfect equality,i.e. all partners have had the
same number of transactions with the given peer. 1 cor-
responds to maximum inequality,i.e. all transactions were
undertaken with one single partner. Since higher values are
favored by our metric, we compute reliability (or reputation
quality) from the Gini coefficient as the following.

Q = (1 − G) (3)

Here,Q denotes a peer reputation’s reliability score.
We performed detailed experimental evaluation of this

metric in Section 4. Then in Section 5, we use it as an
anomaly detection filter to detect misbehaving eBay users
from their online reputation profiles.

We note that colluders seeking to boost their aggregate
reputation value can easily achieve a high reputation re-
liability (Q) at the same time, by distributing its transac-
tions evenly between its colluding partners. This tactic fails,
however, when a colluder actually seeks to make use of its
reputation by cheating (and interacting) with a normal user.
The more a user colludes with his friends to inflate his rep-
utation, the more significant his drop in reliability after in-
teracting with a non-colluder. In Figure 5, we show how
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Figure 5. The reliability of an inflated reputa-
tion brought down by collusion.

the reliability values of three colluders change as they pe-
riodically interact with honest peers. Each colluder starts
by building their reputation through collusion, then goes
through periodic phases of interacting with normal users
followed by more collusion. We compute each colluder’s
reliability scoreQ after each transaction. During collusion,
the colluder cycles through its partner set in a round-robin
fashion to evenly distribute its transactions among them.

As the plot shows, transacting uniformly with its partner
set produces perfect reliability scores for each user. How-
ever, the scores fall dramatically when they interact with
non-colluders. Reducing the number of colluding partners
or transactions per partner does not result in any improve-
ment in reliability scores of the colluder. Once a repu-
tation’s reliability drops, it is hard to re-build afterward.
Therefore, a user that colludes frequently with a single part-
ner is permanently damaging his chances for obtaining a
high reliability score. Colluders must choose between col-
luding for higher reputations or spreading out its transac-
tions for a higher reliability score.

4 Performance Evaluation

In this section, we perform detailed evaluation of our re-
liability metric and demonstrate its role in improving ef-
fectiveness of traditional reputation systems. We begin by
discussing our simulation setup, including the peer com-
munity, reputation schemes employed, and metrics used to
evaluate the reputation mechanisms.

4.1 Simulation Setup

Our experiments are performed on an event-driven net-
work simulator of5, 000 peers. We simulate a large number
of peer transactions, where each peer utilizes our reputation
framework to choose partners with which to transact. A
transactionis a two step process: the service requesterR,
chooses, then performs a transaction with a service provider
P . R then assignsP a binary feedback rating of0 (negative)
or 1 (positive). Our “transactions” are general and effec-
tively represent any type of peer-to-peer requests, including

financial transactions, information exchange, file read/write
or message forwarding operations.

Before each simulation run, we assign each peer a ran-
dom intrinsic trust valuebetween 0 and 1 that represents
the rate at which a peer behaves honestly. For instance, an
intrinsic trust value of0.45 means the peer will provide ser-
vices or ratings honestly with a probability of0.45. Since
colluders are likely malicious peers with low reliability,we
set intrinsic trust values for colluders to random values less
than0.30.

Each experiment run includes two distinct phases: a
bootstrap phase and an experiment phase. The bootstrap
phase initializes peer reputations for all peers. In this phase,
each peer performs transactions with random partners, and
rates each provider according to its own intrinsic trust value.
We fix the number of bootstrap transactions to10 in our ex-
periments. We assume that colluders can perform more col-
lusion transactions than regular peers, since collusion trans-
actions often consume less resources. We use ourcollu-
sion cost factorparameter (see Section 3.1) to determine
the number of collusion transactions undertaken by collud-
ers during the bootstrap phase. For example, a cost factor of
1:1 means colluders can collude at the same transaction rate
as normal network peers, while a cost factor of 5:1 means
colluders can perform 5 times as many colluding transac-
tions as normal peers.

Once reputation values have been initialized, we begin
our experiment phase. In each run, we conduct 150,000
transactions over 5,000 peers for an average of 30 requests
per peer. For each transaction, a peer makes a transaction
request, and25 random peers respond. The initiating peer
then uses our reputation framework to choose a transaction
partner. We use the partner’s intrinsic value to determine if
the resulting transaction is a success or failure.

Peer Selection Algorithms. To quantify the benefits of
our reputation framework, we compare the performance of
two reputation systems in our experiments: basic reputa-
tions (denoted byR) and reputations with reliability met-
ric (L). In the basic scheme (R), a peer chooses the service
provider with the highest reputation value. We compute
peeri’s reputation value,Ri, as the average of all of its past
transaction feedback values. Reputations range between 0
and 1. In the reputations with reliability (L) scheme, a peer
chooses the provider with the highest weighted combination
of reputation and reliability value.

Li = (1 − α) · Ri + α · Qi (4)

Qi, peeri’s reliability score, is computed using Equa-
tions 2 and 3. The weight parameter,α, can be tuned by
each application to favor higher reputations or more accu-
rate reputations. We setα = 0.5 in our experiments.
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Figure 6. Effectiveness and accuracy against pairwise coll usion. R refers to the pure reputations
scheme and L refers to the reliability-based reputations scheme. The ra tios represent the collusion
cost factors.

4.2 Effectiveness, Accuracy and Overhead

We quantify the impact of our reliability mechanisms us-
ing three key metrics: transaction success rate, trust compu-
tation error, and metric overheads.

Transaction Success Rate. We measure the rate of suc-
cessful transactions experienced by all peers in the network.
A transaction is deemed successful if the provider behaved
honestly. The success rate is the ratio of the number of suc-
cessful transactions over the total number of transactionsin
the system, and increases when users can avoid untrustwor-
thy partners by making more accurate trust decisions.

Trust Computation Error (TCE). This metric represents
how accurately a peer’s computed reputation reflects its in-
trinsic trust value. We use our metric as a relative metric
to choose between pairs of partners. We define the TCE in
terms of a peer’s position in an ordered list of peers sorted
by computed reputation. For each reputation system, we
compute a sorted list of all network peers based on their
reputation values. We then compare this ordered list to the
sorted list of all peers based on their intrinsic trust values.
A peer’s TCE is the difference in its position from one list
to the other. For example, if, in a network of 10 peers, the
most reliable peer (according to intrinsic trust values) has
the third highest computed reputation, its per-peer TCE is
(3 − 1)/10. The TCE of a network is the average TCE of
all peers, defined as:

TCE=
1

n

n∑

k=1

|pc(k) − pt(k)|

n
(5)

Here,pc andpt respectively refer to positions of peerk’s
computed trust and intrinsic trust values in the ordered list
of all peers sorted on the basis of their reputation values.

Overheads. Our reliability metric requires that the net-
work store not only each peer’s aggregated trust value, but

also a compressed transaction history (in order to compute
its reliability value). The transaction history only needsto
keep the identity of its past partners and the total number
of transactions performed with each partner. We compute
this storage overhead as the number of unique transaction
partners per peer. Computational and communication over-
heads for generating our reliability metric are comparable
to a traditional reputation system.

We now present the effectiveness of our reliability mech-
anism in countering collusion. Each data point represents an
average of results from at least three randomized runs.

4.3 Resistance to Collusion

Pairwise collusion is the most basic form of collusion,
where two peers undertake fake transactions to raise each
other’s reputation. We vary the percentage of pairwise col-
luders in the network from 10% to 50% on the X-axis, and
plot the transaction success rate on the Y-axis. As shown
in Figure 6(a), our reliability-based reputations schemes
demonstrate a 80% average success rate, and a 30-40% im-
provement in network productivity as compared to a pure
reputations mechanism. Our mechanism observes little im-
pact with increasing percentage of network colluders. Also,
as seen in Figure 6(b), we observe higher accuracy of peer
reputations using our reliability scheme despite the increas-
ing amount of collusion in the network.

We also observe that increasing the amount of bootstrap
collusion and collusion cost ratios results in a drastic drop
in performance of the pure reputations scheme (graphs for
bootstrap experiment not included due to brevity consid-
erations). On the other hand, increasing the magnitude of
collusion has little to no effect on the success rate of our
proposed mechanism. In fact, we observe more accurate
results when the amount of pairwise collusion rises in the
network, because the inequality in the Lorenz curves for
colluders rises sharply when a colluder transacts with even
one normal user. Therefore, while these colluders possess
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high reputations, the reliability of their reputations turns out
to be really poor.

Next, we evaluate the effectiveness of reliability-based
reputations in countering Sybil colluders. A user launching
a Sybil attack can establish multiple slave identities and use
them to inflate its reputation. We fix the number of boot-
strap transactions to 10 and the number of slaves to 5 per
attacker. These slaves only behave as service requesters
to the master peer and are not a part of the regular peer
community. We vary the percentage of Sybil colluders in
the network from 10% to 50% on the X-axis, and plot the
transaction success rate on the Y-axis. As shown in Fig-
ure 7, the pure reputations scheme performs badly with in-
creasing amounts of Sybil attacks and collusion cost ratios
in the network. Though we observe a general drop in perfor-
mance with increasing percentage of users launching these
attacks, our mechanism is effective in countering the Sybil
attack. We observe a 30% improved success rate even when
the Sybils conduct five times as many transactions as nor-
mal peers. Similar to our experiment on pairwise collusion,
our mechanism observes greater trust computation accura-
cies as compared to a pure reputations scheme (graph not
included for brevity).

A greater number of colluding slaves helps Sybils in-
flate their reputations with higher reliability scores (as com-
pared to pairwise colluders). However, transacting with
even one non-colluder results in a highly disproportionate
Lorenz distribution for the Sybil colluder and a sharp drop
in its reliability score. Increasing the magnitude of collusion
with each of its slaves further aggravates the poor reliability
score of the Sybil. A Sybil is challenged to maintain trans-
actions rates per slave comparable to the rates with other
non-colluding peers. But this drastically reduces the impact
of each colluding partner, resulting in a reputation that more
accurately reflects the user’s real behavior. We observe sim-
ilar results for our experiments on the group-based mesh
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Figure 8. Storage overheads as evaluated
by the number of unique transaction partner
records maintained for 18,000 eBay sellers.

collusion model.

4.4 Storage Overhead

Our objective is to compute additional storage overheads
imposed by reliability-based reputations. As part of our per-
formance evaluations, we test our reliability solutions using
transaction histories of eBay sellers (Section 5). In Fig-
ure 8, we plot the number of unique transaction partners
as observed by 18,000 eBay sellers. We observe that 60%
of the sellers had less than 100 unique transaction partners,
and 85% had less than 1,000 unique transaction partners.
We believe that storing an average of 100-1000 transaction
records per peer is an acceptable overhead given the im-
proved system productivity we observe from our reliability
mechanisms.

5 User Misbehavior in eBay

The previous section evaluated our proposed mecha-
nisms using a simulated peer community. In this section,
we evaluate our techniques by applying them on real repu-
tation profiles of eBay users found in the public domain.

eBay (www.ebay.com) is a large and highly successful
online marketplace. At any given time, eBay boasts an av-
erage of 100 million listings across a diverse community of
233 million users worldwide. The eBay reputation system
(a.k.a. the Feedback Forum) enables users to leave feed-
back following each interaction. An eBay user’s reputation
is computed as the sum of its lifetime ratings (+1 positive,
0 neutral, -1 negative). Each user can affect another user’s
feedback score by no more than one point, i.e. multiple
transactions with a single partner can only result in a maxi-
mum of 1 point change in either direction.

While its reputation system is generally viewed as a suc-
cess, eBay acknowledges several limitations in its feedback
system. First, feedback of all transactions carry the same
weight regardless of the transaction value. Second, feed-
back is almost always positive, possibly driven by users
fearful of negative retaliatory feedback. A recent study
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Table 1. eBay Transaction Logs
User1 Role User2 Rating Date/Time Type

A Seller B +1 10-12-07 16:10 Open
A Seller B +1 10-12-07 10:14 Open
A Buyer D (NR) -1 10-12-07 10:10 Private
B Seller E (PR) +1 10-10-07 9:40 Private
B Seller E (PR) +1 10-10-07 9:55 Private

shows that sellers receive negative feedback only 1% of
the time, indicating that the negative feedback has a much
stronger impact in determining a seller’s overall reputa-
tion [18]. Finally, eBay’s feedback score computes a user’s
reputation as a buyer and a seller within the same metric
which makes it hard to interpret its performance as a buyer
and seller alone.

The eBay transaction histories provide us with a real data
set to test the reliability mechanisms proposed in this paper.
In this section, our goal is to investigate the reliability of
user reputations on eBay, and possibly identify colluders
(and Sybils accounts) by taking a deeper behind-the-scenes
look into the transaction histories of real eBay users. While
conclusively identifying colluders from transaction histo-
ries is impossible, we present strong empirical evidence that
suggests user misbehavior.

5.1 The eBay Crawler

We use a web crawler to traverse the graph of trans-
action histories available at eBay.com. For each user, we
obtain detailed transactions of all available transactionhis-
tories and parse them for transaction partners, download
their feedback profiles and add them to our breadth-first
search. We terminated our crawler upon downloading com-
plete transaction histories of approximately 18,000 individ-
ual eBay users spanning overall 5 million eBay webpages.

We list the format of the eBay transaction logs in Table 1.
User1andUser2refer to the identifiers of the ratee and rater
respectively.Rolerefers to the transaction role1 for which
the ratee is getting a feedback rating (as given byRating).
Typerepresents the transaction type (“Open” or “Private”)
depending on whether the item transacted was made public.
Finally, a user’s status can be either: normal, private, or
unregistered. Private users (shown as “PR” in logs) hold
their feedback profiles private from the world. Such users
are not permitted to sell items on eBay. Unregistered users
(shown as “NR” in logs) have canceled their membership or
had their membership been suspended by eBay.

5.2 Analysis of eBay Transaction Data

We compute the reliability of each eBay seller’s reputa-
tion based on the Gini coefficient of its Lorenz curve (Equa-
tions 2 and 3). We sort all sellers based on the total number

1We focus only on seller histories in our work. Buyers and sellers feed-
backs are generally symmetric for each transaction.
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Figure 9. Reliability scores of eBay users calcu-
lated using the Gini coefficients.
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of conducted transactions and plot their reliability scores in
Figure 9. We make the following observations. First, users
with short transaction histories (< 10 transactions) exhibit
poor reliability scores. Maximum inequality of a Lorenz
distribution occurs when all transactions are conducted with
a single user. Almost 25% of the users with less than 10
transactions conducted only one transaction, and therefore
have a reliability score of 0. In general, users with less than
10 transactions should find it easier to distribute transac-
tions evenly and generate a high reliability score.

Next, we observe that sellers with 10 to 1000 trans-
actions have high reliability scores (∼61% sellers). Sell-
ers with greater than 1000 transactions have significantly
lower reliability scores. Almost half of the sellers with
greater than 10000 transactions have scores less than 0.8.
This result is counter-intuitive, since we expect users with
more transactions to interact more widely, thereby smooth-
ing their Lorenz distribution and improving their score. On
the contrary, we observe that many “power users” in eBay
demonstrate highly uneven transaction distributions, and
consequently, have poor reliability scores. This may be in
part due to repeat business from frequent shoppers. Further
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Table 2. Detailed eBay Transaction Histories

Reliability (R)=0.1 R=1
User 1 User 2 User 3

Total transactions 3599 6051 3793
- As seller 1868 42 3436

Max txns with 1 partner (%) 68.68% 22.5% 0.26%
Total private transactions 3463 4 6
Unique partners as sellers 19 23 3436
Private feedback partners 4 104 0
Unregistered partners 209 102 0
% of positive feedback 100% 99.7% 100%
eBay feedback score 152 707 3609
Partners who left positive 152 708 3609
Partners who left negative 0 2 0
Peak feedback rate per minute 25 19 2

investigation on possible false positives in our data, how-
ever, revealed that only 11% of this set (∼ 35 sellers) were
registered storefronts on eBay.

We take a closer look at the outliers by examining all
sellers with greater than 10 transactions that have extremely
low reliability scores (< 0.6). They account for 2.9% of
the population. Again, users with less than 10 transactions
do not have sufficient transaction history to make an accu-
rate judgment on their reliability. Figure 10 plots, for each
seller, the maximum number of transactions conducted with
any single partner as a percent of the seller’s total transac-
tions. We observe that the outliers have a greater percentage
of repeat transactions with one single partner as compared
to all eBay sellers. In fact, 5% of these sellers (∼27 sell-
ers) examined had about 35% of their transactions with one
single partner. The Lorenz distributions for these sellersare
highly disproportionate resulting in their low reliability.

To determine if our filter has found any misbehaving
users, we manually examined the online transaction histo-
ries of the eBay sellers identified flagged by our reliability
filter. We observe some interesting commonalities between
these sellers. Table 2 summarizes salient feedback statistics
of some of the worst and best eBay sellers as identified by
our reliability metric. First, the table shows that peers with
poor reliability scores conduct a high percentage of their to-
tal transactions with a single user, which suggests reputation
inflation via pairwise collusion. We also observe that some
of these sellers repeatedly transact with private users. Since
private users have very little public information posted, they
are ideal candidates in a Sybil-collusion attack.

A look at the feedback logs of these suspicious sellers
reveals another trend. These users tend to perform transac-
tions with the same partner at an incredible rate of speed
in short time periods. We plot 7 eBay sellers from our fil-
tered user set that hold reliability scores of 0.2 or less, and
evaluate their overall feedback rates per minute and the total
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percent of feedback received at those rates. As seen in Fig-
ure 11, these suspicious users receive less than 15% of total
feedbacks at rates slower than 2 feedbacks per minute, and
about 50% of their feedbacks are received at a rate greater
than 8 feedbacks per minute! While an automated script [3]
that generates such feedback is possible, suspicious sellers
filtered from our metric demonstrate bursts of transactions
with more than 19 consecutive feedbacks from the same
partner within 1 minute. We are unclear as to the real mo-
tive behind these actions, since multiple transactions with a
single partner only produces 1 point in the feedback score.
We suspect the goal is to receive other incentives such as
the title of aneBay Power User.

The objective of our last experiment is to determine the
existence any malicious cliques in the eBay network. In
this experiment, we seed our web crawler with a 0.45 relia-
bility seller and traverse (in breadth-first manner) the graph
of all eBay users that also demonstrate a reliability score
of 0.45 or less. Our crawl stops when no more users are
discovered in the crawler run. We repeat our crawler for
reliability scores less than 0.30 and 0.20. Our experiment
observed a negligible amount of direct interactions between
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two suspicious sellers. Therefore, we compute the average
distance between two suspicious sellers as follows: we first
create a network graph with all suspicious sellers as nodes.
For every pair of sellers, we investigate whether the two
sellers have any buyers common to them. If one (or more)
common buyers exist, we create a network link between the
two sellers. We then compute shortest distance between all
seller pairs using Dijkstra’s shortest path algorithm on the
network graph.

Figure 12 plots the average shortest distance between of
all sellers with the rest of the network. We observe that
the average distance between two sellers decreases with de-
creasing reliability scores. Almost all sellers with less than
0.45 reliability (∼300 sellers) are fewer than 3 hops away
from similar sellers. Almost 80% of the sellers with reli-
ability less than 0.30 (∼23 sellers) are observed to have at
least one common buyer between then. This indicates a very
clustering among suspicious sellers. This could also in part
be because the sellers crawled are typically trading within
the same auction category (like electronics, books, etc).

6 Conclusions

Applying reputation systems to large-scale dynamic net-
works can produce erroneous and misleading values due
to collusion between misbehaving users. By leveraging
the well-accepted Lorenz curve and Gini coefficient, we
provide a reliability metric designed to detect and penal-
ize collusion-like behavior, and encourage peers to inter-
act with diverse groups of peers across the network. Our
evaluations find that our metric complements traditional
reputations well and quickly isolates a number of users
with highly suspicious behavior. Our reputation mechanism
helps enable trust and accountability for both application-
level networks like eBay, as well as network-level protocols,
including message routing, distributed storage and content
distribution networks.
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