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Analyzing and modeling social network dynamics are key to accurately predicting resource needs and system
behavior in online social networks. The presence of statistical scaling properties, that is, self-similarity, is
critical for determining how to model network dynamics. In this work, we study the role that self-similarity
scaling plays in a social network edge creation (that is, links created between users) process, through analysis
of two detailed, time-stamped traces, a 199 million edge trace over 2 years in the Renren social network,
and 876K interactions in a 4-year trace of Facebook. Using wavelet-based analysis, we find that the edge
creation process in both networks is consistent with self-similarity scaling, once we account for periodic user
activity that makes edge creation process non-stationary. Using these findings, we build a complete model of
social network dynamics that combines temporal and spatial components. Specifically, the temporal behavior
of our model reflects self-similar scaling properties, and accounts for certain deterministic non-stationary
features. The spatial side accounts for observed long-term graph properties, such as graph distance shrinkage
and local declustering. We validate our model against network dynamics in Renren and Facebook datasets,
and show that it succeeds in producing desired properties in both temporal patterns and graph structural
features.
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1. INTRODUCTION

Studying the dynamics of social networks, that is, network evolution including detailed
timings of when nodes (the abstract notion of users) arrive and edges (relationship
built between a pair of users, for example, becoming friends with each other) are
created, is important for many social network applications, including system design,
resource allocation, anomaly detection, and demand forecasting. However, despite
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recent progress of analyzing and modeling online social networks (OSNs) [Schneider
et al. 2009; Wilson et al. 2009; Jiang et al. 2010; Sarkar et al. 2012; De Meo et al. 2014;
Cho et al. 2016; Bi and Cho 2016], their network dynamics are still poorly understood.
Current methods often study them via static snapshots, which capture network
dynamics only at discrete points in time and lack time information about events that
occur between snapshots. Similarly, current models of network dynamics are typically
randomized, generative graph models that produce sequences of events leading to an
observed network structure [Karger and Ruhl 2002; Leskovec et al. 2005; Akoglu et al.
2008; Akoglu and Faloutsos 2009; Navlakha et al. 2015; Xia and Hu 2015]. Focusing
primarily on producing a graph with some desired structural properties, they do not
model or match the sequence of dynamic events that lead to that structure.

Our work seeks to address this need by studying detailed dynamics in “time-stamped”
traces of network growth. While most/all existing work analyze and model dynamics
using logical clocks, we examine the relationship between network dynamics and real
physical clock time. Specifically, the use of physical time allows us to tackle two signifi-
cant challenges in the modeling of network dynamics. First, physical time allows us to
determine if social network dynamics exhibit self-similarity, an invariance of behavior
at different time scales. Self-similarity is a fundamental statistical property, that, if
discovered, defines hard limits on how such dynamics can be modeled using traditional
means, for example, Poisson. Its detection in contexts such as network traffic and web
traffic has led to significant shifts in how such datasets were analyzed and modeled.

Second, analysis of a physical time trace allows us to build a model of OSN dynamics
that captures not only structural properties of the network but also the sequence of
dynamic events leading to that structure. This type of dynamic graph model would ad-
dress several practical OSN problems. First, the research community has repeatedly
expressed a need for real dynamic graph traces. Using a real trace for calibration, our
model can generate “realistic” dynamic graphs with a complete list of time-stamped net-
work events. Next, our model can be used to perform “interpolation,” that is, construct
complete dynamic graph traces that approximate the continuous network evolution
between successive static snapshots of OSNs. Finally, our model can be used to detect
abnormal events (attacks or changes in user behavior) in real networks, that is, events
that disrupt expected network dynamics.

In this work, we perform an empirical study of network dynamics by examining
network events over multiple years. For this, our work relies on two detailed, time-
stamped traces of social networks, the Renren dataset [Zhao et al. 2012] (complete,
time-stamped trace of 199 million social links over 2 years) and the Facebook wall post
dataset [Kunegis 2013] (876K wall posts between users over 4 years in a Facebook
regional network). To the best of our knowledge, these are the only datasets available
today with sufficient granularity and event frequency to provide accurate analysis on
network dynamics and self-similarity.

Self-Similarity-Based Network Analysis. Self-similarity refers to the invariance
behavior of a time series under rescalings, that is, the relative variance or volatility
of traffic traces stays similar across different time scales.1 Successful detection of self-
similar properties is a very meaningful result (for network modeling), because it defines
fundamental limits on how such datasets can be modeled using traditional means. Due
to its very different statistical properties, for example, significantly higher burstiness,
self-similar traffic cannot be easily captured or modeled by popular traffic models. In
recent years, self-similarity has been found and has led to changes in data modeling in a

1Self-similarity can be used to describe scale invariance of certain properties of an object in space and/or
time. In this article, we adopt the temporal meaning, that is, self-similarity along the time dimension.
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variety of contexts, including local network traffic, wide-area network traffic, file system
accesses, disk-level I/O (input/output), messaging and email communications, and web
traffic requests [Leland et al. 1994; Paxson and Floyd 1995; Crovella and Bestavros
1997; Gribble et al. 1998; Riska and Riedel 2006; Eisler et al. 2008; Rybski et al. 2009;
Deng et al. 2012]. In each case, the discovery of self-similar scaling properties led to a
noteworthy shift in how such datasets were analyzed and modeled.

It is challenging to detect and quantify self-similar scaling properties in real network
traces in a statistically rigorous manner. This is partially due to the likely presence
of patterns (e.g., deterministic trends and diurnal or weekly cycles) that introduce
non-stationarity. The edge creation process may be consistent with self-similar scaling
over time scales ranging from seconds to hours. But patterns like diurnal or weekly
user cycles likely dominate over larger time scales like days and weeks and need to
be accounted for before any self-similarity analysis. Intuitively, we seek to not only
detect self-similar scaling properties in edge creation process but also determine time
scales where self-similarity is visible and can be quantified. Thus, we use a range of
techniques including R/S (rescaled range) analysis, the variance fitting method, and a
wavelet-based method. And our analysis focuses on edge creation, mainly because an
exploratory analysis of the Renren data revealed no particular structure underlying
the observed node creation events.

A Model of Social Network Edge Dynamics. We incorporate the findings from our
self-similarity analysis into a complete evolutionary network model, including a tempo-
ral component that determines “when” new edge creations occur in time and a spatial
component that specifies “where” these new edges form. Together, this model produces
a sequence of time-stamped events that uniquely define the formation and evolution
of a social network or graph in time and space. By tuning a small number of parame-
ters, our model can be calibrated to “fit” traces of measured graph dynamics exhibiting
self-similar properties. We validate the model by comparing the model-generated edge
creations to that of the real data (Renren and Facebook). Our results on both datasets
show that the synthetic edge creation matches both the self-similar scaling behavior
and the diurnal patterns exhibited by the real data. Furthermore, successive snapshots
of the graph structure generated by our model match the corresponding snapshots of
the original data on a variety of metrics, including average path length and average
clustering coefficient.

Key contributions in our work are as follows:

—We find that Renren’s edge creation process is non-stationary over long-term periods.
Even after removing the impact of node arrivals, traditional R/S and variance meth-
ods still produce inconclusive results on self-similar scaling. Thus, the two methods
are unsuitable for measuring self-similarity in real traces in social networks (Sec-
tion 3).

—By applying the more robust wavelet-based method for examining self-similarity, we
find the edge creation process in Renren does exhibit properties consistent with self-
similarity over time scales ranging from seconds to hours. We find the wavelet-based
method to be highly robust detecting self-similarity in the presence of non-stationary
trends (Section 4).

—We cross-validate our observations by repeating the above analyses on the Face-
book wall post dataset and confirm that it exhibits similar self-similarity properties
observed from the Renren dataset (Section 5).

—We propose a detailed model of social network dynamics that captures both the tem-
poral properties of graph dynamics, in terms of self-similar scaling and deterministic
non-stationary periodic patterns like diurnal or weekly cycles of user activity, and
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its spatial properties, including long-term graph distance shrinkage and reduction
in local clustering (Section 6).

—We validate our model by showing that it produces dynamic traces that match key
properties of the original Renren and Facebook datasets, both temporally and spa-
tially. Thus, by providing a practical method for generating realistic traces of time-
stamped network events, our model fills an existing void in the research community
(Section 7).

To the best of our knowledge, our work is the first to empirically study the presence
of self-similarity in the time dynamics of OSNs. Our findings highlight that, instead
of traditional Poisson models, the dynamics of real-world networks such as a Renren
social graph can often be adequately captured by a combination of a non-stationary
component, for example, long-term deterministic trends, and a stationary component,
for example, a self-similar process. We believe that our model is the first to explicitly
account for both temporal and spatial features in network dynamics and addresses an
urgent need for accurate models of graph dynamics.

2. BACKGROUND AND DATASETS

In this section, we introduce briefly the notion of self-similarity and describe the Renren
and Facebook dataset used in our study.

Self-similarity. For a time process, self-similarity refers to an invariance behavior,
where certain statistical properties are similar under appropriately rescaled versions
of the process [Beran 1994; Leland et al. 1994; Cox 1984]. Self-similarity has been
observed in a variety of contexts in computing systems and networks, including web
traffic [Crovella and Bestavros 1997], file system accesses [Gribble et al. 1998], and
traffic in both wide-area networks [Paxson and Floyd 1995] and local Ethernet networks
[Leland et al. 1994]. For self-similar traffic, the aggregation of many bursty sources
remains bursty across a wide range of time scales. This behavior differs considerably
from conventional Poisson processes that tend to produce traffic that smoothes out
when observed over large time scales. While self-similarity can also be associated with
geometry and describe the invariance in hierarchical structures [Song et al. 2005], this
work focuses on the temporal domain.2

To formally define self-similarity, let X = {Xi : i = 1, 2, . . .} be a covariance stationary
stochastic process whose autocorrelation function r(k) ∝ k−β (0 < β < 1) as k → ∞. For
each integer m (m > 0), we form a new process X(m) representing the averaged values
of X over disjoint blocks of size m. That is, the jth element of X(m) is

X(m)
j = 1

m

(
X( j−1)m+1 + X( j−1)m+2 + · · · + Xjm

)
, j = 1, 2, . . . (1)

If X is self-similar, then r(m)(k), the autocorrelation function of X(m), should satisfy
[Gribble et al. 1998; Leland et al. 1994]:

r(m)(k) = r(k), or r(m)(k) → r(k), m → ∞. (2)

An effective and commonly used metric to detect the existence or quantify the degree
of self-similarity is the Hurst parameter (H), measureable in multiple ways [Abry and
Veitch 1998; Leland et al. 1994]. Intuitively, H helps to capture the “burstiness” of a
covariance stationary process, where a higher H corresponds to a process with more
pronounced “bursts,” that is, large observations have a tendency to be followed by large
observations and small observations by small ones. Formally, H = 1 − β/2, where β

2Throughout the article, we refer to temporal self-similarity as self-similarity.
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Table I. Statistics of the Two OSN Datasets, with the Start/End Date of the Traces, the Granularity of Time
Stamps in the Traces, the Total Count of Nodes That Have Been Involved in Edge Creation, and the Total Count

of Edges That Have Been Newly Created in the Traces

Trace Trace
Graph Start Date End Date Granularity # of Nodes # of Edges

Renren
(Non-sampled)
[Zhao et al. 2012]

11/21/05 12/31/07 Seconds 10,572,832 199,564,006

Facebook (New
Orleans)
[Kunegis 2013]

09/14/04 01/22/09 Seconds 46,952 876,993

is defined by the process X ’s autocorrelation function r(k) ∝ k−β . A process exhibits
self-similarity if H falls in the range of (0.5, 1).

Ideally, the finite-dimensional distributions of a self-similar process should stay in-
variant across all time scales. In reality, this property often exists at smaller time
scales but breaks down at large time scales due to non-stationary patterns and finite
datasets [Garrett and Willinger 1994; Gribble et al. 1998]. For example, diurnal user
activity breaks stationarity and interferes with self-similarity at time scales larger
than a few hours. Thus, analyzing for self-similarity requires determining the range of
time scales over which it is visible [Abry and Veitch 1998; Garrett and Willinger 1994;
Gribble et al. 1998].

Datasets. An OSN is an online platform to build social relations among people
who share similar interests, opinions, or have real-life connections.3 While many have
diverse features, they typically share features that allow individuals to construct a
page or profile and build connections with other users, for example, by friending others.
When modeling OSNs, an individual user is usually regarded as a “node,” while the
relationship between a pair of users is regarded as an “edge” or a “link.”

Our analysis is based on the following OSNs: Facebook and Renren, where our work
is the first to empirically study the presence of self-similarity in the time dynamics
of OSNs. Facebook is the world’s most popular online social network with over 1.5
billion users,4 while Renren is the Chinese version of Facebook, the largest and oldest
OSN in China with more than 220 million users [Jiang et al. 2010]. For both sites,
a registered user can create his or her profile, add other users as “friends,” and post
messages on others’ wall (called “wall posts”), an area on each user’s own profile where
others (usually friends) can make comments.

We show the summarized statistics of the two datasets in Table I.The first and
primary is an anonymized dataset from Renren [Zhao et al. 2012], with a detailed
time-stamped (down to the second) trace of the creation of all nodes (10,572,832) and
all edges (199,564,006) over a 25-month period from November 21, 2005 (the launch
of Renren), to December 31, 2007. Here an edge is created when two users become
friends. To the best of our knowledge, this is one of the largest time-stamped datasets
on social network evolution studied to date.

Figure 1(b) plots the daily edge growth of the Renren social network, where data
points represent the number of new edges created on each day. This plot shows that
the dataset covers both the initial explosive growth (from day 1 to around day 200) and
the stabilized evolution of the Renren network [Zhao et al. 2012]. Note the unusually
large spike on day 386 (December 12, 2006). This is the result of a merge event: Renren
merged with 5Q, its largest Chinese competitor at that time. The network doubled in

3https://en.wikipedia.org/wiki/Social_networking_service.
4https://en.wikipedia.org/wiki/Facebook.
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Fig. 1. Daily edge growth in both Renren and Facebook datasets.

size in a single day, growing from 624K users and 8.2M links to 1.3M users with 11.2M
links. Given it is a one-time event, we exclude it from our analysis and focus our study
on continuous data segments before or after the merge.

The second dataset is the Facebook wall post dataset5 [Kunegis 2013]. It contains
wall posts produced by users from the Facebook New Orleans regional network, that is,
46, 952 users and 876, 993 posts created over a 4-year period from September 14, 2004,
to January 22, 2009. Each post is also time stamped to the granularity of a second.
Like in Wilson et al. [2009], we consider each wall post as an edge representing an
interaction between two users. Figure 1(b) plots the daily edge growth of the Facebook
social network. Like Renren, this dataset also covers periods where edge creation events
increase significantly at the beginning and then stabilize (around day 750). Compared
to Renren, this dataset is much more sparse.

3. PRELIMINARY ANALYSIS

Our goal is to determine if Renren and Facebook’s network evolution display any
property consistent with self-similarity and, if so, over what range of time scales. For
clarity we first describe our analysis for Renren, which we repeat on the Facebook
dataset in Section 5. Our analysis focuses on the edge creation process, since initial
analysis showed no particular structure underlying the observed node creation events.
The key challenge we face is how to identify and isolate the impact of non-stationary
patterns in the edge creation data. As a first step, we limit the impact of new node
arrivals on edge creation by focusing our analysis on edges created between members
of a fixed user population. We remove this restriction and extend our analysis for all
edge creation events in Section 4.3.

Next, we start by briefly describing how we sample the original dataset by removing
certain node arrival and other obvious non-stationary events. We then discuss the
methods for detecting self-similarity, our initial analytical findings, and key insights.

3.1. Experiment Setup

Data Sampling. We begin our analysis with a conservatively sampled subset of our
data to remove obvious non-stationary factors that may impede any direct analysis of
self-similar scaling property. Specifically, we limit our sample to include only existing
users as of December 1, 2007, and study all edge creation events between them dur-
ing December 2007, that is, days 741 to 771. This sampling eliminates three factors.
First, by studying only edges created between members of a fixed user population, we
minimize the impact of new node arrivals. Second, this month avoids the abnormal

5http://konect.uni-koblenz.de/networks/facebook-wosn-wall.
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Fig. 2. Edge growth in sampled
dataset of Renren, in terms of the
number of new edges created per
second. It shows a clear diurnal
pattern.

Fig. 3. Variance analysis of sam-
pled dataset of Renren: The slope
changes greatly when m > 104

seconds (≈3 hours), preventing
direct analysis on self-similarity.

Fig. 4. R/S analysis of sampled
dataset of Renren: H estimation
is beyond range of self-similarity,
and data shape changes signifi-
cantly for n > 104 seconds (≈3
hours).

expansion of new edges around day 386 as a result of the one-time merge event of two
social networks (Renren and 5Q). Finally, this time period is sufficiently late in the
history of Renren that it avoids the initial exponential network growth experienced by
most social networks [Zhao et al. 2012]. This data sample represents a stable growth
period in Renren, which contains 18,714,712 edges created between 6,219,531 existing
users. In the following, we refer to this sampled dataset as “sampled dataset of Renren”
to differ from the entire dataset without sampling as “full Renren.”

Estimating H. The two most popular (and simple) methods to estimate H are
variance analysis and R/S analysis [Garrett and Willinger 1994; Gribble et al. 1998;
Leland et al. 1994]. Our initial analysis efforts consist of applying these two methods
in addition to directly visualizing the raw data.

Variance fitting method [Leland et al. 1994; Paxson and Floyd 1995] analyzes the
decaying behavior of variances of the aggregated processes X(m) introduced earlier,
with m the block size. From Equation (2) in Section 2, a self-similar process X satisfies
log(V ar(X(m))) ∝ −β log(m) when m → ∞, where β = 2(1 − H). Thus by linearly
fitting the plot of log(V ar(X(m))) versus log(m), this method can estimate β and then
H = 1 − β/2.

R/S analysis computes H by measuring how apparent the variability of a time series
changes with the length of the time-period being considered, which can be formally
captured by the R/S statistic [Gribble et al. 1998; Leland et al. 1994]. To compute H, it
divides the process X into blocks of size n and computes the corresponding R/S statistic
R(n)/S(n). Because E[R(n)/S(n)] ∝ nH [Gribble et al. 1998] for self-similar processes,
H is estimated using the slope of log(E[R(n)/S(n)]) versus log(n).

3.2. Measurement Results

We now present the results using three heuristics: visualization of raw data, variance
analysis, and R/S analysis.

A Long-Term Diurnal Pattern. Figure 2 visualizes the edge creation process by
plotting the number of new edges created in each second over the one month (days
741–771). We can clearly observe a diurnal pattern in the edge creation process. This
non-stationary behavior precludes any direct analysis of self-similarity. We confirm
this from the results of the variance and R/S analysis. Figure 3 plots the values of
log(V ar(X(m))) against log(m). The curve maintains a linear shape until m reaches 104

seconds (≈3 hours), and then its slope changes significantly. Similarly, Figure 4 plots
in log-log scale individual R/S statistics as a function of the block size n (in seconds).
The red straight line shows the best linear fit and its slope results in an H-estimate of
H = 1.19, clearly outside the allowed range of (0.5 < H < 1).
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Fig. 5. An example of edge
growth of a randomly chosen 3-
hour segment in the sampled
dataset of Renren. It is highly
bursty, appears stationary and
suggests further exploration for
self-similar scaling behavior.

Fig. 6. Estimates of H by
both Variance and R/S analysis
on disjoint 3-hour segments in
the sampled dataset of Renren,
where 98%+ of H-estimates fall
within (0.5,1).

Fig. 7. An example of poor line fit-
ting in variance analysis, which
has poor R2 = 0.0458. This is
also confirmed by the inset that
displays the raw edge growth
during the corresponding time
period and shows a clearly non-
stationary event.

The appearance of such a pronounced diurnal pattern has a direct impact on subse-
quent efforts to model our dataset. It suggests that models should include a component
that accounts for this expected user-generated periodic behavior.

Self-Similar Fluctuations. An interesting observation from Figure 2 is that the
fluctuations on top of the diurnal component display a bursty behavior. Similarly, Fig-
ures 3 and 4 show that the curve only starts to lose its line shape when m or n exceeds
104 seconds (≈3 hours). Figure 5 shows the edge creation events of a randomly cho-
sen 3-hour segment (6pm–9pm, December 16, 2007). It is highly bursty and appears
stationary and could therefore exhibit self-similar scaling behavior. Together, these
observations suggest that over time scales not significantly impacted by the observed
diurnal patterns (i.e., a few hours and below), the edge creation process may be consis-
tent with self-similar scaling behavior.

We confirm this intuition by performing variance and R/S analysis on each 3-hour
log segment and computing its H value. Figure 6 plots the results over the entire
month as 248 disjoint 3-hour segments. H-estimates based on the variance analysis
method vary across segments, with a mean of 0.89 and variance of 0.01, while R/S
analysis remains stable, with mean of 0.68 and variance 0.001. For both methods, an
overwhelming majority of segments (98.4% for variance, 99.5% for R/S) estimates H
within (0.5 < H < 1). These results suggest that the Renren edge creation process
exhibits self-similarity over time scales ranging from seconds to hours.

3.3. The Reliability of our H Estimates

In our analysis, we encountered potential issues regarding the reliability of H-
estimates using the variance and R/S analysis methods. For some segments, the meth-
ods produced poorly-fitting linear regression lines, which in turn resulted in highly
questionable estimates of H. Figure 7 shows an example of such a “problematic” seg-
ment (6–9am, December 6, 2007), where the line fitting is poor via variance analysis.
We also plot as an inset in the figure the raw edge growth during the time period, which
shows a clearly non-stationary event. We further study these events in Section 4.2.

To quantify the impact of such poor data fitting on the obtained H-estimates, we
compute the coefficient of determination R2 for each segment. R2 measures how well
the observed data points are represented by a straight line. Like Gribble et al. [1998],
we use the criterion of R2 > 0.9 to indicate that the fitting is sufficiently good to
provide a reliable H-estimate. Of all segments, 38.3% have unreliable H-estimates
by R/S analysis vs. 71.0% by variance analysis. Prior studies have reported similar
reliability issues [Karagiannis et al. 2002; Taqqu et al. 1995].
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Self-Similarity in Social Network Dynamics 5:9

3.4. Summary of Observations

Our initial analysis led to three main findings. First, the Renren edge creation dis-
plays a typical diurnal pattern in user activity that makes the process inherently
non-stationary, preventing a direct analysis of self-similarity. This suggests that any
accurate model of Renren’s edge creation process must include a component that explic-
itly accounts for this periodic behavior. Second, local fluctuations on top of the periodic
component display behavior that indicates potential self-similarity. Finally, we find
that two commonly used methods, that is, variance and R/S analysis methods, cannot
provide reliable H-estimates for real data that displays non-stationary patterns.

Thus, our next step is to avoid most of the encountered problems by applying a more
rigorous method for systematically analyzing data with potential scaling behavior that
has strong robustness properties with respect to underlying non-stationary patterns
and results in H-estimates with known statistical properties (e.g., confidence intervals).

4. WAVELET-BASED ANALYSIS

Following our initial analysis, in this section we apply a more rigorous wavelet-based
method to systematically study potential self-similar scaling behavior exhibited by
our dataset. This method has strong robustness against underlying non-stationary
patterns and can provide H-estimates with confidence intervals. To this end, we first
briefly introduce the wavelet method and then present our findings.

4.1. The Wavelet Method

Estimation errors of the variance and R/S analysis methods can be attributed to their
“eyeballing” approach when attempting to identify self-similarity in highly variable
data. In contrast, the wavelet-based method offers a principled and rigorous analysis
of a given dataset’s scaling property by isolating characteristics of data via a combined
scale-time presentation. In turn, it provides a more reliable self-similarity analysis
[Abry and Veitch 1998].

In short, wavelet-based analysis represents a process X by a sequence of subspaces
{Wj} j∈Z where Wj is at a finer scale than Wj−1 (Wj ⊂ Wj−1). This way, it can reveal
detailed properties of X at different time scales. If X is self-similar, then its projection on
the Wj subspace � j , satisfies E[� j] ∼ |2− jv0|1−2H . Here 2− jv0 represents the reference
frequency of the jth subspace Wj while v0 is the reference frequency of the root subspace
W0. One can estimate the Hurst parameter H by plotting E[� j] vs. j on a log-log scale
and applying linear regression.

We estimate H using the wavelet software developed [Abry and Veitch 1998] for self-
similarity analysis. By carefully choosing the number of vanishing moments N that
controls v0, the tool can systematically detect and remove the impact of various types
of deterministic trends in the dataset. Furthermore, it also relies on known theoretical
properties of the resulting H-estimate to provide confidence interval (CI) for H. In the
analysis of our dataset, we choose the value of N that produces both a good fit and the
smallest confidence interval.

4.2. Measurement Results

We seek to confirm and substantiate our preliminary results that show properties
consistent with self-similar scaling in our Renren dataset. We divide our sampled
dataset into disjointed segments of lengths between 3 and 12 hours and apply the
wavelet-based analysis to each segment. In our analysis, we refer to a segment as
“abnormal” if its H-estimate (including its 95% confidence interval) does not completely
fall within the self-similar range (0.5, 1). Our analysis leads to two key findings.
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Fig. 8. Wavelet analysis on data segments with different segment lengths (sampled dataset of Renren).

Table II. Statistics of Wavelet Analysis on 3-Hour Segments with Start Time Shifts
(Sampled Dataset of Renren)

Start Time Shift
Normal Segments

Abnormal Segment Portion
H mean H variance

0 hour 0.631 0.002 2.02%
1 hour 0.633 0.002 2.43%
2 hours 0.629 0.002 2.02%

Self-Similarity Over Time Scales from Seconds to Hours. Our analysis con-
firms that over time scales ranging from seconds to a few hours, Renren’s edge cre-
ation process exhibit properties consistent with self-similar scaling. As an example,
Figure 8(a) shows the H-estimates with their 95% confidence interval for all 248 3-
hour-long segments. Only 5 segments are abnormal, while the rest (98%) consistently
produce H-estimates within (0.5, 1) and tightly clustered around H = 0.63.

To examine the robustness of our results, we check different segment compositions
by shifting the start time of each segment by 0, 1, and 2 hours separately. From the
summarized results in Table II, we notice the stability in the mean (0.63) and variance
(0.002) of H-estimates for normal segments and also the portion of segments deemed
abnormal (2.02% ∼ 2.43%) These results provide further evidence that Renren’s edge
creation process behaves properties consistent with self-similar scaling over time scales
from seconds to a few hours.

Scaling Behavior over Larger Time Scales. We observe that the number of
abnormal segments increases as the segment size increases. Figures 8(b) and (c) plots
the H-estimates across all segments for segment lengths of 6 and 12 hours. The ratio
of abnormal segments increases to 8.1% for 6-hour segments, and up to 32.3% for
12-hour ones. It confirms our earlier conclusion that the properties consistent with
self-similar scaling weaken in Renren’s edge creation process, when viewed over larger
time scales. This phenomenon is perhaps due to the presence of harder-to-account-for
non-stationary patterns, such as heteroscedasticonfidence intervalty (i.e., edge creation
in Renren is more variable during peak hours than during low hours).

Patterns of Abnormal Segments. We also wish to understand patterns and poten-
tial causes for the observed abnormal segments. We find that these abnormal segments
are randomly distributed across days, and within a day, around 60% of them appear
during 6–9pm, when Renren users are most active (the number of edges created account
for 23% of the whole day).

We also find that abnormal segments are caused by sudden changes in the edge
growth process. Based on the edge growth patterns, we are able to classify abnormal
segments into three types, all shown in Figure 9. These include level shift, where the
volume of edge growth suddenly increases (or decreases); momentary drop, where the
growth experiences a short period of extremely low activity; and ramp up/down, where
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Fig. 9. Examples of three types of abnormal segments, where the red dot boxes show the unusual edge
creation events (sampled dataset of Renren).

Fig. 10. The H-estimates of all the disjoint 3-hour segments between September and December 2007 of the
Renren dataset, after performing wavelet analysis on the entire dataset without sampling (full Renren). The
results align with those with sampling (labeled as “sampled dataset of Renren” in caption).

the edge activity quickly increases or decreases in the segment. Our collaborators at
Renren have confirmed that while per-hour identification is difficult, it is possible that
at least some of these abnormal events match changes to the site and its features.
Intuitively, level shifts and momentary drops might be caused by new features or
localized failures, and ramp up/down events might correspond to ad promotions to
increase user membership. We are working with Renren to further confirm this.

4.3. Analysis without Sampling

Finally, we expand our analysis to consider the full, unsampled dataset. This is to
examine whether the observed property consistent with self-similar scaling on the
sampled data still present after including new nodes with rapid (and non-stationary)
edge growth.

We first consider the complete dataset from the month of December 2007. Interest-
ingly, 97% of the 3-hour segments produce H-estimates within the self-similar range,
with mean H = 0.65. We show detailed H-estimates in Figure 10, which are highly
consistent with our prior analysis on the sampled dataset (Figure 8(a)). The only mi-
nor difference is two additional abnormal segments, possibly caused by non-stationary
edge growth of the new nodes.

Next, we examine all edge events in the year of 2007. Again, we get consistent
results: H-estimates of 97% of the 3-hour segments fall into the self-similar range,
with mean H = 0.64. Figure 10 shows H-estimates for September–December 2007
(due to the space limit), which are representative of all other months. Together, these
results suggest, with high possibility, that the same self-similar property is present
consistently throughout time. These results also confirm the high reliability of the
wavelet method in self-similarity detection.

4.4. Summary

We apply the more reliable and accurate wavelet method to detect self-similarity at
different time scales in Renren’s edge creation process. The outcomes confirm prior
observations from R/S and variance results, with high confidence, that the property
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Fig. 11. An example of edge
growth of a randomly chosen 3-
week data (Facebook).

Fig. 12. Variance analysis on the
entire data: doutable fitting with
curves around 103 units (Face-
book).

Fig. 13. R/S analysis on the en-
tire data: doutable fitting since
the shape changes greatly after
103 units (Facebook).

consistent with self-similar scaling lasts to several hours. This property also holds for
our full, unsampled dataset (after the network merge).

5. VALIDATION VIA FACEBOOK DATASET

One reasonable question is whether our results are strongly biased by our choice of
dataset, that is, property consistent with self-similarity is only present in Renren net-
work. Here, we validate our findings using the Facebook wall post dataset [Kunegis
2013]. Recall that for self-similar property to be detectable, a dataset must cover tempo-
ral events in fine granularity and have sufficient event frequency to provide meaningful
statistics. To our knowledge, the Facebook wall post dataset [Kunegis 2013] is the only
dataset aside from our Renren dataset that meets these requirements.

As Figure 1(b) shows, like Renren, the number of edge creations in the Facebook
dataset increases significantly at the beginning and stabilizes around day 750. To
eliminate the impact of this obvious non-stationary increasing trend, we focus on the
edge creation process after day 750 (for a total duration of 841 days). Compared to
Renren, this dataset is much more sparse, and per-second level analysis does not show
any meaningful statistics (only 1.15% of non-zero data points). Thus, we enlarge the
time unit for analysis to 120 seconds, where the resulting ratio of non-zero data points
(61.18%) is comparable to that of Renren (61.46%).

Following analysis in Sections 3 and 4, we start by visulizing the raw data in the
Facebook dataset and then apply the variance, R/S, and wavelet anlaysis methods to
see whether any property consistent with self-similar scaling exists across the whole
time range. Figure 11 shows a random sample of three successive weeks (from day
762 to day 782) in the edge creation process, which displays a clear weekly pattern.
Similarly, this obvious non-stationary behavior precludes any direct analysis on self-
similarity. We also confirm this using the R/S and variance analysis methods, where
for three successive weeks the estimated H values are 0.5779 and 0.8940, respectively.
Although these H-estimates are within the self-similar range (0.5, 1), Figures 12 and 13
show that the two methods have poor data fitting, resulting in unreliable estimations
on H. On the other hand, the wavelet analysis produces an H value of 1.11, indicating
that there is no property consistent with self-similarity across the entire time range.
Together, all these results suggest that over the time scale up to years, we cannot
reliably detect self-similarity properties in the Facebook dataset.

Next, we explore whether the dataset displays self-similar scaling properties on
shorter time scales. We split the entire dataset into fixed size segments of lengths
varying between 1 and 7 days and apply the wavelet analysis to each segment. Fig-
ures 14(a)–(c) plot the H-estimates with their 95% CI at segment length of 3.5 days, 5
days, and 7 days, respectively. We obtain two key observations. First, we observe strong
self-similarity properties over the time scale between minutes and days. Figure 14(a)
shows that 98.35% of 3.5-day segments have H values with 95% CI falling into range
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Fig. 14. Wavelet analysis on data segments with different segment lengths (Facebook).

Table III. Statistics of Wavelet Analysis on 3.5-Day Segments with Start Time Shifts (Facebook)

Start Time Shift
Normal Segments

Abnormal Segment Portion
H mean H variance

0 day 0.612 0.001 1.65%
1 day 0.611 0.001 2.07%
2 days 0.611 0.001 2.07%
3 days 0.613 0.001 3.32%

(0.5, 1), centered around H = 0.61. By shifting start times of segments, the consistent
results in Table III further confirm this observation.

Second, the portion of abnormal segments (whose H-estimates are from (0.5, 1))
increases with segment length, that is, 1.65% for 3.5 days, 5.95% for 5 days, and
26.45% for 7 days. A detailed analysis on the dataset shows that this is mostly caused
by a weekly pattern (as shown in Figure 11) of user activities that dominates at larger
time scales.

In summary, our results on the Facebook dataset align very well with our observa-
tions from the Renren dataset. Due to the existence of non-stationary patterns intro-
duced by human behaviors, for example, diurnal or weekly user activities, properties
consistent with self-similar scaling exist but only hold over certain time ranges and
gradually weaken at larger time scales.

6. A MODEL OF NETWORK DYNAMICS

Motivated by our self-similarity analysis of Renren and Facebook’s edge creation pro-
cess, we next seek to build a complete model of social network dynamics. Our proposed
model includes two components: a temporal component that produces a sequence of
time-stamped events defining when and how many new edges are formed in a given
time interval and a spatial component defining where in the graph these new edge cre-
ations take place (i.e., which nodes are involved). Ideally, the model should produce syn-
thetic dynamic graphs whose edge creation will display deterministic non-stationary
periodic patterns (e.g., diurnal or weekly user activities) and properties consistent with
self-similarity and whose graph structural changes match those observed from the orig-
inal data and account for key spatial properties, for example, graph densification, path
shrinkage, and local declustering [Zhao et al. 2012]. Next, we explain the model in
detail and provide validation in Section 7.

6.1. The Temporal Component

Our analysis in Sections 3, 4, and 5 shows that, for both Renren and Facebook datasets,
the edge creation process displays a combination of deterministic non-stationary peri-
odic patterns, that is, diurnal or weekly user activities and properties consistent with
self-similarity. These observations motivate designing the temporal component of our
model as a combination of two sub-modules: a non-stationary module that captures
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Fig. 15. CCDF of the number of edges created per user in December 2007 in the Renren dataset.

the predictable cycles in user activities, for example, daily or weekly cycles, and a self-
similar module that parsimoniously accounts for the inherent burstiness in user edge
creations over certain time scales, for example, from seconds to a few hours.

The Self-Similar Module. Prior work has demonstrated two effective methods for
producing self-similar traffic. The first method aggregates many ON/OFF processes
and, under certain conditions, the superposition process displays a self-similar scaling
[Willinger et al. 1997; Gribble et al. 1998]. In particular, this construction requires
statistical knowledge of the ON and OFF periods and assumes that either of those
periods are modeled by a heavy-tailed distributions. The second method is based on
the M|G|∞ queuing model [Cox 1984; Willinger et al. 1998]. Here, each source arrives
according to a Poisson process, and the distribution of its active time is assumed to
be heavy-tailed, for example, the Pareto distribution. During its active time, each
source is assumed to operate at a constant rate. Then the resulting count process
{Nt, t = 0, 1, 2, . . . }, where Nt is the number of active sources at time t, is self-similar.
In other words, by multiplexing sources with Poisson arrivals and heavy-tailed active
times, one can produce a self-similar process.

Examining our two datasets in more detail shows that the M|G|∞-based method
provides an intuitive way and a good fit for modeling edge creation. For one, we observe
that, over time, the number of edges created per user follows a heavy-tailed distribution.
For example, Figure 15 plots the distribution of the number of edges created per Renren
user during December 2007, which can be approximated as a heavy-tailed pattern.
Moreover, assuming each user creates edges at a constant rate, the active time of a
user is directly proportional to the number of edges that user created. This in turn
implies that each user’s active time also follows a heavy-tailed distribution, consistent
with the M|G|∞-based construction of self-similar processes.

Based on this intuition, we build the self-similar module based on a standard M|G|∞
process [Cox 1984]. Users arrive according to a Poisson process with rate λ. On arrival,
each user independently starts its active time duration Ti (seconds) chosen from a
Pareto distribution,

P(X > x) =
(

xm

x

)α

, x ≥ xm, 1 < α < 2.

Assuming that each user creates edges at a constant rate γ /s, we can calculate the total
expected number of edges created by user i by Ti · γ . Since an edge creation involves
two users, we derive the number of edges St created at time t from the number of active
users Nt: St = γ · Nt/2. The time series {St, t = 0s, 1s, 2s, . . . } defines the self-similar
module of the temporal component of our model.
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The Non-Stationary Module. We extract the deterministic non-stationary periodic
component by subtracting the self-similar component from the original edge creation
process. Suppose the number of original edge creation is Ot at time t. Then the sub-
traction produces a process {Ut = Ot − St, t = 0s, 1s, 2s, . . . }. Next we apply a sliding
window over Ut to obtain a smooth deterministic process and then fit it with a peri-
odic function, that is, Sine, to produce Dt, the non-stationary module of the temporal
component of our model.

Integrating the Two Modules. We combine St and Dt and obtain our targeted
edge creation process Et: {Et = St + Dt, t = 0s, 1s, 2s, . . . }. Since the non-stationary
periodic component Dt may generate negative values, we set a minimum for the sum
to be 0. Note that we designed this temporal component to describe new edge creations
aggregated across all the users. Importantly, this temporal component only generates
timestamps of new edges (in terms of the total number of edges created in each second)
but does not associate any of these new edges to specific users. In other words, the
temporal component will produce the total number of edges created in each second,
but will not predict which nodes created these edges. This is because we design the
temporal component to specifically capture the edge dynamics aggregated across all
the users, that is, property consistent with self-similar scaling and deterministic non-
stationary periodic user patterns. The actual distribution or mapping of edge events
across users is performed by the spatial component of our model, which we will describe
in Section 6.2.

6.2. The Spatial Component

To determine where each new edge is created as part of the overall network evolution
process, we first highlight two key observations made by our prior analysis on the
Renren network [Zhao et al. 2012]. First, after an initial bursty growth phase, new
edge creation was dominated by existing nodes (>80%). This empirical result diverges
from generative models, which assume that new node arrivals drive edge creation
regardless of network size. Second, we observe three structural properties over time:
graph densification, distance shrinkage, and high but decreasing clustering coefficient
(CC). Existing graph models [Akoglu and Faloutsos 2009; Akoglu et al. 2008; Bonato
et al. 2009; Leskovec et al. 2005] capture only a subset of them.

Intuition. We consider a stable social network in a state of ongoing growth.6 After a
fast initial period of explosive growth, the arrival rate of new users becomes relatively
small compared to existing users. At this point, continuous friend discovery between
existing users dwarfs the initial bursts of edge creations triggered by new user arrivals.
Therefore, in our model, we use interarrival gaps between new users as iterations to
drive the formation of new edges between existing users.

With these in mind, our model will focus on the creation of edges between existing
users following the arrival of each new user. Specifically, we assume a new user ui
creates an edge before the arrival of the next user ui+1, and after this edge creation ui
immediately becomes an “existing user.” We hypothesize that existing users are often
introduced to groups of friends, either discovering the presence of an offline friend
(and other mutual friends) or creating new groups of friends via common interests
or social applications. To capture this intuition, in each iteration, our model selects
two existing nodes u and v at random and connects u repeatedly to multiple users
in v’s neighborhood. Here v can be an existing friend of u or a previously unknown
“stranger.” The continuous formation of random connections between existing users

6Note that our model explicitly targets the ongoing growth phase of a social network. We leave the measure-
ment, analysis, and modeling of a network in decline for future work.
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shrinks average path lengths and lowers clustering coefficient by building shortcuts
between nodes, while connecting friends of friends slows the rate of declustering.

Model Details. The spatial component is strongly dependent on the temporal com-
ponent to determine the maximum number of edges created in any iteration (that is,
between two node arrivals). Let F(n) represent the number of edges in the network
when the network contains n nodes. Then F(i +1)− F(i) represents the total number of
edges created between the arrivals of ui and ui+1. With the knowledge of node arrival
time statistics, that is, ti and ti+1, we can estimate the total number of edges k created
between ti and ti+1 as k = F(i + 1) − F(i) = ∑ti+1

t=ti Et.
Specifically, our proposed edge formation process is defined as follows. We drive the

process using a parameter p, which defines the probability a node is selected in the
recursive edge creation process between existing nodes.

(1) When a new node ui joins the network, k = F(i + 1) − F(i).
(2) Edge creation by the new node: The new node ui randomly select an existing

node uj to connect. Set k = k − 1. Now ui becomes an existing node.
(3) Edge creation between existing nodes: Randomly select two existing nodes u

and v. If they are not connected, then connect them and set k = k−1. Then u starts
steps (a)–(c) to connect neighbors of v and repeat them until all the required edges
have been created (i.e., k = 0) or there are no more nodes to connect. Each time an
edge is created, set k = k − 1.
(a) Generate a random number x following the geometric distribution with mean

(1 − p)−1.
(b) Randomly select neighbors of v that do not connect u until reaching any of the

three situations:
i. x neighbors are selected;

ii. no more edges need to be created, that is, k = 0;
iii. all available neighbors of v are selected. Let R = {r1, r2, . . .} be the set of

selected nodes.
(c) For each node ri ∈ R, u connects ri and repeats steps (a) and (b) on ri.

(4) If more edges need to be created (k 
= 0), then repeat step (3).

Comparison to Existing Models. The existing model most similar to our new
model is the Forest Fire model [Leskovec et al. 2005], which simulates network growth
by creating edges between each new node to a set of existing nodes. A new node joining
the network randomly connects to an existing node and some of its neighbors; this
repeats across the network, like a fire burning through a forest. This “burning process”
and our recursive edge creation process between existing nodes both act to produce a
high clustering coefficient by recursively connecting to neighbors of neighbors.

Three key differences separate our model from Forest Fire. First, our model captures
the observation that existing nodes drive edge creation in a stable growth network.
Second, our model produces decreasing clustering coefficient by connecting pairs of
random existing nodes. Forest Fire does not capture this property because it always
forms close triangles in each node’s neighborhood, leading to relatively high clustering
coefficient unlikely to decrease over time. Third, our model can be accurately calibrated
to the observed dynamics of an existing network trace by incorporating the network
growth function from the temporal model. This additional flexibility makes it more
attractive for generating realistic dynamic network traces.

7. MODEL VALIDATION

Having described our proposed model for network edge dynamics in Section 6, we
next validate the proposed network dynamic model. We calibrate the model using real
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data and use it to generate synthetic dynamic graphs and then compare these syn-
thetic graphs to the original data in terms of both temporal and spatial properties.
Since the temporal and spatial components are complementary and operate at differ-
ent scales, we validate them sequentially to examine their contributions to network
evolution. Because the output of the temporal component is used as an input to the
spatial component, the validation on the spatial component also serves as validation of
the complete model with both components. Our validation results on the Renren and
Facebook datasets lead to the same observations. For brievity, we present the Renren
results in detail in Sections 7.1 and 7.2 and summarize the Facebook results briefly in
Section 7.3.

7.1. Validating the Temporal Component

Our validation is first based on the Renren dataset for the month of December 2007,
the same datasets used in our self-similarity analysis (Section 3 and Section 4). We
leave the validation of the Facebook dataset to Section 7.3. To validate our model, we
first describe how we calibrate the model using the Renren dataset. As explained in
Section 6.1, the temporal component consists of two sub-modules: a self-similar module
(i.e., stationary stochastic process) and a non-stationary module (i.e., non-stationary
deterministic function).

Calibrating the Self-Similar Module. We construct the self-similar module ac-
cording to the M|G|∞ model described earlier. That is, nodes arrive according to a
Poisson process with rate λ, and the length of each node’s active time is chosen inde-
pendently from a Pareto distribution with parameters α and xm. Consider the Renren
edge creation data collected in December 2007 where 7, 246, 621 nodes have created
edges. We estimate the corresponding value of rate λ in the Poisson process of this
period by the average active node count per second, that is, λ ≈ 2.7/s. To derive the
active time (in seconds) statistics, we leverage a proven relationship between H and α
[Cox 1984; Leland et al. 1994]: H = (3 − α)/2. Since our measured H-estimate for the
December 2007 data is around 0.65, we set α = 1.7. Finally, assuming a node creates
edges at a constant rate of 1/s, the average number of edges created per node is then
equal to the average active time across all the nodes, which can be calculated as the
mean of the Pareto distribution, that is, xm∗α/(α −1). By measuring the average edges
created per node in December 2007, we get xm ≈ 3.2.

Using the M|G|∞-based method with λ = 2.7/s, α = 1.7 and xm = 3.2, we generate a
synthetic trace that represents the edge creation process contributed by the self-similar
module. Figure 16 plots a randomly chosen 3-hour segment in the synthetic trace, which
displays burstiness similar to the original data. By applying the earlier-described R/S,
variance and wavelet analysis methods, we get H-estimates 0.68, 0.63 (both with a
good line fitting) and 0.69 (with the 95% confidence interval 0.0099), respectively. The
graphical fitting in Figure 18 and Figure 17 show that both R/S method and variance
analysis have good fit. All these validate that the resulting trace is indeed consistent
with the designed-for self-similar scaling behavior (i.e., H = 0.65).

Calibrating the Non-Stationary Module. To calibrate the non-stationary module,
we first subtract the synthetic trace generated by the self-similar module from the
original edge creation data. We then apply a sliding window (with a window size of 1
hour and a step size of 1 second) to smooth the subtraction result over time. One sample
of the smoothed data (for December 2007) is shown by the blue curve in Figure 19,
displaying a daily pattern with almost 0 mean. The blue curve is well fitted by the sine
function: 9.70 sin(7.27 · 10−5 t + 3.56) − 0.003, shown as the red curve.

Validation Results. We sum the synthetic traces produced by the above two sub-
modules to build a single synthetic edge creation trace and then compare this combined
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Fig. 16. An example of edge
growth of a randomly chosen 3-
hour segment in the synthetic
self-similar module (Renren).

Fig. 17. Variance analysis of syn-
thetic self-similar module: H es-
timation = 0.67 and in good lin-
ear fitting (Renren).

Fig. 18. R/S analysis of synthetic
self-similar module: H estima-
tion = 0.63 and in good linear fit-
ting (Renren).

Fig. 19. The synthetic non-
stationary module (red curve)
well captured the smoothed di-
urnal pattern in the original
dataset (blue curve) (Renren).

Fig. 20. Synthetic trace by our
temporal component (red) vs.
original edge creation process
(blue) (Renren).

Fig. 21. Variance analysis of the
entire synthetic trace: Like the
original data, slope also changes
for m > 104 seconds (≈3 hours)
(Renren).

trace to the original data. Repeating the process 5 times produces very consistent
outcomes, for example the total edge counts are similar, with an average ratio between
the synthetic and the original trace of 1.007 and variance <10−6. Figure 20 plots a
sample of one synthetic trace together with the original trace (for December 2007) and
illustrates that the synthetic data displays diurnal patterns similar to the original
data.

We further compare the synthetic and original traces by performing on the synthetic
trace the same self-similarity analysis that we applied in Section 3 and Section 4 on the
original trace. Figures 21 (variance analysis) and 22 (R/S analysis) demonstrate that
the synthetic trace exhibits the very same issues that plagued our preliminary analysis
of the original data; for example, scaling behavior changes drastically for time scales
larger than a few hours, and H estimation is outside the theoretical range (0.5, 1.0),
and thus non-stationary diurnal patterns prevent a direct scaling analysis of the data.

Next we apply the wavelet-based analysis method to examine the self-similar nature
of the synthetic trace over 3-hour segments. Figure 23 plots the resulting H-estimates
for each segment with 95% CI. We see that the H-estimates for the synthetic trace also
fall consistently between (0.5, 1) with an exception of 4.03%, which closely matches the
3% exception seen from the original data. The average H value for the synthetic trace
is around 0.75, again similar to that of the original trace (mean H = 0.65) as shown in
Figure 8(a). Finally, we evaluate the robustness of our results by shifting the starting
time of each segment by 0, 1, and 2 hours separately and find both the abnormal
segment ratios and H estimates remain stable (we omit the results for brevity). Thus
we conclude that the original trace and the synthetic traces are qualitatively and
quantitatively similar.

Together, these results demonstrate that the temporal component of our model can
accurately capture the diurnal patterns and self-similar scaling behavior displayed
by the original Renren data. Furthermore, the contributions of the two sub-modules
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Fig. 22. R/S analysis of the entire
synthetic trace: Like the origi-
nal data, H-estimate is beyond
the self-similar range, and data
shape changes n > 104 seconds
(≈3 hours) (Renren).

Fig. 23. Wavelet analysis on 3-
hour segments of synthetic trace.
Like the original data, the vast
majority of segments have esti-
mated H within (0.5,1) (Renren).

Fig. 24. Network growth of the
synthetic trace generated by the
temporal component vs. the orig-
inal data (Renren).

illustrate why and how the presence of deterministic non-stationary periodic trends
like diurnal user activity patterns impacts any direct scaling analysis of such non-
stationary data.

Connecting the Temporal and Spatial Components. Recall that the spatial
component of our model uses the temporal component to compute the number of edges
created between each pair of node arrivals. As a result, we need to be able to accurately
estimate the arrival time of each node. From our exploratory analysis, we noticed no
specific properties of the node arrival process other than that it is largely consistent
with a Poisson process with rate λnew, where λnew is estimated as the average number
of new node arrivals per second.7 Figure 24 shows that our solution can accurately
predict the network edge growth in December 2007.

7.2. Validating the Spatial Component

Next, we validate our spatial component. Ideally, we would calibrate the model us-
ing the entire Renren dataset (from November 21, 2005, to December 31, 2007) and
produce synthetic traces for the entire 25-month period. However, using the entire
dataset is impractical for two reasons. First, due to the size of the network at the end
of the 25-month period (i.e., 10.6M nodes and 199M edges), the calibration process
would be computationally prohibitive. Second, the merge event on December 12, 2006,
introduced significant changes to the network, impacting any analysis of the network’s
dynamics.

As a viable practical alternative, we use two subsets of the Renren data for validation.
The first segment (referred to as 2006 Original) covers the period from the launch of the
network (November 21, 2005) until right before the merge event (December 11, 2006).
The corresponding last snapshot of the graph includes 624K nodes and 8M edges.
This represents the “early” period of the network. The second segment (2007 Original)
covers the first 2 months of 2007, with the snapshot on December 31, 2006, as the
initial graph, and its last snapshot has 1.75M nodes and 18M edges. This represents
the “stable growth” period of the network. Table IV summarizes the observed network
statistics for the two segments.

Spatial Component Calibration. We calibrate the component for the two segments
separately. As discussed in Section 6.2, the spatial component has two parameters: net-
work edge growth function F(n) and node selection probabilityp. For the 2007 segment,
we derive F(n) from the temporal component. For the 2006 segment, however, we have

7This is analogous to the observation in Paxson and Floyd [1995] that while packet arrivals in network traffic
appear better modeled using self-similar processes, Poisson effectively captures user session arrivals.
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Table IV. Statistics of the Original Graph and the Synthetic Graph Generated by Our Spatial Component for
Renren Dataset. The 2006 Graphs Are Built before December 12, 2006; the 2007 Graphs Are Built for January

to February, 2007

Graph # of Nodes # of Edges Avg. Deg Avg. path Avg. CC
2006 Original 624,364 8,258,266 26.45 4.16 0.159
2006 Synthetic 624,364 8,721,927 27.93 4.46 0.183
2007 Original 1,751,146 18,203,520 20.79 4.87 0.156
2007 Synthetic 1,751,146 18,305,972 20.9 4.84 0.161

Fig. 25. Fitting of network growth with the network edge growth function F(n) (Renren).

to manually fit the network growth by a polynomial function. This is because our mea-
surement shows that in 2006 the network is not stable and large enough to display
significant temporal patterns. Figure 25 shows the F(n) estimation results for both
segments, which closely match the original data.

Next, we follow the methodology by Sala et al. [2010] to determine p. We generate a
series of synthetic graphs with p varying between (0.1, 0.9) and choose the best p value
that produces graphs with network distance and clustering coefficient most similar to
the original data. The resulting p values differ for the two segments: 0.7 for the 2006
segment and 0.5 for the 2007 segment.

Validation Results. Using the calibrated component, we generate synthetic dy-
namic graphs for the two data segments. As shown in Table IV, the synthetic graphs
statistically match the original graphs in the corresponding last snapshot, in terms of
average degree, average path length, and average CC. The emphasis of our validation
is to understand whether synthetic graphs display the three dynamic properties ob-
served from the Renren social network [Zhao et al. 2012]: graph densification, average
path length shrinkage, and decreasing clustering coefficient. Using the network growth
function F(n), Figure 25 confirms that the synthetic graphs can accurately capture the
densification property. Thus, in the following, we focus on evaluating dynamics of aver-
age path length and average clustering coefficient in synthetic graphs. As a reference,
we also include the results using the Preferential Attachment model [Barabási and
Albert 1999], which is the most popular static graph model, and the Forest Fire model
[Leskovec et al. 2005].8 We repeated our experiments 5 times for all three models and
obtained consistent results, with the variance across all runs at least three orders of
magnitude smaller than the average value. Thus, for brevity, we only show the result
for a single run.

Average Path Length Evolution: Figure 26(a) plots the average path length over
time using our spatial component, the Preferential Attachment model, the Forest Fire

8Following a similar procedure described by Sala et al. [2010], we modify the Forest Fire model to produce
undirected graphs by creating undirected edges and allowing the “burning” process to proceed in both
directions of an edge. To calibrate the model, that is, determining the burning probability p, we sample
values between (0, 1) to find the best fit p where the corresponding synthetic graphs match the original
graph the most in terms of network distance and clustering coefficient.
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Fig. 26. Graph dynamic properties on generated synthetic graphs and the original Renren graph. All include
two time periods from the very beginning to December 11, 2006, and in January to February, 2007 (to avoid
the one-time merge event in Renren with another OSN). (Original: Renren graph; Spatial Component: graph
generated by our spatial component; PA: graph generated by the preferential attachment model; Forest Fire:
graph generated by the Forest Fire model).

model, and the original data. For the 2006 segment, our spatial component displays
the most similar pattern to the original data, where the path length decreases first
and then increases slightly, while the Preferential Attachment and Forest Fire models
produce increasing path length. For the 2007 segment, while all four graphs display
a decreasing pattern over time, our spatial component is the closest to the original
graph. In this segment, behaviors of the Preferential Attachment and Forest Fire
models change because the snapshot of the original data on December 31, 2006, is used
as the initial graph, removing the long-term impact of preferential attachment [Zhao
et al. 2012] that produces increasing average path length over time.

Average Clustering Coefficient Evolution: Figure 26(b) plots the results for the av-
erage clustering coefficient from the three models and the original data. For the 2006
segment, only our spatial component behaves similarly to the original data, with an
average clustering coefficient in (0.15, 0.22), while that of the Preferential Attachment
model stays closely to 0, and the Forest Fire model remains above 0.4. For the 2007
segment, again our spatial component produces nearly identical value of the original
data, while the results of the Preferential Attachment and Forest Fire model deviate
largely. Together, these results confirm three key findings. First, our spatial component
can accurately capture the significant local connectivity and the slowly decreasing
clustering coefficient. Second, the Preferential Attachment model is unable to main-
tain high clustering coefficient over time, even when growing from a highly clustered
graph. Finally, as indicated by our earlier analysis, the Forest Fire model produces
relatively high clustering coefficient, unable to capture the key properties of Renren
such as decreasing clustering coefficient.

Summary of Results. Our validation confirms that the spatial component can
accurately capture key dynamic features observed in Renren dataset. Since our 2007
synthetic trace takes input from the temporal component of our model, the spatial
component validation also provides an overall validation of our proposed model.

7.3. Facebook Results

We now briefly summarize how we validate our model using the Facebook dataset, since
the methodology is very similar to what is applied to the Renren dataset. Like Renren,
our results on Facebook datasets also strongly validate the effectiveness of our model.

First, we validate the temporal component by calibrating the self-similar module and
the non-stationary module and then produce a synthetic edge creation trace (repeated
5 times). The total edge count matches the original data, that is, the average ratio
between the original and synthetic traces, is 1.05 with variance <10−5. The wavelet-
based analysis on the synthetic traces leads to results consistent with that of the
original trace. Specifically, for 3-day segments, H estimates with 95% CI fall between
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Table V. Statistics of the Original Facebook Graph, the Synthetic Graph Generated by Our
Spatial Component, by the Forest Fire Model, and by the Preferential Attachment Model

Avg. Avg. path Avg. Final avg. Final avg. Final Final #
Graph Degree length CC Degree path length CC of Edges

Facebook Original 32.293 5.760 0.101 37.357 5.630 0.108 876,993
Synthetic (our model) 32.508 3.650 0.122 37.545 3.645 0.118 881,415

Forest Fire 70.273 3.836 0.469 69.509 4.030 0.446 1,631,792
Preferential Attachment 35.960 2.890 0.012 35.986 2.996 0.006 844,812

Path length and CC do not consider multiple edges between node pairs. All standard deviations are less than
4%. Columns 2–4 refer to averaged results for intermediate graph snapshots, and columns 5–8 refer to the
final graph snapshot (Facebook).

(0.5, 1) with an exception of <1%. The exception ratio (the portion of abnormal segments
whose H estimates are of (0.5,1)) grows to 25% for 15-day segments and 100% for 20-day
segments.

Second, the spatial component for Facebook differs slightly from that of Renren
because Facebook wall posts can lead to multiple edges between a node pair (while
Renren only has one per node pair). Thus we modify our model, as well as the Forest
Fire and Preferential Attachment models, to allow duplicated edges. We grow the three
models from 0 node to the total number of nodes 46, 952 in the Facebook dataset. We
compare the synthetic traces generated by the three models and the original data (see
Table V). Again, our results show that our model can accurately capture the growth
of the Facebook trace. Its average node degree and clustering coefficient, for both
intermediate and final snapshots, are almost identical to the original data, while the
Forest Fire and Preferential Attachment models produce large deviations.

7.4. Summary

Our results on the Renren and Facebook datasets consistently show that our model can
successfully capture both the temporal properties of graph dynamics, in terms of self-
similar scaling and deterministic non-stationary trends in terms of periodic patterns,
and its spatial properties observed, including long-term graph distance shrinkage and
reduction in local clustering.

8. RELATED WORK

8.1. Self-Similarity Measurements and Models

Self-similarity describes the phenomenon where a property is preserved with respect to
scaling in space and/or time. If an object is self-similar, then its parts, when magnified,
resemble the shape of the whole [Park and Willinger 2000]. Previous works have
studied structural self-similarity in networks [Guimera et al. 2003; Song et al. 2005],
that is, the scale-invariance properties of physical structures of a graph (e.g., node
degree or community size distribution) under coarse graining of vertices. Our work
differs by studying self-similar scaling properties on time dynamics, that is, “temporal”
self-similarity, which has not been studied in social networks.

Self-Similarity Measurements. Temporal self-similarity describes the scal-
ing properties of certain statistics (e.g., variance, R/S, wavelet coefficients, finite-
dimensional distributions) of a time series when computed at different time scales
[Park and Willinger 2000]. It has been detected in diverse contexts such as ecology, life
sciences, and stock markets [Eisler et al. 2008] and was first introduced to network
traffic for the purpose of modeling the bursty characteristics observed in Ethernet
LAN (local area network) traffic [Leland and Wilson 1991; Leland et al. 1994]. Later
studies show self-similarity has also been observed in other network traffic scenarios,
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including wide-area traffic [Paxson and Floyd 1995], world wide web traffic [Crovella
and Bestavros 1997], disk-level I/O [Riska and Riedel 2006], HTTP traffic traces [Deng
et al. 2012], variable-bit-rate video [Beran et al. 1995; Garrett and Willinger 1994], blog
posts [Goetz et al. 2009], messages [Rybski et al. 2009], and emails [Eisler et al. 2008]
in communication networks. Note that these empirical studies show that, in practice,
self-similar property is typically observed over a finite range of time scales [Abry and
Veitch 1998; Garrett and Willinger 1994; Gribble et al. 1998] and is difficult to discern
at both very small and very large time scales.

Self-Similarity Models. Generally speaking, there are two classes of self-similar
models. The first are purely mathematical models, for example, fractional Gaussian
noise [Mandelbrot and van Ness 1968], fractional Brownian motion [Mandelbrot and
van Ness 1968], fractional autoregressive integrated moving average (ARIMA) pro-
cesses [Hosking 1981], and b-model [Wang et al. 2002]. They are strictly descriptive
and cannot explain the root cause underlying the formation of self-similarity. The
second class seeks to provide physical reasons behind self-similarity. Inspired by the
renewal reward process in economics [Taqqu and Levy Taqqu and Levy], the superpo-
sition of many ON/OFF sources [Willinger et al. 1997; Gribble et al. 1998] captures
the observed self-similar nature of Ethernet LAN traffic if the durations of the ON- or
OFF-periods have a heavy-tailed distribution. The M|G|∞ queuing model [Cox 1984;
Paxson and Floyd 1995; Park and Willinger 2000], where sources arrive according
to a Poisson process and each source is active for a duration that is described by a
heavy-tailed distribution, can also successfully explain self-similar phenomena.

8.2. Graph Models

In general, graph models can be classified as static graph models or dynamic graph
models.

Static Models. We further classify static models into three sets. One set includes
feature-driven models designed to capture one or more static graph features, for exam-
ple, small-world [Watts and Strogatz 1998], power-law degree distribution [Barabási
and Albert 1999; Holme and Kim 2002], and high clustering coefficients [Holme and
Kim 2002]. A second set includes intent-driven models that try to explain the underly-
ing process of graph formation. Nearest-neighbor models [Vázquez 2003; Davidsen et al.
2002; Toivonen et al. 2006], random-walk models [Blum et al. 2006; Vázquez 2003], and
copying models [Kumar et al. 2000; Vázquez 2003] belong to this set. Finally, a third
set of models generates graphs based on graph structural statistics instead of graph
features. Kronecker graphs [Leskovec and Faloutsos 2007] apply Kronecker multipli-
cation to generate graphs similar to real graphs. The dK-series model [Mahadevan
et al. 2006] uses subgraph degree distributions to capture increasingly detailed repre-
sentations of graph structures. Finally, Sala et al. [2010] proposes a general technique
to produce “realistic” synthetic graphs by calibrating graph models using real graphs.

Dynamic Models. In contrast, dynamic models aim to capture dynamic features
of graphs. Barabâsi et al. [2002] modifies a preferential attachment model to capture
graph densification. Leskovec et al. [2005] proposes a Forest Fire model to capture
both graph densification and diameter shrinking properties in networks. Later models
[McGlohon et al. 2008; Xia and Hu 2015] capture similar properties. The dynamic
copying model captures the property of decreasing clustering coefficients but not the
power-law degree distribution [Bonato et al. 2009]. Based on graph structure statis-
tics, Akoglu et al. [2008] proposes a three-dimensional Kronecker model. Akoglu and
Faloutsos [2009] is a model based on random typing statistics to capture several graph
dynamic features. Unlike our work, Akoglu and Faloutsos [2009] is not modeled after
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empirical data of graph dynamics. Leskovec et al. [2008] designs a model of network
evolution but focuses on reproducing desired structural properties in the final snap-
shot. Finally, Navlakha et al. [2015] tries to include capturing the network harshness
into the model, that is, how likely a node will be lost, but also cares about the final
sturctural statistics only.

9. CONCLUSION

Starting from the exploration of self-similarity properties, which is critical in determin-
ing how to model network dynamics, our work takes a concrete step towards studying
the detailed dynamics of social networks. We focus on “time-stamped” traces of network
growth, that is, a network includes detailed timings of when nodes arrive and edges
are created. By performing empirical studies of network dynamics over two detailed,
time-stamped traces of social networks over multiple years, that is, the Renren dataset
and Facebook wall post dataset, we have detected that the edge creation process in
both networks does have properties consistent with self-similar scaling. We have also
quantified that such properties hold from seconds to hours and gradually weaken at
larger time scales due to the existence of non-stationary patterns introduced by human
behaviors, for example, diurnal or weekly user activities.

Specifically, we find that the edge creation process in the two OSNs is non-stationary
over long-term periods, and the two traditional techniques for self-similarity detection,
that is, R/S and variance methods, produce inconclusive results and are unsuitable
for measuring self-similarity in real traces in social networks. By applying the more
robust wavelet-based method against underlying non-stationary trends, we find the
edge creation process in both network traces does exhibit properties consistent with
self-similarity over time scales ranging from seconds to hours.

We leverage this new result to propose a comprehensive model of graph dynamics,
including a temporal component that defines when and how many new edges are formed
across all the users, and a spatial component that defines where in the graph new edges
form. Our temporal component captures the coexistence of long-term non-stationary
periodic structure, for example, diurnal or weekly patterns, and properties consistent
with self-similarity at shorter time scales, while our spatial component is a dynamic
graph model that simulates edge creation process driven primarily by existing users
and captures graph densification, shrinking network diameter, and decreasing local
clustering.

Our detailed validation efforts on both datasets consistently show that our model
accurately captures both the temporal properties of graph dynamics, in terms of self-
similar scaling and certain deterministic non-stationary features, and also many key
dynamic structural properties of the two social graphs over time.

By providing such a practical method for generating a realistic sequence of time-
stamped events that uniquely define the formation and evolution of a social network
in time and space, our model fills an existing void in network dynamics, and addresses
an urgent need for accurate models that account for both temporal and spatial features
in network dynamics.
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