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Abstract
Online social networks rely on their valuable data stores
to attract users and produce income. Their survival de-
pends on the ability to protect users’ profiles and dis-
seminate it to other users through controlled channels.
Given the sparse user adoption of privacy policies, how-
ever, there is increasing incentive and opportunity for
malicious parties to extract these datasets for profit us-
ing automated “crawlers” and “screen-scrapers.” With
the arrival of distributed botnets and low-cost hosted
VMs, attackers can perform fast, distributed crawls that
evade traditional detectors and rate limiters. We pro-
pose SpikeStrip, a server add-on that uses light-weight
link encryption to isolate and rate limit crawlers. We ex-
periment with real OSN data, and show that SpikeStrip
successfully curtails sophisticated, distributed crawlers
while imposing minimal server throughput overhead and
inconvenience to end-users.

1 Introduction

The wealth of information hosted by online social net-
working (OSN) sites make them high-value targets for
spammers looking to harvest e-mail addresses and per-
sonal details for use in phishing and malware cam-
paigns [1, 17, 26, 28]. This presents a problem for OSN
operators, who are torn between opposing desires for
openness and security. On one hand, openly accessi-
ble content is necessary for services like search and tar-
geted advertising that drive new users, traffic, and ulti-
mately revenue to OSNs. On the other hand, open access
policies endanger the privacy of user’s personal informa-
tion, which can then undermine confidence in OSNs and
threaten their income. Researchers have already demon-
strated the extent of this problem by downloading over
15% of the Facebook user-base in 2008 [29].

OSN users are unwilling or unable to solve this is-
sue on their own. While most OSNs offer privacy set-
tings to help users secure their personal information,

studies have shown that the majority of users do not
use these features [19, 29]. This issue is compounded
by recent trends in OSN privacy policies that encour-
age users to set their default settings to “publicly view-
able” [2]. Even though less than 50% of OSN users
bother to change their privacy settings from the (permis-
sive) defaults, users still have expectations of privacy that
are violated when crawlers gather large amounts of data
from OSNs. Thus, it falls to OSN operators to implement
measures to prevent the large scale crawling and scraping
of data from their websites.

While standards have been enacted that attempt to
regulate the behavior of web crawlers [25], following
these guidelines is a voluntary measure. In the past,
these guidelines were sufficient since the effects of rogue
crawlers were limited by bandwidth and computational
resource restrictions. However, ubiquitous broadband,
cheap clouds, and botnets have increased the capabilities
of crawlers dramatically. These technologies have low-
ered the barrier of entry to the point where anyone can
set up a highly parallel, distributed crawler that is capa-
ble of traversing even the largest websites in a matter of
hours. In fact, recent startups have made mass crawling
a cheap commodity [23].

Given the problems rogue crawlers can cause, coupled
with their expanding range of capabilities, it is impera-
tive that OSNs equip themselves with countermeasures
against them. However, stopping crawlers is a challeng-
ing proposition. Identifying crawlers by their IP address,
as some websites have done [21], is easily sidestepped
through the use of proxies, distributed botnets, or virtual
machines hosted in the cloud. Attempting to use HTTP
functionality such as per-account session keys for user
tracking fares better, but is still insufficient. For exam-
ple, Facebook bans user accounts that are suspected to
be crawling on a daily basis. However, banning a sin-
gle account does not invalidate the crawler’sfrontier, i.e.
queue of uncrawled URLs [16]. A dedicated attacker can
simply create new accounts and continue unhindered.
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We believe these weaknesses are not fundamental
to the web architecture. Using the right mechanisms,
greater content control can be given to OSNs while pre-
serving open access for legitimate users. Our solution
relies on “link encryption,” a server-side primitive that
encrypts hyperlinks within served HTML pages using a
combination of session keys and server-side secret keys.
Link encryption binds links to the session key of the ac-
tive browser. Thus, links observed within one session
cannot be traversed by other sessions, creating a unique
“view” of the website for each client. Users cannot
switch sessions while browsing, because links observed
in the original view will no longer be valid within the new
view. This tight binding between browsers and their ses-
sion keys allows the server to maintain per-session traffic
counters and reject requests above a rate limit chosen by
the administrator.

For normal users, link encryption integrates unobtru-
sively into their OSN browsing experience. However,
crawlers attempting to traverse the site using a single ses-
sion key can be trivially identified and throttled by the
rate limiter. If the crawler attempts to circumvent the rate
limit by switching sessions the links in its queue will no
longer be valid, since they are bound to its original ses-
sion key. This forces the crawler to restart its traversal
from scratch, effectively defeating it.

We implement a full prototype of our “link encryp-
tion” technique in SpikeStrip, an Apache module that
works out of the box with existing Apache setups.
SpikeStrip is transparent to site administrators and end-
users: other than installing the Apache module, no
changes are necessary to the web server, the site’s con-
tent, or client’s web browsers. SpikeStrip gives site ad-
mins fine grained control over which individual pages
should be protected, as well as allowing for the IP ad-
dresses of known, friendly crawlers to be whitelisted.

To evaluate SpikeStrip, we perform microbenchmarks,
and repeatedly crawl a SpikeStrip-protected Apache
server hosting anonymized data from Facebook. Our
measurements show that SpikeStrip successfully bounds
crawler traffic within specified rate limits, and has min-
imal impact on aggregate server throughput. Finally,
SpikeStrip is available for download and immediate use.

2 Crawler Defenses for OSNs

In this section, we examine existing mechanisms used to
control access to online data, and discuss why they pro-
vide insufficient defenses against rogue crawlers. Our
discussion is organized by increasing complexity of
mechanism: we begin with simple, passive measures,
then move on to active defenses that rely on identifying
individual users. We end by discussing authentication-
based strategies used by existing OSNs.

2.1 Passive Defenses

The most basic, passive crawler control mechanisms rely
on crawlers to identify themselves up-front and obey
rules posted by websites. The primary example of this
is the Robot Exclusion Protocol (a.k.a. robots.txt) [25].
This protocol allows webmasters to set up lists of pro-
hibited URLs on their sites that should not be traversed
by crawlers. Since compliance with this protocol is vol-
untary, it has no deterrent effect on rogue crawlers.

Another example of passive defense are Apache mod-
ules like modrobots that perform website access con-
trol based on HTTP “User-Agent” and “Referer” head-
ers. Well-meaning commercial crawlers and standard
web browsers reliably report information about them-
selves using these headers. However, these headers can
be arbitrarily modified by attackers in order to bypass ac-
cess control mechanisms.

2.2 Active Defenses & Client Identification

Active defenses against crawlers attempt to use network-
and transport-layer information to uniquely identify in-
dividual clients. This enables clients’ browsing behav-
iors to be tracked. Armed with this information, servers
can identify crawlers as clients sending abnormally large
numbers of requests within a short time frame. Once
crawlers have been identified, retaliatory actions can be
taken against them.

Client tracking seems like a straightforward process.
Some websites track by IP address [21]; other possible
identifying tokens include TCP port numbers and SSL
session IDs. In practice, however, tracking users by these
low-level identifiers is fundamentally flawed. Attackers
have access to a sufficiently large pool of possible iden-
tifiers that they can perform a Sybil attack [11] against a
website’s tracking system, effectively circumventing it.

As an example, consider an IP-based client tracker.
The assumption underlying this mechanism is that each
IP address represents a unique client, and that clients are
not colluding to circumvent tracking. However, there is
not a 1-to-1 correlation between IPs and clients. A dis-
tributed crawler is a single, large “client” that uses mul-
tiple machines/IPs to collude towards a common goal.
Tracking any one IP does not reveal the crawler’s overall
behavior. Dedicated attackers can easily gain access to
large blocks of IP space by virtualizing in a cloud, for-
warding requests through open proxies such as Tor[10],
or leveraging a botnet, in order to implement this attack.

Tracking TCP ports and SSL session IDs fails for sim-
ilar reasons. Rogue crawlers can restart connections at
any point in time in order to switch ports/sessions, thus
appearing to the server as a different client.

Combining identifiers from different layers does not
solve this issue. For example, servers can derive session
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keys by hashing clients’ IPs. This prevents clients from
switching their identities by purging their session, since
their key is deterministic. However, crawlers can still
switch IPs and thus gain new credentials.

2.3 Authentication Based Defenses

OSNs generally require users to create accounts and
authenticate themselves using valid e-mail addresses,
CAPTCHAS, and passwords in order to access private
content. These access controls are implemented using
HTTP “Cookie”-based session keys. This approach to
client identification is superior to previously discussed
techniques because the pool of valid session keys is com-
pletely under the server’s control. Unlike network-layer
tokens, clients can not easily acquire huge numbers of
user accounts due to the authentication measures that se-
cure the account creation process. Similarly, session keys
assigned to clients after they log in cannot be modified
or erased. In either case, the server will notice the in-
valid/missing credentials and reject the client’s requests.

While authenticated user accounts help resolve the
client identification/tracking issue, they still fail to en-
able strong countermeasures against rogue crawlers. The
reason for this is that web clients access a particular page
using a common URL accessible to all clients,i.e. URLs
are session-independent. Distributed crawlers exploit
this fact: an outgoing link in a page parsed by crawler
t1 using session keyk1 can be given to crawlert2 and
retrieved using session keyk2. Even if crawlers get their
user accounts banned and are forced to switch to new
ones, all the URLs they have enqueued in their frontier
are still valid, allowing the crawl to continue unabated.

Facebook’s current crawler defenses suffer from this
flaw. Facebook monitors the number of requests at-
tributed to each user per twelve-hour period, and bans
accounts that breach some threshold. However, because
the crawler’s frontier is unaffected by banning accounts
it can simply switch to new accounts and continue, as re-
searchers have demonstrated [29]. Shortening the mea-
surement interval between bans does not solve the prob-
lem: if the interval is long (on the order of hours) an at-
tacker can create enough accounts to counteract attrition.
Conversely, if the interval is short (seconds, minutes) the
OSN risks accidentally banning normal users.

Some OSNs, notably Twitter, enforce strict quotas on
the number of page hits user accounts can generate per-
hour. This approach is more restrictive than Facebook’s
periodic bans, however, it still does not solve the funda-
mental problem. As soon as a crawler drains the quota
of one account, it can switch to another account and pick
up right where it left off. These accounts can be recycled
each hour after the quotas reset, meaning that a crawler
does not need a huge number of accounts in order to con-
tinuously crawl at high throughput.

2.4 Summary

In this section we have outlined the key shortcomings
of current access control mechanisms used to stop rogue
crawlers. In summary:

• Passive measures like robots.txt that rely on
crawlers to voluntarily identify themselves and obey
posted rules can be ignored by attackers.

• Identifying clients using network/transport-layer in-
formation (e.g. IP address, TCP port, SSL session)
is insufficient, as attackers have sufficient resources
to mount Sybil attacks against these systems.

• Authenticated user accounts are good client iden-
tifiers, but fail to couple browsers to the content
they view, thus rendering punishment of misbehav-
ing crawlers ineffectual.

In this work, our aim is to develop a new mecha-
nism that OSNs can leverage to overcome these prob-
lems. This technology should facilitate stronger access
controls over content, while preserving open access for
legitimate users and friendly search-engine crawlers.

3 SpikeStrip Design
In the previous section we detailed why existing tech-
nologies do not offer sufficient content access control to
OSN operators. Our aim is to create a new system that
overcomes these issues and works with existing OSN
authentication mechanisms to improve security against
rogue crawlers. In particular, we seek to create a system
that exhibits the following properties:

• Browsers are identified by individual sessions tied
to authenticated user accounts, allowing administra-
tors to apply strict per-session rate limits.

• Administrators can selectively apply our technique
to subsets of pages on a site.

• Administrators can whitelist the IP address ranges
and/or domains of legitimate crawlers so they can
continue to index content normally.

• Our technique is completely transparent to existing
web browsers. Users accessing the site observe no
visible changes in semantics and negligible drop in
server performance.

We propose a server-side primitive called “link en-
cryption” to combat rogue crawlers. We utilize link en-
cryption as a core component in SpikeStrip, a web server
add-on that allows admins to moderate data access and
prevent crawling by securely identifying and rate limit-
ing individual sessions. In this section we describe the
high level design of SpikeStrip, with particular empha-
sis on using link encryption for session identification and
crawler mitigation. We also discuss how to scalably track
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Encryption/Decryption

<html>

<a>/SSAOFL/</a>

<body>Product 1

content</body>

<html>

<html>

<a>/prod1/</a>

GET /index.html

HTTP 404

Error

X

SKreq == SKurl

Success!

Client Side Server Side

1

2

...
...

GET /SSAOFL/

SKreq = true_value

GET /SSAOFL/

SKreq = fake_value
SKreq != SKurl

Failure!

Figure 1:SpikeStrip link encryption. After requesting a site’s
homepage, a client may browse as long as their session key
SKreq remains at its true value (1). If the client modifies
SKreq it will no longer matchSKurl, the session key embed-
ded in the encrypted URL, resulting in request failure (2).

per-session traffic load while imposing minimal over-
head on the web server.

3.1 Link Encryption

As discussed in Section 2.3, URLs on today’s websites
aresession independent, meaning they are the same for
all browsers regardless of user account/session key. Ex-
isting information at the TCP/IP and HTTP levels can-
not uniquely bind browser instances to the content they
are viewing, which makes it difficult to combat crawlers.
To solve this, SpikeStrip uses link encryption to create
unique, per-session “views” of the protected website that
forcibly tie each client to their session key.

Client Views. SpikeStrip introduces link encryp-
tion as a technique to couple a browser to the content
it is visiting. SpikeStrip appends each user’s session
keySK to served URLs and then encrypts the result us-
ing a server-side, secret symmetric keyPK. SpikeStrip
uses a random initialization vectorsalt to make each
URL unique.salt is appended to the URL after encryp-
tion, so that it can be recovered and used for decryp-
tion when the encrypted link is requested by a client.
Link encryption can be summarized using the formula:

new url =
〈

〈url, SK〉
salt

PK , salt
〉

where〈·〉iv
∗

denotes en-

cryption using the subscripted key with the superscripted
initialization vector.

Link encryption prevents crawlers from tampering
with their session keys,e.g. to evade session-based traf-
fic counters. Figure 1 shows an example of how link
encryption enforces session key integrity. A client visits
www.example.com, and receives a new session key and
a copy of the main page whose links are all encrypted.
The server decrypts each requested link and compares

the embedded session keySKurl to the client-reported
session keySKreq. If SKreq is modified the compari-
son will fail, and the client must restart its traversal of
the website from an unencrypted “entry point”,i.e. /in-
dex.html. Browsers attempting to access protected con-
tent directly via an unencrypted link also get redirected
by SpikeStrip to a safe entry point, thus ensuring that
crawlers cannot circumvent SpikeStrip.

Implications of Link Encryption. Link encryption
allows web servers to reliably track clients by session key
which poses serious problems for crawlers. If a crawler
traverses pages using a single session, it will be trivially
identified. However, if the crawler attempts to obfus-
cate its behavior by distributing across many sessions,
its frontier becomes partitioned, since each queued URL
is tied to one of the crawler’s many sessions.

Figure 2 illustrates the ramifications of link encryption
on a crawler’s frontier. Initially, the crawler starts at the
site’s homepage. As time goes on, the crawler progres-
sively covers more pages and expands its frontier. At
some point, the crawler is forced to change its session
key, e.g. because its session expired or was banned for
malicious activity. Normally, switching sessions would
not be a problem: all URLs in the frontier would be im-
mediately accessible under the new session. However,
SpikeStrip couples all URLs to the browser’s session
key; when the crawler changes sessions all URLs in it’s
frontier are invalidated. Hence, it must restart its traver-
sal at index.html, and duplicate work by re-traversing
pages to return to its previous position.

Given that OSNs already ban crawling accounts on a
coarse grained schedule, this means that multi-session
crawlers will periodically have large portions of their
frontier invalidated. Recovering from these losses is non-
trivial: returning to an arbitrary node in the web graph re-
quires storing the full traversal path from the entry point
node to the target node. Keeping this amount of state for
each URL of a large, power-law social graph is techni-
cally infeasible, thus effectively defeating crawlers.

An added benefit of tracking clients by session keys is
that it overcomes problems associated with traditionally
IP-based tracking. For example, multiple clients hidden
behind a single proxy or NAT can be successfully dis-
ambiguated by session. Similarly, crawlers attempting to
evade detection by leveraging a botnet can no longer use
their large pool of IP addresses to their advantage, since
tracking is done by session and not IP.

Link Opacity. Besides the primary implications of
link encryption discussed above, there is a secondary ef-
fect that warrants discussion. Unlike standard URLs, it
is not immediately apparent where encrypted links are
pointing to. SpikeStrip’s link encryption makes links
“opaque.” Encrypted links are randomly salted, meaning
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/index.html /index.html /index.html /index.html

: uncrawled page : uncrawled frontier : crawled page

Time 1) session_key = 1 Time 2) session_key = 1 Time 3) session_key = 1 Time 4) session_key = 2

Figure 2: Implications of link encryption. Starting at time 1, a crawler begins traversing a website protected by SpikeStrip. By
time 3, its frontier is deep within the target website. At time 4, the crawler is forced to change session key, thus invalidating all
URLs in its frontier. It must restart at the site’s root page, and re-traverse already covered pages to return to its former position.

that even direct comparison will not reveal if two links
point to the same target.

While link opacity makes it more challenging for
crawlers to traverse a site, SpikeStrip doesnot rely on
this property for any of its security guarantees. The rea-
son is that links usually have unencrypted meta-data as-
sociated with them that an attacker can use to disam-
biguate encrypted links. For example, links to Facebook
profiles are accompanied by that persons name, which a
crawler can use to infer the links destination.

3.2 Rate Tracking and Limiting

We have demonstrated how SpikeStrip reliably identifies
web clients through session keys. The next step is to
differentiate crawlers from normal users and apply scal-
able rate limits. SpikeStrip does this by performing rate
tracking on client sessions, and dropping requests that
exceed a predefined rate limit. The rate limit is greater
than the maximum request rate for normal users, and thus
SpikeStrip does not hinder normal browsing behavior.

The key challenge here is how to perform rate track-
ing for high volume sites with millions of daily visi-
tors. To efficiently track sessions with minimal stor-
age overhead, SpikeStrip uses Counting Bloom Filters
(CBF) [14], a probabilistic data structure whose variants
have often been used in networking applications [6, 9,
27]. SpikeStrip uses the “d-left” CBF variant, shown
in measurements to be the fastest and most accurate of
the bunch [4, 30]. dlCBF allows for extremely fast set
element counting and prevents SpikeStrip from limiting
HTTP throughput at the server. As we show in Section 5,
dlCBF is extremely space and time efficient, and is scal-
able enough to support even the largest OSN site.

3.3 Balancing Security vs. Openness

Server admins can specify which pages should re-
main open and unprotected by SpikeStrip using aURL
whitelist. Whitelisting allows site administrators to man-
age tradeoffs between content security and openness on
the Web. For example, encrypting all links on a website

prevents search engines from being able to properly in-
dex that site, and also prevents users from bookmarking
and/or sharing links over email and IM. Whitelisting en-
ables site admins to provide “perma-links” to content, a
concept that is already used on Facebook for providing
users with public, permanent links to photos.

Additionally, OSNs want crawlers from major search
engines to traverse them quickly and often, so that the
search index reflects the latest updates to their sites. Ad-
mins can use acrawler whitelist to mark the IP ranges
of known crawlers. Whitelisted crawlers may bypass
SpikeStrip link encryption and rate limiting.

4 A SpikeStrip Prototype
In this section, we describemod spikestrip,
our SpikeStrip implementation for Apache 2.x.
mod spikestrip is written in C and is portable to
most platforms supported by Apache1. mod spikestrip
works seamlessly with all standard Apache modules and
content generators (static HTML, PHP, CGI, etc).

Figure 3 depicts the flow of HTTP requests through
Apache whenmod spikestrip is installed. After each
HTTP request is received and its headers are parsed,
the first two SpikeStrip handlers execute. This gives
mod spikestrip the opportunity to perform rate limiting
immediately, before time is potentially wasted process-
ing a dead request.mod spikestrip extracts the session
key from the request’s “Cookie” header and uses it as
the key to test and increment a counter in a global d-left
CBF. If the counter value exceeds an administratively de-
fined limit, an HTTP 503 “Resource Unavailable” mes-
sage is returned to the client. If the request is below the
rate limit, or it doesn’t have a session key, control passes
to the next handler. A background thread periodically
clears the dlCBF in order to restart request counting on a
configurable time schedule.

If the rate limiter accepts the request then the link de-
cryption handler is run. Encrypted URLs are decrypted

1GPL mod spikestrip source code is available for download at
http://www.cs.ucsb.edu/ ˜ bowlin/projects.html .
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Apache HTTP Server with mod_spikestrip
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Figure 3:Flow chart of Apache withmod spikestrip enabled. SK = session key.

using the server-side key and the embedded session key
is compared to the client’s key. If the two keys match the
request is processed normally by Apache. Requests that
do not have session keys, or are not encrypted, are only
allowed to URLs that have been explicitly whitelisted by
the administrator. Requests failing to meet any of these
conditions are immediately dropped, and an HTTP 303
“Redirect” is returned to the client. This redirect points
to an implicitly whitelisted page specified by the admin-
istrator (most likely the site’s homepage), that will assign
the client a valid session key if they do not have one.

mod spikestrip’s third and final handler executes af-
ter the content generator has created a response to the
HTTP request. The link encryption handler parses output
HTML and replaces plaintext URLs with encrypted ver-
sions. Only non-whitelisted, local links get encrypted,
since it does not make sense to encrypt links pointing to
external websites.

Encryption/Decryption Details mod spikestrip
uses 256-bit AES in CBC-mode with a random 20 byte
initialization vector to encrypt URLs. The initialization
vector is appended to the encrypted URL and the whole
string is base-64 encoded so it is safe to transmit over
HTTP. Decryption is performed in the reverse order.

d-left CBF Details mod spikestrip’s dlCBF is tuned
for maximum performance and low probability of bucket
overflow. We use the optimal parameter settings derived
in [4]: number of tables d = 4, cells per bucket = 8,
andtarget load = 75% (6 items per bucket). The other
important parameters for the dlCBF (acceptable false-
positive error rate and maximum capacity) are config-
urable by the admin. For speed we use fixed size 1-byte
counters and 1 or 2-byte fingerprints, depending on the
target error rate. In the worst case with 2-byte finger-
prints, the size of our dlCBF ismax capacity ∗ 4 bytes.
Practically, this overhead is quite reasonable: a site ex-
pecting to serve 10 million unique users every second (an
absurdly high estimate) would only need a dlCBF∼ 40

megabytes in size.

Our dlCBF implementation uses interprocess shared
memory to store its hash tables. This is necessary be-
cause Apache uses a multi-process/-threaded architec-
ture, across which request counting must be consistent.
Normally, access to shared data structures must be medi-
ated by locks. However, because the probability of hash
collisions in the dlCBF is negligible, locking it during
insertions is not necessary. Additionally, because the dl-
CBF is frequently cleared (to reset the rate limit counters
after each counting interval), errors due to concurrency
are transient and can be safely ignored.

5 Benchmarks and Evaluation
In this section we evaluate our SpikeStrip prototype to
ascertain its computational performance and its effect on
crawlers. We begin with server benchmarks of a stock
Apache instance compared to Apache with SpikeStrip.
Our results show that SpikeStrip imposes only a modest
7% performance penalty on Apache. Next, we examine
the effect of SpikeStrip on crawlers attempting to mine
an artificial OSN website hosted by our lab. Results in-
dicate that SpikeStrip successfully rate limits crawlers to
only a small fraction of our web server’s total bandwidth,
increasing crawl times by an order of magnitude.

5.1 Evaluation Setup

To perform our experiments, we set up a mock OSN
website and initiated crawler attacks against it. Crawlers
and web servers run on Dell PowerEdge 1750 servers.
Databases run on Dell PowerEdge 1950 servers. All ma-
chines are directly connected over gig-Ethernet. We used
a typical LAMP setup, including Apache 2.2, .Python
2.6, Django 1.1, and MySQL 5.12. All machines run
CentOS, kernel version 2.6.

Our test OSN website, calledFakebook, is populated
with anonymized data gathered from the London re-

2Apache, MySQL, and Django config files for our benchmark
servers are available for download athttp://www.cs.ucsb.
edu/ ˜ bowlin/projects.html .
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gional network on Facebook [29]. It includes data from
∼1.2 million users, resulting in a website with 3,523,620
unique pages. The site has three page templates: a home-
page that displays ten random links to user profiles, a
user profile display, and a friend list display (paginated
with twenty friends per page).

5.2 SpikeStrip Benchmarks

Our first set of tests assess the performance of
mod spikestrip by performing microbenchmarks of
Apache with and without SpikeStrip. For this test we
chose four pages from Fakebook (containing 0, 3, 10,
and 25 links, respectively) and made 1,000 request for
each page using ApacheBench. For these experiments
only, we instrumentedmod spikestrip to record the ex-
ecution times of its key procedures to the Apache log file.

Figure 4 charts the average execution times for
SpikeStrip’s key procedures. Decrypting links from in-
coming requests and checking the dlCBF for rate limit
violations execute extremely fast. Link encryption, how-
ever, takes more time. SpikeStrip exhibits a baseline∼10
microsecond overhead due to HTML parsing for each
outgoing page, as shown by the results for the page with
zero links. As the number of links grows, so does the ex-
ecution time, since each encryption necessitates a round
of AES, as well as a memory move to make room in the
output stream for the encrypted link.

Figure 5 shows the practical implications of SpikeStrip
overhead on a typical Apache setup. We measure
Apache’s throughput by using Apachebench to request a
single user profile 1,000 times as the number of concur-
rent requesting threads increases. On average, SpikeStrip
adds only∼ 30 milliseconds of delay to responses, or a
7% reduction in performance. Even in the worst case,
Spikestrip only adds∼ 90 milliseconds of delay, which
is small enough to be imperceptible to most users.

5.3 Crawler Efficiency Tests

In this section we evaluate the deterrent effects of
SpikeStrip on rogue crawlers. Our distributed crawler
is written using Crawl-e [3], the same framework used
to download 10 million Facebook pages in a previous
study [29]. The crawler was executed on three machines
with 200 crawling threads each. Crawls began with a
single seed: the homepage of Fakebook. For this test, we
set up a load-balanced cluster of 10 Apache instances, in
order to simulate a reasonably well provisioned website.

SpikeStrip Configuration. According to recent fig-
ures, the average Facebook user spends∼14 minutes
online each day, and views 26 pages per visit [12, 13].
In order to realistically accommodate users who spend
more time on Facebook than the average, for our exper-
iments we assume super-users who visit 1,000 pages ev-
ery hour. We use this is as the maximum rate limit setting
for mod spikestrip: 1,000 requests per hour, resulting in
an overall rate of∼0.25 requests per second (RPS).

Setting the rate limit time frame by hour permits bursty
traffic from web users while also preserving the over-
all, low target rate. For example, if the rate limit were
1 request per 4 seconds (also an effective rate of 0.25
RPS), a user who quickly opens multiple pages in dif-
ferent browser tabs would trigger the rate limit, which is
undesirable. Set to 1,000 requests per hour, bursty re-
quests from users are not hindered, but crawlers quickly
exhaust their allotted requests and are forced to sit idle
for the remainder of the hour.

Since we use a cluster of 10 Apache instances with
round-robin load balancing, the per-server rate limit is set
to 100 requests per hour (100∗10 = 1000). SpikeStrips’s
dlCBF capacity is set to 8 million, with a target error rate
of 0.0004%. These values were chosen to minimize hash
collisions by over-provisioning the dlCBF.

Results. Figure 6 depicts the results of crawlers
traversing Fakebook. Baseline results were gathered
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Figure 6:A crawler’s rate of progress traversing Fakebook is
proportional to how many session keys it uses.

by running a complete crawl of Fakebook without
SpikeStrip. For the rest of the experiments SpikeStrip
was active, and thus the per-session rate limit prevents
the crawlers from traversing the site in a timely fashion.
Each rate limited crawler achieves an RPS rate equal to
the number of session keys it holds, multiplied by the
configured rate limit (0.25 RPS). The effect of the rate
limiter is most visible for the 250 key-crawler: at the be-
ginning of each hour the rate limit counters reset to zero,
and the crawler immediately downloads pages until its
request allotment is depleted. Its progress then stalls un-
til the next hour marker passes. Ultimately, even with
250 session keys the crawler is far from achieving equal
performance with the unprotected baseline standard.

There is a subtle limitation of SpikeStrip that can be
observed in Figure 6. As the number of session keys
held by the crawler rises, so does its aggregate through-
put. Theoretically, if an attacker acquired a massive num-
ber of keys it could circumvent SpikeStrip. The success
of this attack hinges on the crawler’s ability to quickly
create thousands of user accounts, which seems unlikely
since crawlers would first need to break the authentica-
tion measures surrounding account sign-up.

6 Deployment Considerations
As with any piece of software that must work with exist-
ing systems, there are additional points to consider when
deploying SpikeStrip. In this section, we will identify
potential challenges in deploying SpikeStrip and detail
workarounds when possible.

Multiple Data Centers. Protecting web servers at
geographically diverse data centers with SpikeStrip ne-
cessitates two considerations. First, if each data cen-
ter uses a different secret key, then URLs will not be
portable between data centers. This only causes prob-
lems for the rare instances where mobile clients migrate
between data centers in the middle of a single session.

The second consideration concerns the rate limiters.

A crawler could attain ad times speedup by directing re-
quests to alld data centers. The best mitigation strategy
against this is to reduce the acceptable rate by some frac-
tion of d. Realistically, the significance of an O(d) time
speedup is small enough to be negligible.

Caching. SpikeStrip is compatible with server-side
caches such as Memcached. Since Memcached operates
behind the web server-tier, unencrypted URLs are visible
to it, and it can operate normally. However, SpikeStrip
is incompatible with client-side caches such as Akamai,
because link encryption prevents them from identifying
cache hits. This issue can be mitigated by having cus-
tomers share their server-side SpikeStrip keys with Aka-
mai so they can decrypt links. Given the close relation-
ships between Akamai and its customers, this stipulation
seems reasonable.

Secret Key Compromise. While server-side secrets
are common for websites (usually database login cre-
dentials), the compromise of this information is still a
concern. Changing SpikeStrip’s secret key after a com-
promise causes all active sessions to become invalidated,
and thus browsers must restart their sessions. Advanced
versions of SpikeStrip can minimize disruption to users
by maintaining support for an outgoing key while using a
new key for new sessions. As long as key refresh periods
are significantly longer than most user sessions, servers
can hide the impact of key refreshes.

Javascript Generated Links. Links that are dynam-
ically generated client-side by Javascript cannot be en-
crypted by SpikeStrip since they do not originate from
the server. Care should be taken when generating links
client-side, as these plain-text URLs must be whitelisted
with SpikeStrip. Alternatively, client-side link genera-
tion can be replaced with calls to server-side AJAX meth-
ods that serve the same purpose. Links returned via
AJAX can be safely encrypted by the server.

API Crawling. Many OSNs offer APIs that allow de-
velopers to interface with the information hosted by the
OSN. Even if screen-scraping is prevented, these APIs
offer crawlers a secondary channel to retrieve informa-
tion about users. Fortunately, access to most OSN API
platforms requires authenticated developer credentials,
much like normal users need accounts to login. Since ac-
cess to OSN APIs is mediated by authenticated sessions,
SpikeStrip can be leveraged to hinder crawlers attempt-
ing to mine these channels.

7 Related Work

Crawlers. The first public search engine relied on
data compiled by WebCrawler [24]. Commercial search
engines soon followed with their own crawlers [5, 16].
Crawling research has focused on algorithmic methods
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to improve crawl speed and effectiveness. Pageimpor-
tance metrics [5] can be used to augment crawlers with
page selection strategies that prioritize the uncrawled
frontier to improve expected returns [7, 8, 10]. Unlike
rogue crawlers, academic and commercial crawlers are
all “well-behaved:” they obey robots.txt rules and do not
flood individual web sites with requests.

Apache Security A number of security related
Apache modules exist. modcband, modevasive,
mod bandwidth, and modlimitipconn implement HTTP
request rate limiting based on IP address and target URL.
mod security implements an application-level firewall,
but does rate limit requests or address rogue crawlers.

DDoS Defenses. DDoS mitigations offer com-
plementary protection to that provided by SpikeStrip.
Router level solutions [20, 22] can stop traffic floods be-
fore they cripple the target web server. However, DDoS
flood detectors that rely on disparities in ingress and
egress traffic [15] are not sufficient to catch crawlers dis-
guised as legitimate browsers. DDoS defense via dy-
namic injection of puzzles into the browsing stream [18]
can curb crawlers, but may also potentially annoy users.

8 Conclusion
Today’s social network users are increasingly careless
about protecting their information online. Therefore,
it falls to OSN providers to prevent malicious crawlers
from harvesting user information for use in spam, phish-
ing and malware campaigns. Through the application of
our novel link encryption primitive, our SpikeStrip pro-
totype demonstrates that access to content can be suc-
cessfully moderated without limiting open access to le-
gitimate users or imposing significant performance over-
heads on web servers. SpikeStrip effectively throttles
rogue crawlers by performing per session rate limiting,
all while allowing benevolent crawlers uncompromised
access to data. By incorporating page-level whitelists,
SpikeStrip provides site administrators with access con-
trol on the granularity of individual pages. Finally,
SpikeStrip does not require changes to user’s browsers,
existing web servers, or website contents, and it is freely
available now for immediate use.
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