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ABSTRACT
By offering high availability and elastic access to resources, third-
party cloud infrastructures such as Amazon EC2 are revolutioniz-
ing the way today’s businesses operate. Unfortunately, taking ad-
vantage of their benefits requires businesses to accept a number of
serious risks to data security. Factors such as software bugs, oper-
ator errors and external attacks can all compromise the confiden-
tiality of sensitive application data on external clouds, by making
them vulnerable to unauthorized access by malicious parties.

In this paper, we study and seek to improve the confidentiality
of application data stored on third-party computing clouds. We
propose to identify and encrypt allfunctionally encryptabledata,
sensitive data that can be encrypted without limiting the function-
ality of the application on the cloud. Such data would be stored
on the cloud only in an encrypted form, accessible only to users
with the correct keys, thus protecting its confidentiality against un-
intentional errors and attacks alike. We describeSilverline, a set
of tools that automatically 1) identify all functionally encryptable
data in a cloud application, 2) assign encryption keys to specific
data subsets to minimize key management complexity while en-
suring robustness to key compromise, and 3) provide transparent
data access at the user device while preventing key compromise
even from malicious clouds. Through experiments with real appli-
cations, we find that many web applications are dominated bystor-
age and data sharingcomponents that do not require interpreting
raw data. Thus, Silverline can protect the vast majority of data on
these applications, simplify key management, and protect against
key compromise. Together, our techniques provide a substantial
first step towards simplifying the complex process of incorporating
data confidentiality into these storage-intensive cloud applications.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized Access
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1. INTRODUCTION
Third-party computing clouds, such as Amazon’s EC2 and Mi-

crosoft’s Azure, provide support for computation, data manage-
ment in database instances, and Internet services. By allowing
organizations to efficiently outsource computation and data man-
agement, they greatly simplify the deployment and management of
Internet applications. Examples of success stories on EC2 include
Nimbus Health [4], which manages and distributes patient medical
records, and ShareThis [5], a social content-sharing network that
has shared 430 million items across 30,000 websites.

Unfortunately, these game-changing advantages come with asig-
nificant risk to data confidentiality. Using a multi-tenant model,
clouds co-locate applications from multiple organizations on a sin-
gle managed infrastructure. This means application data isvulner-
able not only to operator errors and software bugs in the cloud, but
also to attacks from other organizations. With unencrypteddata
exposed on disk, in memory, or on the network, it is not surprising
that organizations cite data confidentiality as their biggest concern
in adopting cloud computing [17, 33, 48]. In fact, researchers re-
cently showed that attackers could effectively target and observe in-
formation from specific cloud instances on third party clouds [40].
As a result, many recommend that cloud providers should never be
given access to unencrypted data [6, 41].

Organizations can achieve strong data confidentiality by encrypt-
ing data before it reaches the cloud, but naively encryptingdata
severely restricts how data can be used. The cloud cannot perform
computation on any data it cannot access in plaintext. For appli-
cations that want more than just pure storage,e.g., web services
that serve dynamic content, this is a significant hurdle. There are
efforts to perform specific operations on encrypted data such as
searches [1, 11, 12, 15, 25, 30, 43, 44]. A recent proposal of afully
homomorphic cryptosystem [24] even supports arbitrary computa-
tions on encrypted data. However, these techniques are either too
costly or only support very limited functionality. Thus, users that
need real application support from today’s clouds must choose be-
tween the benefits of clouds and strong confidentiality of their data.

In this paper, we take a first step towards improving data con-
fidentiality in cloud applications, and propose a new approach to
balance confidentiality and computation on the cloud. Our key ob-
servation is this: in applications that can benefit the most from the
cloud model, the majority of their computations handle datain an
opaque way,i.e. without interpretation. For example, aSELECT
query looking for all records matching userID’Bob’ does not
need to interpret the actual string, and would succeed if thestring
were encrypted, as long as the value in the query matched the en-



crypted string. We refer to data that is never interpreted (a.k.a.
used in a computation) by the application asfunctionally encrypt-
able, i.e. encrypting them does not limit the application’s function-
ality. Consider for example, ShareThis [5], which uses Amazon’s
SimpleDB for attribute search and list management. Its documen-
tation states “aggregators sum instances of each event typeby pub-
lisher and update SimpleDB on day boundaries.” With ShareThis,
users search for events by matching specific attributes, butthe cloud
does not interpret the value of the attributes and simply treats them
as opaque data. Similarly, the report generator functionality only
computes count of events of a particular type but ignores theactual
value of those “opaque” types. Similar operations are common in
other applications like social networks or shopping carts.

Leveraging the observation that certain data is never interpreted
by the cloud, our key step is to split the entire application data into
two subsets: functionally encryptable data, and data that must re-
main in plaintext to support computations on the cloud. As welater
show, a large majority of data in many of today’s applications is
functionally encryptable. As shown in Figure 1, such data would be
encrypted by users before uploading it to the cloud, and it would be
decrypted by users after receiving from the cloud. While this idea
sounds conceptually simple, realizing it requires us to address three
significant challenges: 1) identifying functionally encryptable data
in cloud applications, 2) assigning (symmetric) encryption keys to
data while minimizing key management complexity and risks due
to key compromise, and 3) providing secure and transparent data
access at the user device.

Identifying functionally encryptable data. The first challenge
is to identify data that can be functionally encrypted without break-
ing application functionality. To this end, we present an automated
technique that marks data objects using tags and tracks their usage
and dependencies through dynamic program analysis. We identify
functionally encryptable data by discarding all data that is involved
in any computations on the cloud. Naturally, the size of thissubset
of data depends on the type of service. For example, for programs
that compute values based on all data objects, our techniques will
not find any data suitable for encryption. In practice, however, re-
sults show that for many applications, including social networks
and message boards, a large fraction of the data can be encrypted.

Encryption key assignment. Once we identify the data to be
encrypted, we must choose how many keys to use for encryption,
and the granularity of encryption. In the simplest case, we can en-
crypt all such data using a single key, and share the key with all
users of the service. Unfortunately, this has the problem that a ma-
licious or compromised cloud could obtain access to the encryption
key,e.g.by posing as a legitimate user, or by compromising or col-
luding with an existing user. In these cases, confidentiality of the
entire dataset would be compromised. In the other extreme, we
could encrypt each data object with a different key. This increases
robustness to key compromise, but drastically increases key man-
agement complexity.

Our goal is to automatically infer the right granularity fordata
encryption that provides the best tradeoff between robustness and
management complexity. To this end, we partition the data into
subsets, where each data subset is accessed by the same groupof
users. We then encrypt each data subset using a different key, and
distribute keys to groups of users that should have access (based
on the desired access control policies). Thus, a malicious or buggy
cloud that compromises a key can only access the data that is en-
crypted by that key, minimizing its negative impact. We introduce a
dynamic access analysis technique that identifies user groups who
can access different objects in the data set. In addition, wede-
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Figure 1: A depiction of our approach. The cloud stores en-
crypted data, and the organization stores decryption keys.The
clients fetch the two and decrypt the data locally to obtain the
application’s service.

scribe a key management system that leverages this information to
assign to each user all keys that she would need to properly access
her data. Since key assignment is based on user access patterns,
we can obtain an assignment that uses a minimal number of en-
cryption keys necessary to “cover” all data subsets with distinct
access groups, while minimizing damage from key compromise.
Key management is handled by the organization1. We also develop
mechanisms that we need to manage keys when users or objects are
dynamically added to or removed from the application or service.

Secure and transparent user data access. Client (edge) de-
vices,e.g.browsers, are given decryption keys by the organization
to provide users with transparent data access. Of course, these de-
vices (and users) must protect these keys from compromise. For ex-
ample, an untrusted (or compromised) cloud can serve customized
attack code to obtain encryption keys and decrypted data. Toward
off these attacks, we propose a client-side component (which runs
in the users’ browsers) that allows users to access cloud services
transparently, while preventing key compromise (even froma ma-
licious cloud). Our solution works by leveraging already available
features in modern web browsers such as same-origin policies and
support for HTML5postMessagecalls. As a result, our solution
works without any browser modifications, and can be easily de-
ployed today.

Prototype and evaluation. We implemented our techniques as
part of Silverline, a prototype of software tools designed to simplify
the process of securely transitioning applications into the cloud.
Our prototype takes as input an application and its data (stored in a
database). First, it automatically identifies data that is functionally
encryptable. Then, it partitions this data into subsets that are ac-
cessible to different sets of users (groups). We assign eachgroup a
different key, and all users obtain a key for each group that they be-
long to. This allows the application to be run on the cloud, while all
data not used for computation is encrypted. Since popular EC2 ap-
plications like ShareThis are all proprietary, we apply oursystem to
several popular open-source applications, and show that our system
can partition data and assign keys to maximize data protection with
a minimal number of keys. In addition, we find that a large majority
of data can be encrypted on each of our tested applications.

In summary, the main contributions of this paper are:

• We introduce a novel approach to provide data confidential-
ity on the cloud while maintaining the functionality of cloud

1In this paper, we use “organization” to refer to the entity that wants
to securely deploy its application and data on the cloud.



Figure 2: An example message board application’s DB schema.

applications. Our approach works by automatically identify-
ing subsets of an application’s data that are not directly used
in computation, and exposing them to the cloud only in en-
crypted form.

• We present a technique to partition encrypted data into parts
that are accessed by different sets of users (groups). Intelli-
gent key assignment limits the damage possible from a given
key compromise, and strikes a good tradeoff between robust-
ness and key management complexity.

• We present a technique that enables clients to store and use
their keys safely while preventing cloud-based service from
stealing the keys. Our solution works today on unmodified
web browsers.

• We describe Silverline, a prototype toolset that implements
our ideas, and discuss the results of applying Silverline to
three real-world applications.

2. OVERVIEW OF SILVERLINE
Our overarching goal is to improve the confidentiality of appli-

cation data stored on the cloud. We assume that the third-party
computing cloud provides service availability according to service
level agreements, but is otherwise untrusted. More specifically, we
assume cloud servers may be compromised or may maliciously col-
lude with attackers to compromise data confidentiality.

Our solution to improving data confidentiality on the cloud calls
for end-to-end encryption of data by its owner (the organization)
and its consumers (the users). In this paper, we concern ourselves
with the data persistently stored in the databases. Our techniques
apply to both traditional relational databases on the cloud, and to
databases specifically designed for the cloud [3, 34, 14]. Access to
encrypted data is granted through selective distribution of encryp-
tion keys, but only to users that have legitimate access to the data.
We usesymmetric keysto encrypt the data – symmetric keys are
highly efficient and provide confidentiality with low computational
overhead.

2.1 An Illustrative Application
We illustrate our approach using an online message board appli-

cation, where users use topic-based forums for exchanging mes-
sages and discussions. We show a sample database schema for
this application in Figure 2, and we will use this example through-
out the paper to discuss our approach. The schema consists ofa
Users table to store user profile information such as name, userid
or email, aGroups table to store information about discussion
groups, aUsersToGroups table that maps users to the groups
they are members of, and aMessages table that contains individ-
ual messages sent to the groups.

Today, an organization would deploy the above message board
on the cloud by directly running it on the cloud infrastructure. Data
would be stored in plaintext in a database, and queries from the
users would be executed directly on this database. In this simple
approach, user data confidentiality can be compromised in several
ways. The cloud operators have access to cloud hardware and the
application data. A bug in the software managing the cloud may
reveal user data to attackers. Finally, the multi-tenant nature of the
cloud brings a unique challenge: a compromised applicationrun-
ning in the cloud can “infer” data that belongs to the users ofother
applications running on the same hardware [40]. Recent survey
papers [13, 35] describe these and other threats in more detail.

2.2 Proposed Approach
In Silverline, we improve data confidentiality by encrypting as

much of the application data as possible on the cloud (without
breaking the application’s functionality). This enables organiza-
tions to use existing clouds and protect their data and the data of
their users. The key ideas of our approach are shown in Figure1.

Storing and querying data on the cloud. In Silverline, data in
the database (running on the cloud) is encrypted, but keys are not
revealed to the cloud. The keys are stored by the organization that
“outsources” its application and user data to the cloud. To fetch
data from the cloud, the user first contacts the organizationto get
the appropriate key(s), and then sends the query to the cloudto
fetch the data. The input parameters to the query are also sent in
encrypted form. The cloud executes the query using this encrypted
input and then sends back the results, also in encrypted form. Then,
the user’s device decrypts the data and displays it.

For example, consider the query:SELECT * FROM Users WHERE
UserName = ’Bob’. Here, Bob queries the cloud for his detailed
profile information. In current systems, the username wouldbe in
plaintext. In Silverline, the username is encrypted, usinga sym-
metric key that is known only to the organization and Bob. Bob
obtained this key when he registered with the organization.Thus,
the query usesE(Bob, KBob) as the input parameter for the field
UserName. The query (the SQL code itself) does not need to be
modified. The results returned from the cloud are also encrypted
with the symmetric keyKBob, which Bob decrypts upon receipt.

Similarly, if some data is to be known to a group of users, then
all the users in the group share the same key. For example, allthe
members of the groupLiterature would obtain the keyKLit

when they join the group. A query to fetch the messages sent tothis
group (SELECT * FROM Messages WHERE GroupId=’Literature’)
would use the encrypted valueE(Literature,KLit) as the input
parameter forGroupId. If a member wants to post a message to
the group, the message would be encrypted before sending it to
the cloud, using the group’s key. The cloud would then store the
encrypted blob of text in the database (instead of the plaintext mes-
sage itself). Once the keys are received, the clients cache them to
reduce future key requests to the organization, and thus, reduce the
load induced on the organization.

Unfortunately, our approach might not be able to encrypt allap-
plication data. For example, the message board might want todis-
play the average age of the users in the system. To compute this,
the application must access the date-of-birth (DOB) field inthe
database, calculate the age of each user by subtracting the DOB
with today’s date, and then perform a summation to calculatethe
average2. Since this involves computation, Silverline identifies this
field asnot functionally encryptable and leaves it in plain text.

2Such computations could be performed on encrypted data using
homomorphic encryption schemes [24]. Unfortunately, theyincur
very high overhead, which we want to avoid.



Storing and managing keys in the organization. In our ap-
proach, the role of the organization is to store all keys securely, and
to provide users with only the keys that they should have access
to. We take a fine-grained encryption approach to provide strong
confidentiality guarantees.

A database consists of tables; tables consist of rows; and rows
consist of cells. In Silverline,different parts of a single table (even
individual cells) may be encrypted with different keys. For exam-
ple, in theUsers table above, consider a situation where all users
can see all users’ UserId and UserName in the system. However,
only the user herself should see her email address, DOB, location,
and gender. In this scenario, the ideal key assignment wouldbe to
encrypt all UserId and UserName cells in the table with one sym-
metric key, and give that key to all the users. But the cells corre-
sponding to email, location, and gender of a user, say Bob, must be
encrypted with a key (KBob) that is accessible only to Bob.

The organization is responsible for securing the creation of user
accounts. For instance, a university deploying a message board for
its employees is in charge of ensuring that each applicationaccount
is actually owned by a different employee. This is importantto
prevent the cloud from gaining access to all keys by creatingmany
users in the application’s database to perform a Sybil attack [20].

The organization is also responsible for using Silverline to deter-
mine the key assignment, store these keys, and to provide access to
keys to users, as they need them. Of course, all keys must be stored
by the organization in a secure fashion. Since symmetric keys are
small in size, and they can be cached on users’ machines, the load
on the organization is quite low, and so is the hardware cost.Ef-
fectively, the organizations can use external clouds, preserve the
confidentiality of their data, and only incur a small cost in in-house
hardware.

Data access on user devices. In our model, users store and re-
trieve (encrypted) data on the cloud, and they obtain their keys from
the organization. Data is encrypted and decrypted locally.There-
fore, protecting decrypted data and user keys is critical. Desktop
applications can protect keys locally using standard techniques. For
example, by storing and isolating the keys on disk with permis-
sions given only to the user that represents the organization. How-
ever, we need an approach to provide similar isolation properties in
web applications, where data, code and keys are combined in the
same browser. To accomplish this, Silverline provides a solution
that works without browser modifications. To leverage this,appli-
cations on user devices must request keys on behalf of the user,
decrypt data from the cloud before displaying it to the user,and
encrypt any user data before sending it to the cloud.

Application modifications and responsibilities. The goal of
our work is to enable organizations to easily migrate existing In-
ternet applications to a more secure model, where the majority of
application data is protected from vulnerabilities in the cloud using
end-to-end encryption.

To leverage this model, the organization’s developers needto
make three minor changes to the application before deploying it
on the cloud. First, the developers need to add routines to encrypt
data before uploading it to the cloud and routines to decryptdata
before the clients can consume it. But there isno needto make any
changes to the application logic. Second, the developers need to
make minor changes to the database schema. The Silverline tools
inform developers which fields can be encrypted on the cloud with-
out affecting the application. Then, these encrypted fieldsshould be
modified to an appropriate type in the database,e.g.anint now be-
comes ablob of text (to store the encrypted integer value). These
database schema changes can be completely automated. Third, the

application needs to be run in a modified runtime on the cloud,
which implements our techniques, rather than in the regularrun-
time. This modified runtime performs simple, light-weight tracing
of data between the DB and the application.

Finally, after running this application on the cloud, the organi-
zation needs to perform key management, while the client devices
perform data encryption and decryption.

Outlook. The key questions to answer when implementing
our approach are the following: 1) Which portion of the data can
be encrypted without breaking the application’s functionality, 2)
which keys are used to encrypt what portions of the data and how
are they managed, and 3) how is encrypted data managed at the
end users’ devices. The answers to these questions are discussed in
more detail in Section 3.

2.3 Confidentiality vs. Key Management
Before discussing the design of our system, we use this section

to introduce and define some terminology: A user has access toa
set of database cells, and hence, is given a set of keys that decrypt
these cells. We describe the tradeoffs involved in assigning these
keys to the cells starting with some basic definitions.

Our main goal is to maintain the confidentiality of the database
on the cloud. This is achieved as long as the confidentiality of each
cell is protected. A cell’s confidentiality is defined as:

DEFINITION 1. Theconfidentialityof a cell is maintained when
no user that does not have access to the cell is able to decryptit.

We use the notion of thescope of a keyto quantify the confiden-
tiality properties in Silverline.

DEFINITION 2. The scope of a key is the number of cells in the
database that the key can decrypt.

A user may receive multiple keys to decrypt all her cells. Then
her scope is the sum of all her keys.

DEFINITION 3. The scope of a user is the union of the scopes
of all her keys.

To reduce the management overhead on the organization and the
users, the number of keys given to each user should be minimized.
The obvious solution is to give no key to any user. However, this
is not valid because it does not provide any functionality tothe
user. Of course, the application’sfunctionality must be preserved
after applying our mechanisms. That is, there is a tradeoff where
the organization aims to distribute as few keys as possible,without
denying any user access to data that this user is entitled to.

DEFINITION 4. A user is said to have minimal keys, when re-
ducing or increasing her keys any further leads either to breaking
the application’s functionality or to a loss of data (cell) confiden-
tiality.

The end points in the spectrum of choices to tradeoff between
confidentiality and key management overhead do not meet our re-
quirements. A key with absolute scope on the entire databasevi-
olates confidentiality (as a user with that key can decrypt any cell
in the DB). On the other hand, a key per cell (with a scope of one)
leads to high key management overhead. For a given database,the
best tradeoff is the one where each user has minimal keys accord-
ing to Definition 4. If each user has minimal key assignment, then
the key assignment for the entire database is said to beoptimal.
Silverline aims to achieve thisoptimal key assignment.



Finally, the cloud’s scope must be zero. If the cloud colludes
with a small set of users, then its scope is the union of the scope of
all users it colludes with. As long as the organization secures the
account creation process, the cloud cannot gain access to the entire
database by performing a large-scale Sybil attack.

2.4 Integrity of the Data on the Cloud
In this paper, we focus on data confidentiality but set aside issues

of verifying the integrity of data and computation on the cloud.
This is because clients can use several existing techniquesto verify
that the cloud is not tampering with their data: First, clients can
add an HMAC (hash-based message authentication code) [10] to
the encrypted blob that is stored on the cloud. This can laterbe
used by the receivers to verify the blob’s integrity.

Second, the clients can use proof of storage [7, 29] techniques
to verify that the cloud is not performing denial-of-service attacks
and that the cloud is actually keeping all the data the clients stored.
Even dynamic data [22] can be verified with this approach. These
techniques work with very low computational overhead, and by
transferring little data between the clients and the server.

Finally, techniques to protect against consistency attacks by un-
trusted cloud servers [31] can further help the clients to verify the
consistency of the data obtained from the cloud – in particular, that
the data received is the most up-to-date version, and that itis the
one seen by other clients concurrently querying the cloud. These
techniques need to exchange small amount of information, such as
the root of a Merkle hash tree [32], with the users, which can be
done in our model via the organization.

3. SYSTEM DESIGN
Silverline includes three techniques to help automate the transi-

tion to a more confidential application model. 1)Encrypted data
tracking identifies functionally encryptable data. 2)Database la-
beling and key assignmentpartitions functionally encryptable data
into different groups and assigns encryption keys. This also in-
cludes mechanisms to handle dynamic database updates appropri-
ately. Finally, 3)client-side key managementprotects keys from
compromised clouds. We describe these techniques in detailnext.

3.1 Encrypted Data Tracking
Silverline uses a combination of information tagging and dy-

namic analysis to determine the types of data (i.e. the database
fields) that are functionally encryptable. We apply our techniques
by modifying the application runtime environment (for our evalua-
tion, the PHP interpreter) to tag information associated with differ-
ent database fields, and propagate them throughout the application
logic. By training Silverline with a representative set of application
queries, we expose the computational requirements of the appli-
cation and determine whether each database field is functionally
encryptable or not. We show a simple example in Figure 3, and
describe details of our approach below.

Dynamic program analysis. To find functionally encryptable
data, one can perform static or dynamic program analysis. Inboth
cases, the goal is to find database fields that are used by the applica-
tion in computations, such as string operators, numerical operators,
and comparators. To this end, one needs to track the use of results
from the database and analyze their usage.

In this paper, we use adynamicapproach, based on a set of train-
ing queries that exercise the application. Given a set of training
queries that are representative of application-to-database queries,
we modify the interface between the database and the application
runtime to automatically extract meta-information as datais re-
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Figure 3: Encrypted data tracking: We train Silverline with
a set of user inputs to the application that generate queriesto
the database back-end. The database responds with data, and
the modified application runtime tags each data with a unique
field number. The application runtime then propagates tags
through computational dependencies, and logs warnings when-
ever a tagged piece of data is involved in a computation.

turned from the database. Note that these modifications are application-
independent and only need to be performed once for a particular
programming environment (such as PHP, Python, or Java). We use
this to build a table that maps the signatures of specific queries to
fields accessed in the DB.

Data tagging and propagation. At a high level, Silverline tags
all data entering the application from the database. It thentracks
this data while it is used by the application, until a data object is
involved in a computation or returned to the user without access-
ing its values. Data is sent from the database to the application in
response to application queries. As each piece of data is retrieved
from the database, it is tagged with afield numberthat corresponds
to the field read. Field numbers are positive integers that uniquely
identify a field in the DB.

As operations are performed on data, the modified application
runtime or interpreter propagates the tags as follows. An assign-
ment (data move) operation propagates the union of all tags of the
right-hand side (RHS) operand to the left-hand side (LHS) operand.
Any previous tags for the LHS are overwritten. For arithmetic,
string, logical, or comparison operations, tags are propagated in
the same way. However, in addition, if any of the operands on the
RHS are tagged, then a warning event is generated for each tagged
operand. This event includes field numbers of all tagged operands
and their source code location.

After all queries in the training set have been executed, Silverline
collects the logs containing all warnings generated in the applica-
tion. We aggregate all warnings to produce a unique list of field
numbers that tagged non-encryptable data. Using the previously-
produced table (which maps field numbers to field details in the
DB), we produce a list of all database fields whose values mustbe
exposed in plaintext for the application to function properly. These
fields are not functionally encryptable. All other fields are.

Modifying application runtime. We demonstrate our tech-
niques on PHP applications, by modifying the PHP interpreter and
the PHP-MySQL interface to support data tagging and propagation.
We store the tags by extending the_zval_structdata structure that
is at the base of all data types in the PHP interpreter. This ensures
that tags propagate correctly for all data types and persistas long
as an object remains.

An alternative approach. A static analysis approach is an al-
ternative to our dynamic approach. It requires additional developer
effort, which we aim to avoid. In particular, the developersneed
to annotate the queries in the source code with the fields accessed.
The static approach might be more appropriate when a training set



is not easily available. The tag propagation policies, however, re-
main the same in both approaches.

3.2 Database Labeling and Key Assignment
We now explain how Silverline addresses the challenge of as-

signing encryption keys to sets of data objects with the aim of pro-
ducing a minimal key assignment for each user. To do so, we need
to automatically determine the appropriate scope for different keys.

Again, we solve the problem by relying on a (relatively com-
plete) training set of application requests. We assume thatwe have
access to a snapshot of the application database, either taken from
a running instance of the application, or produced by a sequence of
recorded or synthetic user requests. We use the training setand the
snapshot to generate a workload of database queries, allowing us to
infer user access patterns and to perform optimal key assignments.

3.2.1 Labeling Algorithm
Given a sufficiently detailed set of requests, we can identify all

database cells accessible to each user. By modifying the interface
between the application runtime and the database, we can usea
“database labeling” technique to capture and store these patterns.
These labels are then used to produce a minimal key assignment.
Figure 4 depicts labeling with an example.

In Silverline, the modified application runtime accesses applica-
tion userIDs, and associates all queries to the database with the ID
of the user whose request generated that query. This allows Silver-
line to assign to each cell in the database alabel. A label is a set
of all userIDs (users) who have access to that cell. For a cellci, its
label can be written asLci

= {o1, o2, ..., oj}, whereoj is the ID of
a user that can accessc. By definition, a user who runs a query has
access to all cells returned as the result of that query. Therefore,
we can build up a label for each cell in the database by running
our training set of application requests. As each user runs aquery
that accesses a cell, her userID is appended to the cell’s label if it
is not already there. For example, if the query “SELECT UserId
FROM Users where Gender=0” is executed by two usersBob

and Admin, Silverline will label theUserId cells of all male
users(Gender=0) in the table with label{oBob, oAdmin}.

Our approach uses a training set of either logged or synthetic
user inputs (SELECT statements) to drive the database cell label-
ing process. For extremely large databases with complex schemas,
it can be difficult for a training set to cover the bulk of the user-
cell combinations possible in the application. In this case, we pro-
pose to augment an existing training set with additional synthetic
requests using an approach similar to protocol input fuzzing [49],
dynamic input generation for testing Web applications [47,39] and
dynamic input generation for high-coverage tests in database ap-
plications [21, 45]. For example, we can add queries to the query
above withGender as input parameter for all values ofGender,
e.g.{0, 1}. For fields with a large number of potential values,e.g.a
long type, we can use sampling guided by the application develop-
ers. To provide comprehensive coverage, we can continue updating
cell labels until the query has been executed for all (or significant
sample) of parameter values and user accounts.

Of course, even after using the aforementioned techniques,it is
possible that our training data is incomplete. In this case,users
are not provided keys to cells that they have access to. Whilethis
does not interfere with the confidentiality of data, it mightdeny
legitimate users access. We handle omissions due to incomplete
training in the same way as dynamic updates to the database (in
both cases, some new information is added or discovered). The
mechanism to handle this is described in Section 3.3.

Handling access hierarchies. Finally, most applications con-
trol data access using different hierarchies of users,e.g. theadmin
user versus regular users. Silverline mechanisms support this nat-
urally because they infer a user’s access privileges based on actual
queries, rather than user names. For example, regular userscan run
the querySELECT * FROM users WHERE UserId=’xxx’ for their
own userID,admin can run the querySELECT * FROM users to
get data on all users. When these queries run during the training
phase, Silverline naturally addsadmin to the labels of all the cells
in the users table. This easily extends to a complex hierarchy of
users with different access privileges.

3.2.2 Key Assignment
Once the labeling step has finished, all cells will have labels that

represent users who can access them. Our key assignment process
uses this information to assign keys to groups of database cells that
have common access patterns. Keys are then distributed to users
based on their accessibility to groups of cells. The goal is to pro-
duce a minimal number of keys in the application while guaran-
teeing that each user can 1) decrypt all the cells she owns, but 2)
cannot decrypt any cell that she does not own.

The key assignment is a simple process. We want an assignment
that satisfies the constraint that each user’s keys provide her with
access to all cells she has access to (based on our training data), but
no more. We also want to use a minimal number of total keys. We
compute the initial key assignment by examining all cell labels in
the entire database. We group all cells together that share the same
label, and assign these cells a single, unique key. This divides all
cells into a number of groups, each defined by a common label and
a common key. Cells that share a common label are accessed by
the same set of users, and thus, share the same encryption key.

There is an additional constraint to consider. Cells in columns
that queries use to performjoin on tables need to be either unen-
crypted, or encrypted using a single key. This is necessary to allow
users to join tables without decrypting the involved table columns.
This means that giving a user access to a single cell in the column is
the same as giving her access to all cells in the column. We believe
keeping these join columns unencrypted is generally reasonable,
since joins are mostly performed on columns representing IDs of
entities, and would not expose real valuable data.

Once assignment finishes, we create an encryption key for each
cell group, encrypt the cells, and then distribute the key toall users
identified in the group label. This ensures that each user hasall the
keys necessary to access all cells she should have access to.

Key assignment properties. As defined in Section 2.3, optimal
key assignment for a database is the one that assigns the minimal
number of keys to each user, such that the keys for this user 1)
decrypt all her cells, and 2) do not decrypt any cell that she does not
have access to. For a given database, our key assignment achieves
these optimality and confidentiality properties. This follows from
the three key steps that we perform in our assignment algorithm:
1) cells with same labels are assigned the same key, 2) cells with
different labels are assigned different keys, and 3) a key isgiven to
a user only when this user (her ID) is included in the corresponding
label.

Key minimality: From the key assignment algorithm, it follows
that the total number of keys assigned to encrypt the entire database
is equal to the number of unique labels in the database. This is in-
deed the optimal number of keys: if there is a key assignment that
uses fewer keys than the total number of unique labels, this assign-
ment can only occur iftwo different labelsare given the same key,
which our algorithm never does. Hence, our algorithm achieves
key minimality.
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UserId UserName Location

1 {a} Alice {a, b, c} Loc
A {a}

2 {b} Bob {a, b, c} Loc
B {b}

3 {c} Carl {a, b, c} Loc
C {c}

Carl (c)

Bob (b)

Alice (a)

Figure 4: Database labeling in action. The application executes in a modified runtime that implements database labeling. The results
produced after performing database labeling on theUsers table for two queries: SELECT UserName from Users and SELECT
Location from Users WHERE UserId=’id’ are shown. The first query returns all users’ names, while thesecond returns only the
querying user’s location.

Cell confidentiality: A cell’s confidentiality is violated only if
the key to decrypt this cell is given to a user that does not belong
to the label of the cell. However, our key assignment algorithm is
based on the labels acquired during the training phase. Since a user
without access to a cell is not included as a part of this cell’s label,
Silverline preserves confidentiality of all cells in the database.

3.3 Incompleteness and Database Dynamics
So far, we have described our mechanisms assuming that data

tracking identifies all encryptable data, and that the database is
static. However, neither of these hold in practice. Data track-
ing might miss computations on certain fields and, as a result, in-
correctly tag these fields as functionally encryptable. Similarly,
databases change due to a number of reasons. For example, new
users join the system and are given access to existing data, and
existing users leave the system. In addition, our training set of
queries may not trigger all code paths in the application, thus, pos-
sibly omitting some users from labels of database cells theyshould
have access to.

A core part of our approach is to accept that the results of the
initial training process can be incomplete or outdated. We introduce
anonline monitoring componentto deal with these two problems.

Online monitoring component on the cloud. This component
runs inside the modified runtime deployed on the cloud. It hastwo
purposes: First, the monitoring component performs a light-weight
data tracking to identify any encrypted data used in computations,
and, if so, alerts the organization. The organization can then use the
key to decrypt the data and properly turn the field on the cloudinto
plaintext. The data tracking is similar to the approach discussed in
Section 3.1 (and hence, we omit the details here).

The second purpose of the monitoring component is to determine
when there are changes to the database cell labels that impact key
assignment. For example, a query is executed where a user accesses
cells for which she does not have the proper keys yet. Anotherex-
ample is a user that leaves a group (and hence, her access needs to
be reduced). If such a change to a label is detected, the organiza-
tion is notified. The organization then updates the key assignment
based on the label changes. The monitoring component detects la-
bel changes by maintaining a “shadow” copy of the database to
store the labeling results. That is, the label for a cell in the original
database is stored in the corresponding cell of the shadow database
(but the shadow does not store any other, actual data). Due tothe
fact that the number of unique labels issignificantly lessthan the
number of cells, the size of the shadow database can be optimized
to be much less than the size of the original database (e.g., by index-
ing the shadow cell content into another table). Using this shadow
database, the monitoring component just needs to generate events

whenever a label in the shadow database changes after a queryis
run (without knowing the query details). When the organization
receives a notification, it updates the key assignment and takes ap-
propriate actions, as described next.

Changes due to database dynamics. The four possible events
due to database dynamics that impact key assignment are listed in
Table 1. Adding a user to a label and deleting a user from a label are
the two fundamental events. These occur when a user accessesher
data for the first time, or when a user leaves (or is removed from)
the system. These two events, in turn, lead to two more events–
merging of two labels and splitting of a label into two. A merge
happens when the labels of two sets of cells become equal, anda
split happens when only a subset of an original set of cells becomes
accessible to a new user.

In Table 1, we present the ideal actions required to properlydeal
with the changes while maintaining key minimality. Adding auser
to a label, for example, means that this user should get access to the
label’s key. Fortunately, providing a key to a user is a low overhead
event. Removing a user from a label requires that the data corre-
sponding to this changed label be re-keyed,i.e. decrypt the data
using the old key and re-encrypt using a new key. This is necessary
to prevent the revoked user from accessing future updates todata
under this label. Data re-keying is undesirable, because itexposes
data as plaintext, and thus, must be performed on the organization’s
own in-house computing resources rather than on the cloud. As a
result, such an event incurs a non-trivial overhead.

Fortunately, this problem of key revocation for old membersof
the group is well addressed in the literature, originally inthe con-
text of content distribution from untrusted servers [23, 8]. Provably
secure lazykey regressionsolutions have be proposed in the past.
We reuse these techniques in Silverline to handle high-overhead
events. More precisely, we handle a delete by assigning a newkey
to the label from which a user was removed. This new key is given
to all the current members of the label, and is used to encryptall
data subsequently generated or updated under this label. However,
this regressed key is special in the sense that it can be used by the
current members to derive all previous keys used to encrypt con-
tent in this group [23, 8] and hence decrypt all content underthis
label with only this single key. Intuitively, the keys generated by
this key regression approach are linked in a manner similar to a
reverse hash chain, where given the current key, all previous keys
can be derived, but not the other way around. This key regression
approach has been shown to scale well in real applications with
highly dynamic group membership with very low overhead [23].

We handle label merges by revealing the keys of both the merged
labels to the members of both the merged label groups. We handle
label split events by assigning a new regressed key to each ofthe



Change event Add a user Delete a user Merge two labels Split a label into two

Ideal action Grant access to key (low) Re-key data (high) Re-key data (high) Re-key data (high)
Proposed action Grant access to key (low) Assign a new key (low) Reveal both keys (low) Assign new keys (low)

Table 1: Possible label changes due to dynamism in database content, ideal actions required to deal with these changes and their
corresponding overhead (in bracket), and our proposed approach to address dynamism and its overhead.
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Figure 5: Our design of safe data processing in the user’s
browser.

new labels generated from the split. The new user in a split label
will be given access to the key to the old label before the split to
ensure she has access to the data under that label. Using thislazy
approach to reduce the overhead from dynamic group membership
slightly relaxes key minimality. For instance, there are two keys
(instead of one) associated with a label after a split or merge event.
However, the application can reach the minimal assignment state
by periodically re-keying the data.

Note that we consider the events generated by the monitoring
component on the cloud to be untrusted. To prevent the cloud from
giving (possibly malicious) users access to data arbitrarily, the or-
ganization checks the label changes to ensure that the users’ scopes
are constrained and that no single user gets access to a largeamount
of data. Only then the organization reacts to the label change events
and updates key assignments. Thus, the organization can keep tight
control over the scope of the users to maintain confidentiality.

Delivering new keys to users. A final question is how to seam-
lessly provide users with access to new keys. Of course, thisshould
not cause any service disruption. When an authorized user accesses
data, but she is missing the necessary decryption keys, thisuser
would not be able to process or display the data. In this case,the
user can simply query the organization for the missing keys (using
key indices described in Section 3.4) and then continue to use the
application. The new keys can be obtained with one RTT latency
and cached for future. Thus, the user only incurs a one-time delay
of a single round trip. Similarly, when a user writes (encrypted)
data to the cloud, the cloud can warn the user when she is using
older keys. Then, the user can obtain the new keys from the orga-
nization and upload newly encrypted data.

3.4 Safe Key Management on User Devices
To provide users transparent access to their data, the organization

must distribute decryption keys to users’ edge devices. As aresult,
Silverline must ensure that a compromised cloud cannot steal keys
or decrypted data from user devices. In particular, when theclient
accesses the application on the cloud and downloads encrypted data
with a web browser, a malicious cloud could inject client-side code
(a piece of JavaScript, for instance) into the output. This client-
side code is then executed on the user’s device, which storesthe
decryption keys. Clearly, we need to ensure that this client-side

code cannot access or leak keys, and that the decryption can be
done in a secure fashion before the data is presented to the user.

Secure data access on user devices. The key insight behind
our approach is to isolate (prevent) the untrusted code fromthe
cloud from accessing sensitive data (such as keys or decrypted data)
on user devices. Only the code from the organization is allowed to
access such data. We accomplish this by leveraging functionality
that is already present in modern Web browsers. In particular, we
make use of the Same Origin Policy (SOP) and HTML5. As a
result, our solution works in current browsers without modification.

We leverage iFrames to isolate and restrict access to sensitive
data in the Web browser. The idea is to use two iFrames in design-
ing web applications hosted on the cloud. One frame belongs to
the cloud, and one belongs to the organization. The keys are stored
in the user’s web browser (as cookies, or on disk with HTML5)
under the sameorigin (the source site details) as the organization.
As a result, the browser’s SOPs prevent the untrusted cloud frame
from accessing keys that belong to the organization, due to differ-
ent origins. Keys are only accessible by the organization’sframe,
protecting them from a potentially compromised cloud.

Once keys are isolated, the next step is to isolate the data decryp-
tion process, so that unencrypted data does not leak to the cloud. In
our solution, the untrusted cloud’s frame downloads the encrypted
data from the cloud, then sends this (encrypted) data to the trusted
organization’s frame via a HTML5postMessage call. The organi-
zation’s frame receives the encrypted data, decrypts it locally, and
renders or processes the data based on user requirements. Any data
sent back to the cloud is first encrypted with appropriate keys inside
the organization’s frame, and then sent back to the cloud’s frame,
which posts the message to the cloud. Because the frames cannot
directly access each other’s data inside the browser, decrypted data
is never accessed by the cloud’s frame. Our solution is depicted in
Figure 5.

Trusting the browser-side code. The final detail is to deter-
mine how the code is sent safely to user devices. In our implemen-
tation, the organization hosts the entire code that runs in the trusted
frame and sends it to the user, which is then cached in her browser.
Then, the cloud’s frame only needs to download encrypted data
from the cloud, and then upload encrypted data generated by the
user to the cloud. Since the code is generally small is size, and
is cached on the client, the load incurred on the organization in
hosting the code is also small. While we chose this approach for
its simplicity, an alternative approach based on code verification,
similar to BEEP [28], is also possible.

We implemented a prototype application to validate this design,
as shown in Figure 5. We hosted data on one server (acting as
the cloud), code on another server (acting as the organization) and
ran the application on a separate user machine. Our prototype runs
successfullywithout any browser modificationon Internet Explorer
8, Firefox 3.5.8, Google Chrome 5.0.3, and Safari 4.0.5.

Key indexing to guide data access. To enable user devices
to decrypt data received from the cloud, each piece of encrypted
data must have an accompanying piece of metadata that indicates



the key necessary for decryption. Thus, we assign indices (ran-
dom numbers) to each key generated at the organization during the
database labeling phase. The index of a key is essentially its name,
and it is distributed with the key and all data encrypted withthat
key. The cloud sending encrypted data to the user also sends all
necessary key indices, thus allowing the trusted user frameto use
the proper key for decryption.

4. LIMITATIONS OF SILVERLINE

Not all data on the cloud is encrypted. While we would like to
encrypt the entire database’s content on the cloud, in this work, we
focus on encrypting functionally encryptable data. We recognize
this limitation and are designing techniques to cover more data as
part of our ongoing work.

Cloud can learn some metadata. To be able to run queries
on encrypted data, we have to ensure that a given value that isen-
crypted with a given key always yields the same ciphertext; that is,
there is no randomization (or salting) used. For instance, while us-
ing keyK, Alice always encrypts her user namealice toEK(alice).
In our system, this is necessary for the cloud to run queries and to
select all data that matchesEK(alice). Randomizing the cipher-
text with each encryption would prevent the cloud from running
such queries.

The downside to this is that the cloud can learn some metadata
about the data stored on it. For example, if two usersalice andbob

send each other messages, the cloud would know the number of
messages sent between two usersE(alice) andE(bob). While this
alone is not sufficient to break either user’s privacy, if thecloud
were to combine this with some outside data, it might be able to
determine the number of messages exchanged betweenalice and
bob.

Executing inequality comparisons on encrypted cells. Once
the cells are encrypted, queries such asSELECT * FROM Messages
WHERE MessageId > 10 no longer work, as inequality compar-
isons over encrypted data fail. We leave resolving such issues to
future work.

Attacks on community data. Data encrypted with a single
key (to protect from the cloud) that is shared with all the registered
users in an application (called community data hereafter) are vul-
nerable to a variety of attacks by the cloud. The cloud can mount
a known-plaintext attackor adistribution-based attack. Consider a
community field with a fixed set of values, such asGender. In a
known-plaintext attack, the cloud can join the system as twousers
(or collude with two users), one with each gender. Based on the en-
crypted value learned, the cloud now knows the actual genderof all
other users in the database. In the distribution attack, thecloud can
use some external information to learn the gender of all users in the
system. For example, if the cloud knows that there are more male
Star Trek fans, then it can easily guess the gender of all the users
in the Star Trek message board on the cloud using the distribution
of encrypted values. Note, however, that such attacks workonly
against community data. Data encrypted with user-specific keys is
still secure.

5. EVALUATION
We now evaluate the efficacy of Silverline techniques on exist-

ing, real-world applications. Our evaluation is geared towards an-
3http://sourceforge.net/projects/astrospaces/
4http://sourceforge.net/projects/usebb/
5http://sourceforge.net/projects/comendar/

swering two key questions: 1) How much of the data in today’s
applications can be encrypted without breaking any functionality?
and 2) Does our labeling identify all the different types of data shar-
ing between users and assign the right keys to the right users?

5.1 Setup and Implementation

Evaluation setup. We applied our techniques to three different,
real-world PHP applications hosted onsourceforge.net. We chose
these applications because they represent a good mix of features
commonly found in real applications, which lead to several inter-
esting data sharing characteristics. The details of the applications
used in our evaluation are presented in Table 2. Each of theseap-
plications has tens of thousands of lines of code, and all contain a
significant number of database queries.

Implementing encrypted data tracking. Our modification to
the PHP interpreter and the PHP-MySQL interface were based on
the code for phptaint [46]. We modified this code to incorporate
our tag propagation policies as described in Section 3.1. Our im-
plementation logs a warning every time a tagged data item is used
in a computation. We ran each application in our modified inter-
preter, exercising different paths of the program via “normal” user
interactions. Then, we analyzed the contents of the log to identify
those cells that cannot be encrypted. Note that we do not consider
using data in display (output) functions, such asecho andprint,
as computation. Data in such functions can be sent encryptedto the
user, where it can be transparently decrypted and displayed.

Implementing database labeling and key assignments. All
the applications that we used for our evaluation use MySQL astheir
back-end database. We implemented labeling in a MySQL-proxy
between the database and the PHP runtime. For each of these appli-
cations, we used the following setup. We 1) create a databasewith
the exact same schema used in the application, 2) insert sample data
into the database to create a training database for labeling, 3) iden-
tify all SELECT queries in the application that read data from the
database, 4) perform database labeling on SELECT queries inthe
applications, and finally 5) analyze the labels attached to the cells
to verify the data classification and key assignment performed by
our techniques.

5.2 Application Descriptions

AstroSpaces: A social networking service. AstroSpaces is a
social networking application that provides the followingfeatures
to users: 1) create user profiles, 2) add users to their friendlist,
3) send private messages to friends, 4) create blog posts, 5)write
comments to friends on their profiles, and 6) create content on their
own profiles. These features are built on 7 database tables and a
total of 51 SELECT queries.

UseBB: A full-featured message board. UseBB is a pop-
ular bulletin board service that provides many advanced features
to users, including the ability to 1) create accounts, 2) create and
moderate groups, 3) join groups, and 4) post new topic messages
or reply to existing topics. UseBB administrators have access to
advanced features such as banning users (by email or username or
IP address), banning keywords and configuring replacement words,
sending mass emails, editing/deleting users, and many other op-
tions to configure user forums. These features are implemented
using 12 tables and a total of 114 SELECT queries.

Comendar: A community calendar. Comendar is a commu-
nity calendar service that provides users with the ability to: 1) cre-
ate user accounts, 2) create groups (for communities), 3) join com-



Application Purpose Lang. LOC Queries Total Downloads
AstroSpaces3 Social Networking PHP 14790 51 8320

UseBB4 Complex Message Board PHP 21264 114 75066
Comendar5 Community Calendar PHP 23627 42 5123

Table 2: Details of the applications used in our evaluation.We only list the # of SELECT queries in the application in thistable. We
retrieved the total # of downloads of the applications from sourceforge as of November 19th 2010.

munities (or groups) of interest, 4) create new personal andcom-
munity events, 5) view personal and community events, 6) setup re-
minders to be sent via email (for both personal and group events),
and 7) set display and privacy preferences. This application pro-
vides the services of an online calendar service – but for both per-
sonal and community uses. There are a total of 13 tables in the
database and 42 SELECT queries in the application.

5.3 Amount of Functionally-Encryptable Data
First, we evaluate the amount of functionally encryptable data in

the applications. We consider all database fields that storeuser data
(only excluding the auto-increment IDs used to identify entities in
the tables) as sensitive. These ID fields are typically integers that
do not reveal any information about a user. Hence, they can remain
in plaintext. To understand the fraction of sensitive fieldsthat can
be encrypted, we use our modified PHP interpreter and track the
usage of sensitive data. By analyzing the warnings producedby
our tracking system, we could understand which fields were used
in computations and why. Table 3 summarizes the results, which
we discuss below.

AstroSpaces social networking service. Out of the 24 user
data fields (those that did not store UserId, GroupId, or any other
IDs), we find that only seven were used in computations, including:
Username (to search based on partial names), read/unread status of
messages (to display unread messages in bold), accepted/unaccepted
status of friendship requests (to display friend request status in cat-
egories), theme and style chosen by the user (again, for display),
activation status of the account (to decide if users are allowed to
login or not) that users are required to set by confirming account
creation, and finally, the user’s email (to send emails, search by
email for existing accounts during account creation, and send pass-
word reminders).

Interestingly, most of these fields store information not directly
related to the user. On the other hand, personal data such as the
user’s first name, her last name, the messages exchanged between
friends, the user’s address, the phone number, blog posts, and wall
posts are never interpreted or used in any computation, onlyread
and sent to users. Thus, these fields are all functionally encryptable
and protected by Silverline.

UseBB message board. As Table 3 shows, out of a total 81 user
data fields in the UseBB database, only 14 fields are used in com-
putations. These 14 user data fields are the following: The names
of the users, title and content of their posts (to enable searching by
keywords, and replace banned keywords), emails (to send emails
and password reminders), the level of the user (guest, standard user,
or admin; to decide what operations they can perform), activation
status of user accounts (for login purposes), and the user’sprivacy
and display preferences.

Nearly half of the functionality that requires interpretation of
data is related to content formatting. This functionality can be eas-
ily moved to client-side scripting code, thus removing those com-
putation dependencies and making the data fields they touch func-
tionally encryptable. Several remaining fields store information

Application # of Database Fields
Total User Data Encryptable Non-Encryptable

AstroSpaces 37 24 17 (71%) 7 (29%)
UseBB 106 81 67 (83%) 14 (17%)

Comendar 105 57 41 (72%) 16 (28%)

Table 3: Encrypted data tracking results. We show a) the # of
fields in total, b) the # of sensitive fields storing user data,and
the # of sensitive fields that c) are functionally encryptable and
d) are not functionally encryptable.

that is not related to personal user data (e.g.user’s level, and activa-
tion status of the accounts). This leaves us with only the fields used
for keyword search (user names, title, and content of the posts).
They are personal, used in computation, and should preferably re-
main encrypted on the cloud. Fortunately, work on keyword search
on encrypted data [43, 44] can help in encrypting these fieldsalso.

Comendar community calendar. Comendar performs more
computations than the two previous applications. Out of a total
of 57 sensitive fields, 16 were used in computations. These are:
a user’s email, magic string (for password reminders and account
activation), the account activation status, user’s genderand level,
group and event security settings (public or private), event titles
and contents (for keyword search), start and end date for reminders,
reminder and event repetition interval, and event attendance status
(yes, no, or maybe).

Similar to the two previous applications, half of the computa-
tions (8 out of 16) were performed on fields that were used onlyto
format the data displayed to the user. For example, user’s gender
is used to decide if “he” or “she” should be displayed. A majority
of the fields that are involved in computations on the cloud, such
as start and end date of reminders, reminder and event interval, etc.
can likely remain in unencrypted form. Only the events’ titles and
descriptions, which are used in search operations, should preferably
be stored in encrypted form.

Summary. For the three applications that we examined, we
found that themajorityof fields that store personal informationare
never used in any computation. These fields include address, phone
number(s), messages exchanged between users, and other personal
details. Many fields used in computation store information about
users that are unlikely to be sensitive. Only a handful of fields
stored sensitive information and were used in computation (mostly
for keyword searches), which the organization could still encrypt
with specialized encryption schemes [44]. In short, an organiza-
tion can encrypt most sensitive fields with efficient symmetric keys
and efficiently obtain confidentiality when running applications on
today’s clouds.

5.4 Evaluating the Key Inference Techniques
Now, we evaluate if our labeling and key assignment techniques

correctly identify different groups of users that have access to dif-



ferent cells in the database, and if they assign appropriate, shared
keys to each group.

AstroSpaces social network. This application involves a sig-
nificant amount of pair-wise user interactions, as can be expected
from a social network. More precisely, most queries were involved
in creating the friendship graph and exchanging messages between
friends.

There are basically three types of data in AstroSpaces: 1) data
that is publicly visible to all users (Blogs, Username, UserId, pro-
file content), 2) data that is viewed only by a pair of users, and 3)
data that is viewed only by the owner (details about the user,such
as gender, email, and last login time). We first create a database
with 50 users, then make each user connect with a random number
of randomly chosen friend users. After that, we make users inter-
act with their friends by sending private messages and by writing
comments on profiles. We make this interaction realistic by biasing
the frequency of interactions towards a handful of “close” friends.
Finally, users create blogs and embellish their profile pages.

Then, we run the queries in the application on this sample database,
and analyze the labels acquired by the cells. A total of 51 labels,
and hence, keys, are assigned to theUsers table. Out of these, 50
user-specific keys are assigned to the 50 users (one key each)to
encrypt all columns, with the exception of Username and UserId.
All publicly accessible columns are encrypted with just onekey,
which is given to all users. The data in thePrivate Messages
table is read only by the receiver of messages, and never readby
the sender. Hence, Silverline reuses the user-specific keysassigned
to theUsers table to encrypt this table as well. In particular, a
message sent to a userA is encrypted with the key of userA. The
data in theFriendship table, on the other hand, is accessed by the
users on both ends of friendship edges. As a result, the same label
(key) is assigned to all cells accessed by a particular pair of users.
In our database, there were 588 distinct pairs, and hence, 588 keys
were created. Finally, the content in the rest of the tables is public.
For this, the key associated with public data (known to all users) is
reused to encrypt this content.

In summary, our labeling technique successfully identifiedthe
three different groups of data in this application, as well as the users
that belong to these groups. Our system assigned a total 639 keys
to protect our AstroSpaces database.

UseBB message board. There are four types of data in UseBB:
data that is 1) visible to the entire world (public), 2) visible to all
registered UseBB users (community), 3) visible to a single user,
and 4) visible only to the admin. There is no data accessible to a
specific subset (or group) of users in UseBB, and most of the data
belongs to the first two types. Similar to other message boards, data
generated by users in UseBB is organized in different categories.
Each category has multiple forums. Each forum, in turn, has multi-
ple topics on which users discuss by sending posts. Topics are akin
to a new mail thread, and each post is akin to a response to thismail
thread. In UseBB, all posts in all forums and categories are public.
Even several details of the members that made the posts are public.
However, information such as statistics about members’ activities
and the full list of members is community data. Some information,
such as a user’s preferences (email is public or not, theme, etc.) is
accessible only to a particular user (and the admin). Finally, data
such as the banned users, words, and IP addresses are accessible
only to the admin.

We create a sample database with 50 users, five categories, five
topics, and 20 forums. We then make random users send posts
to different topics. Finally, we use Silverline to examine the SQL
queries and perform key inference. Our system correctly classified

the data into the four types mentioned above, and identified the
fields that belonged to each type. The key assignment is simple,
due to the lack of complex groupings of users. A total of 53 keys
are assigned – 50 user-specific keys (one per user), one key for
public data, one key for community data, and finally, one key for
the admin data.

Comendar community calendar. There are four types of data
in Comendar: 1) data visible to the entire world (public), 2)data
visible to all registered users in the Comendar application(com-
munity), 3) data visible to all users in a group (group), and 4) data
visible only to the user that created it (personal data).

Comendar is interesting because some queries were dynamically
generated. More precisely, the application dynamically constructs
selection conditions used to query tables. As a result, although the
number of queries in the source code is 42, over several runs,we
identified 49 different queries. Since our technique only depends
on the name of the user running a query, Silverline handled these
dynamic queries easily.

We run Silverline on a sample database with 50 users and 10
groups, and assign a random number of randomly chosen users to
each group. Each user creates one event for each of the different
access types (public, community, group, and personal). We then
assign group events to randomly chosen groups. Users then create
reminders for their own events and for community events. Finally,
we run the application so that Silverline could analyze theSELECT
queries.

Silverline correctly classified all four types of data. Morepre-
cisely, our system assigned a total of 61 keys to these four types.
50 out of 61 keys were used to encrypt user-specific data (personal
events, personal reminders, event attendance status, etc.). Since
there were 10 groups, our technique was expected to assign 10keys
to protect the groups’ data. Interestingly, however, only 9keys were
created. Closer examination revealed that one group contained only
one user. As a result, our algorithm correctly re-used that user’s
personal key for this group’s data. Moreover, one key was assigned
to encrypt the community data, and finally, one key was assigned
to encrypt the public data.

Summary. The evaluation shows that our labeling technique
successfully identifies different types of sharing behaviors in pro-
duction applications, and classifies the data into groups. The tech-
nique also identifies all users that have access to these groups. Putting
the evaluation results together, we learn that many of today’s appli-
cations can easily benefit from Silverline.

6. RELATED WORK

Encrypted databases. Encrypted databases [19, 26] offer
database-as-a-service [26], where databases run on an untrusted
third-party and operate on encrypted data. They aim to offload most
of the query execution from clients to the third-party, by inserting
additional columns in the encrypted database to provide hints for
query execution. Our work differs significantly in the threat mod-
els we consider. Encrypted databases consider a single server and
a single client (the organization hosting the DB), whereas we as-
sume many clients (other than the organization) in our model. As
a result, their approach of using a single key for encryptionis not
sufficient for our model, which supports mutually distrusting users.

Systems running on encrypted data. Persona [9] is a social
network where the server never sees any data in plaintext. Persona
uses attribute-based encryption to allow fine-grained sharing of en-
crypted information with friends. However, this approach requires
applications to be rewritten to support encryption natively. In con-



trast, Silverline focuses on using automated tools to simplify the
transition of legacy applications to a secure cloud platform.

Supporting security and privacy in clouds. Work on ac-
countable clouds [27] proposed an approach for users of third-party
clouds to verify that the cloud is operating “correctly” on their data.
Similarly, a recent paper [42] aimed to build trusted cloudsthat
protect user data against attacks from compromised cloud adminis-
trator accounts using TPMs. While these approaches are based on
modifying the cloud infrastructure to enforce security andprivacy
policies, we aim to work on unmodified clouds.

Taint tracking for security and software debugging. Taint
tracking has been used in a variety of contexts, such as detecting
software vulnerabilities [38], malware analysis [51], debugging ap-
plications [18], and securing web applications [50]. More broadly,
information flow control has been used in the development of pro-
gramming languages [37, 36], secure operating systems [53]and
applications [52] to prevent data from reaching untrusted entities.
Our work differs from these projects in the way we use data tagging
and information labeling. In particular, our focus lies in identifying
functionally encryptable data.

7. CONCLUSIONS AND FUTURE WORK
Data confidentiality is one of the key concerns that prevent or-

ganizations from widely adopting third-party computing clouds. In
this paper, we describe Silverline, a set of techniques thatpromote
data confidentiality on the cloud using end-to-end data encryption.
Encrypted data on the cloud prevents privacy leakage to compro-
mised or malicious clouds, while users can easily access data by
decrypting data locally with keys from a trusted organization. Us-
ing dynamic program analysis techniques, Silverline automatically
identifies functionally encryptable application data, data that can
be safely encrypted without negatively affecting application func-
tionality. By modifying the application runtime,e.g. the PHP in-
terpreter, we show how Silverline can determine an optimal assign-
ment of encryption keys that minimizes key management overhead
and impact of key compromise. We demonstrate the viability of
our approach by applying our techniques to several production ap-
plications with a mix of commonly used features. Our experiences
show that applications running on the cloudcanprotect their data
from security breaches or compromises in the cloud.

While our work provides a significant first step towards full data
confidentiality in the cloud, a number of challenges remain.We
target two specific areas as topics of ongoing work.

Learning high-level intuitions for data classification. While
our database labeling currently classifies the cells in the database
that can be encrypted together, it does not tell the developers about
the reasons why such a classification happened. An intuitiverea-
soning for such a classification is more helpful for the developers
in later implementing encryption and decryption functionality in
the applications. We believe applying associative rule mining [2]
techniques can help us derive these intuitions.

Automatic partitioning of the applications. We are planning
on extending Silverline to automatically partition applications and
move sensitive data (and its computation) to client devices, similar
to Swift [16]. Swift only supports partitioning of static data in ap-
plications, but we plan to extend it to partitioning database content
using the labeling information dynamically learned by Silverline.
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