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Abstract

A self-organizing peer-to-peer system is built upon an
application level overlay, whose topology is independent of
underlying physical network. A well-routed message path in
such systems may result in a long delay and excessive traf-
fic due to the mismatch between logical and physical net-
works. In order to solve this problem, we present a family
of Peer-exchange Routing Optimization Protocols (PROP)
to reconstruct the overlay. It includes two policies: PROP-
G for generic condition and PROP-O for optimized one.
Both theoretical analysis and simulation experiments show
that these two protocols greatly reduce the average latency
of the overlay and achieve a location-aware topology with
low overhead. Their overall performance can be further im-
proved if combined with other recent approaches. Specifi-
cally, PROP-G can be easily applied to both structured and
unstructured systems without the loss of their primary char-
acteristics, such as efficient routing and anonymity. PROP-
O, on the other hand, is more efficient, especially in a het-
erogeneous environment where nodes have different pro-
cessing capabilities.

1 Introduction

Peer-to-Peer (P2P) systems are massively distributed
computing systems in which peers (nodes) communicate
directly with one another to distribute tasks, exchange in-
formation, or share resources. There are currently several
P2P systems in operation and many more are under devel-
opment. Gnutella [1] and Kazaa [2], which are often re-
ferred to as the first generation P2P file sharing systems,
construct the unstructured overlay without rigid constraints
for search and placement of files. They use a decentralized
file lookup scheme. Requests for files are flooded with a

certain scope. However, there is no guarantee of finding
an existing file within a bounded number of hops. Chord
[20], Pastry [19] and Tapestry [23] are examples of the sec-
ond generation of peer-to-peer systems. These systems can
be viewed as providing a scalable, fault-tolerant distributed
hash table (DHT). Any data item based on a unique iden-
tification can be located within a bounded number of hops
using a small per-node routing table. Unstructured P2P sys-
tems are widely used due to their simplicity; but structured
systems can be more efficient. Consequently, these two
models coexist and in some sense complement each other
[3].

All P2P systems are built upon application-level over-
lays, the topology of which is independent of the underly-
ing physical network. In unstructured systems, a new node
randomly chooses some existing nodes of the systems as its
logical neighbors; while in structured ones, a new node will
get an identification by certain hash function and construct
connections with other nodes based on specific rules of the
DHT. As a result, the neighborhood of two nodes on the top
of overlay does not inherently reflect proximity in the phys-
ical network, due to an arbitrary organization or the hash-
based property. A well-routed message path in an overlay
network with a small number of logical hops may lead to a
long delay. The mismatch problem between the overlay and
physical network is a major obstacle in building an effective
large-scale overlay network.

In this paper, we propose a family of Peer-exchange
Routing Optimizing Protocols (PROP) to handle the mis-
match in peer-to-peer systems. It includes two relevant poli-
cies: PROP-G (generic) and PROP-O (optimized). They
both adaptively adjust the connections of the overlay, and
efficiently reduce the average logical link latency of the
whole system. Combining them with other recent mecha-
nisms will further improve their performance. Moreover,
they are adaptive to dynamic changes in the system. PROP-
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G, to the best of our knowledge, is the first scheme that can
be deployed effortlessly on both unstructured and structured
P2P systems, while preserving the logical topology of over-
lay at the same time. PROP-O, on the other hand, is more
efficient, especially in a heterogeneous environment where
nodes have different processing capabilities.

The rest of paper is organized as follows. In Section 2,
we review related work. Section 3 describes the design of
PROP. In Section 4, we evaluate the effectiveness of our
design analytically. The methodology and results of simu-
lation experiments are presented in Section 5. Finally, we
conclude the paper in Section 6.

2 Related Work

The issue of mismatch between physical and logical net-
works in P2P systems has been the focus of intensive re-
search in recent years. A location-aware topology match-
ing (LTM) technique [10] is proposed for unstructured P2P
systems. In LTM, each peer issues a detector in a small re-
gion so that the peers receiving the detector can record the
relevant delay information. Based on the information, a re-
ceiver can detect and cut most of the inefficient and redun-
dant logical links and add closer nodes as its direct neigh-
bors. LTM is a typical method which is only applicable for
Gnutella-like overlay networks where each peer can freely
cut and add connections. Moreover, free modification of
connections, to some extent, impairs the natural feature of
self-organizing overlay where powerful, reliable nodes al-
ways provide more services and inherently have more con-
nections [18]. Other methods for unstructured systems like
[11] and [12] share similar features with LTM and will not
be discussed in detail due to space limitation.

Regarding structured P2P systems, most solutions fall
into three broad categories [8] [15]:Proximity Neighbor
Selection (PNS) [4],Proximity Route Selection (PRS) and
Proximity Identifier Selection (PIS)[13].

However, all of these approaches have a common lim-
itation: protocol-dependence. For example, the entries in
routing table are deterministic in systems like Chord or
CAN, where the PNS scheme cannot be applied directly.
Similarly, PRS also has the requirement that there must be
more than one choice for the next hop. Topologically-aware
CAN, which ensures that nodes which are close in the net-
work topology are close in the node ID space, is only suit-
able for systems like CAN [21], where the similarity of node
IDs means less hops in routing. In short, recent methods
based on DHT cannot be applied to other variants of the
DHT protocols, not to mention other unstructured P2P sys-
tems.

Recently, some researchers focus on the configuration
of AS or ISP level [9] [7] . Although this kind of central
or cluster-like management can improve the efficiency of
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Figure 1. PROP-G, exchange all neighbors

the system, it is more related to the deployment of different
nodes instead of the deployment of end systems. Moreover,
such control is impractical in loosely organized peer-to-peer
systems.

3 Design Description

3.1 PROP-G and PROP-O

In order to satisfy the above requirements, we use “peer-
exchange” as the basic operation of our scheme. Gener-
ally speaking, peer-exchange means a series of exchanges
of some neighbors between two peers, and one exchange
can be viewed as a pair of cut-add operations.

A simple and direct way of peer-exchange, called PROP-
G, is to exchange all neighbors of the two nodes. Figure
1 shows an example of PROP-G, where node 3 and 4 ex-
change their neighbor sets ({1, 6, 7} and {2, 5}). This can
be viewed as exchanging their “position” in the overlay net-
work. Intuitively, the topology of overlay is not affected
by the PROP-G operation. That is why we call it a generic
method, which will be proved in Section 4.

Another way for peer-exchange, called PROP-O, is to se-
lectively choose neighbors for exchange. Figure 2 illustrates
the process: nodes 3 and 4 exchange equal number (m = 2)
of neighbors. Note that exchanged neighbors should never
lie on the path of nodes 3 and 4, which ensures that nodes
3 and 4 will still be connected after the exchange. The pri-
mary reason that we exchange equal number of connections
instead of an arbitrary number is to ensure the degree of
each node remains the same after the exchange, so that the
topology can maintain its essential features. The effective-
ness and characteristics of both PROP-G and PROP-O will
be illustrated by theoretical analysis in Section 4 and vali-
dated by simulations in Section 5.

A traditional way to accomplish topology optimization is
to let each source node select one nearest node in the candi-
date list and establish the connection with it. This “selfish”
method, in our opinion, is beneficial to the source node itself
but is not always beneficial to (or in some case may actually
detracts from) system-wide optimization. Our approach is
to utilize the collaboration of two peers, say u and v, to
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Figure 2. PROP-O, exchange m neighbors,
where m = 2

discover potential opportunities to optimize their neighbor-
hood environments, and then perform the exchange oper-
ation. In this way, reconfiguration of the overlay will im-
prove overall system performance and avoid many, if not
all, of the potential conflicts and pitfalls in “peer competi-
tion”.

3.2 Description of basic method

Assuming that there is a potential exchange between
nodes u and v, node u is the counterpart of v, and vice
versa. d(u, v) means the delay (latency) between nodes u
and v. t0 represents the time before an exchange, while
t1 represents the hypothetical time when the potential ex-
change really occurs. The neighbor set of node u is formally
defined as follows:

N(u) = {i|i ∈ V ∧ (ui ∈ E ∨ iu ∈ E)} (1)

There are two separate procedures here: the warm-up
and the maintenance phases. Having joined the system
based on a random or DHT based assignment, a new node
u will start the warm-up procedure. It begins probing
its neighbors and collecting the initial latency information∑

i∈Nt0 (u) d(u, i). Then it will periodically contact a ran-
dom node v which is nhops hops away at each time interval
of timer. A priority queue neighborQ is used to choose
nodes s for the first hop of random walk. The use of pri-
ority is to ensure that “active” nodes will be probed first,
which is useful in the maintenance procedure. In the be-
ginning, it is initialized with a random sequence of node
u’s neighbors, so each neighbor has an equal probability to
be probed. A message containing the source IP address,
the source timestamp and a small TTL value nhops is used
to realize the random contact. Any node that receives this
message will add an identifier like the IP address into the
message 1, decrement the TTL field by 1 and forward it.
The target node v is located when TTL value becomes zero.
Then nodes u and v selectively exchange their address lists

1To avoid repetitive forwarding and exchange neighbors which stand
on the random walk path.

and initial latency information, with arbitrary m neighbors
for PROP-O and all neighbors for PROP-G. So the value of
m is no more than the minimum degree of overlay δ(G). We
choose m = δ(G) by default. After collecting the new la-
tency information

∑
i∈Nt1 (u) d(u, i) and

∑
i∈Nt1 (v) d(v, i)

by probing new neighbors (hypothetical neighbors when the
potential exchange occurs), they exchange information and
calculate the variable V ar independently, as in the follow-
ing equation:

V ar =
∑

i∈Nt0 (u)d(u, i) +
∑

i∈Nt0 (v)d(v, i)

−∑
i∈Nt1 (u)d(u, i) − ∑

i∈Nt1 (v)d(v, i) (2)

If V ar � MIN VAR, it means that the exchange can-
not gain any benefit, and therefore, no subsequent opera-
tion will be performed. Otherwise, nodes u and v will do
the peer-exchange operation as follows: they rewrite cor-
responding routing entries and even exchange node iden-
tifiers (for PROP-G in DHT systems) respectively. Both
of them cache the address of their counterparts so that the
lookups in progress during peer-exchange can be forwarded
correctly. Moreover, both of them will notify their neigh-
bors to change the routing tables and recalculate the initial-
ized sums.

If the routing tables are extended to record both succes-
sor nodes and predecessor ones (bidirectional connections
in other words), the notification can be realized directly.
We have at least two reasons for this simplification. First,
most structured systems selectively record several predeces-
sor nodes in order to improve fault resilience. The size of
the extended routing table is at most twice as large as the
size of the original one. There is even no increase in some
symmetrical systems like Gnutella or CAN. More impor-
tantly, even if there is no such extension, notifications can
still be implemented by using the underlying mechanisms
just as what happens when peers arrive or depart, although
it leads to more complicated reconstruction operations. The
warm up procedure will last for MAX INIT TRIAL times;
simulations in a later section shows this number to be less
than ten.

Next node u will enter the maintenance phase, which dif-
fers from the initialization procedure in two ways. First,
the selection of node s will depend on the result of peer-
exchange trials. If an exchange occurs, which implies that
selection of main “direction” is successful, node s will
merely decrease the priority number by a small number like
1 so that it could be chosen in near future. Otherwise it
will be replaced at the tail of neighborQ, waiting for the
next probing cycle. Another difference lies in the modifica-
tion of timer based on a Markov chain model [16]: Timer
will be doubled after a failed peer-exchange attempt, and
reset to INIT TIMER after a successful one; if Timer ≥
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Figure 3. A generic path where node nj is off
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MAX TIMER, it will also be set as INIT TIMER. Here
MAX TIMER = 25×INIT TIMER, so there are at most five
times of suspending (half of MAX INIT TRIAL). Similarly,
in order to handle departures and sudden failures gracefully,
the value of timer will be reset to INIT TIMER and the new
neighbors will be added into the front of neighborQ with a
maximum priority value, so that these peers can be probed
earlier during the maintenance procedure.

4 Theoretical Analysis

4.1 Characteristics of Peer-exchange

The basic requirement of overlay reconstruction, as men-
tioned above, is that the change of connections should never
lead to a graph partition.

Theorem 1 (connectivity persistence) Let G be an undi-
rected connected graph, and let G′ be the graph that is de-
rived from G by applying an exchange operation in PROP-
G or PROP-O. G’ is an undirected connected graph.

Theorem 1 Both PROP-G and PROP-O consist of an ex-
change of several neighbor nodes. This exchange can be
performed by a series of cut-add operations of two nodes:
cut one connection of one’s neighbor and add another one
for its counterpart. Hence, we can restrict our attention
to a single cut-add operation. It follows from induction
that if the graph remains connected after a single cut-
add operation, it remains connected after exchange. Let
P =< n1, ..., nk > be an arbitrary sequence of nodes that
forms a path in G. Node ni will remove a connection be-
tween one of its neighbor, ns, and itself. Then a connection
between nj and ns is established.

• Case 1: if ni lies off the path. This means that while
there may be nodes on the path whose edges change,

n1 ni-1 ni nk

n1 ni-1 ni ni+1 nk

(a) Initial topology and no cut-add

(b)Single cut-add on the path

nj

Figure 4. A generic path where node nj is on
the path

the changed edges connect to the nodes implement-
ing cut-add. Hence, no edges that form the path are
changed, so the path remains after the cut-add is com-
plete.

• Case 2: ni lies on, and nj lies off the path, as in fig-
ure 3(a). Since nodes ni and nj are connected both
before and after a cut-add (As mentioned in Section
3, exchanged neighbors should never lie on the prob-
ing path between nodes ni and nj , which ensures that
two nodes will be still connected after the exchange),
two possible scenarios occur: ni cut no edges or one
edge on the path. As can be seen in Figure 3(b), a path
between n1 and nk remains after the cut-add where
ns = ni−1.

• Case 3: Both nodes ni and nj lie on the path, as in
figure 4(a). There are two similar scenarios as in case
2: ni cut no edges or one edge on the path. As can be
seen in Figure 4(b), a path between n1 and nk remains
after the cut-add where ns = ni−1.

So the graph is still connected after a single cut-add oper-
ation. We can further conclude that G′ is connected after a
series of cut-add operations for both PROP-G and PROP-
O.

The above theorem ensures that there is no graph parti-
tion after a peer-exchange operation. Moreover, it is trivial
to proof that PROP-O preserves the original degrees of each
node, so it never breaks the natural Power-law-like charac-
teristic (i.e. powerful nodes own more connections) of un-
structured P2P systems.

Theorem 2 (isomorphic characteristic) Let graph
G(V,E) denote the network overlay, and let G′(V ′, E′)
be the graph that is derived from G by applying an ar-
bitrary sequence of PROP-G exchange operations. G′ is
isomorphic to graph G, i.e. G ∼= G′.
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Theorem 2 It follows from induction that if the derived
graph G′′ ∼= G after a single exchange operation of PROP-
G, then G′ ∼= G based on the transitivity of isomorphism.
Without loss of generality, we assume nodes u and v do a
single exchange during the period t0 to t1. We try to find a
bijection ϕ : V → V ′ with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′ for
all x, y ∈ V . V1 is used to denote the set of un-exchanged
nodes and V2 presents the set of exchanged ones. A map-
ping ϕ between E and E′ is constructed as follows:

• For ∀x, y ∈ V1, xy ∈ E ⇔ xy ∈ E′

• For ∀x ∈ V1, y = u, xy ∈ E ⇔ xv ∈ E′, yx ∈ E ⇔
vx ∈ E′. Similarly, for ∀x ∈ V1, y = v, xy ∈ E ⇔
xu ∈ E′, yx ∈ E ⇔ ux ∈ E′.

• For ∀x ∈ V2, y ∈ V1, the proof is similar to the above
one.

• For ∀x, y ∈ V2, xy ∈ E ⇔ yx ∈ E′

Observing the constructed mapping, it is easy to conclude
that G is isomorphic to G′.

Theorem 2 illustrates that PROP-G not only keeps the con-
nectivity of logical network but also maintains the overlay
topology. Therefore, as an auxiliary method, it is suitable
for different topologies: ring, hypercube, tree, and so on.
Moreover, the change of positions using PROP-G is not ar-
bitrary. As an example in DHT systems, instead of regen-
erating its identifier, each node is only allowed to get old
identifiers of other nodes. It preserves anonymity provides
a certain measure of security.

However, it does not mean that PROP-G can be used in
all P2P systems. In fact, there are several classes of P2P
applications where neighbor relationships cannot be set ar-
bitrarily. For instance, in some systems where each node
has a certificate which binds its identifier to a public key for
security reasons, it seems that PROP-G which exchanges
node ID may not be feasible.

4.2 Effectiveness of the Peer-exchange
Mechanism

We use the following definitions to explain the effective-
ness of the peer-exchange mechanism. Stretch is defined
as the ratio of the average logical link latency over the av-
erage physical link latency. It is a common parameter to
quantify the degree to which the physical and logical topol-
ogy matches. Average latency (AL) is a basic parameter to
quantify the property of a network. If there are n nodes in a
network, then2

AL = (
∑

i∈V

∑

j∈V

d(i, j))/n2 (3)

2We assume the latency between a node and itself is zero.

Given that the physical network is usually static, only the
average logical link latency affects stretch. Furthermore,
supposing that the number of nodes is constant during the
period t0 to t1, the accumulated latency (Lti

) can be ana-
lyzed as follows. The next two equations show the accumu-
lated latency at t0 and t1:

Lt0 = C +
∑

i∈Nt0 (u)

αid(u, i) +
∑

i∈Nt0 (v)

βid(v, i) (4)

Lt1 = C +
∑

i∈Nt1 (u)

γid(u, i) +
∑

i∈Nt1 (v)

δid(v, i) (5)

In equations 4 and 5, C represents the invariable part dur-
ing the period t0 to t1. The coefficients of the summations
αi, βi, γi, δi represent the visited times of each neighbor-
link when calculating AL. The equation αi ≈ γi ≈ βi ≈ δi

is valid by assuming that each link has the same probability
to be visited. To calculate the variation by (4) − (5), it is
easy to find that if V ar > 0 then Lt0 > Lt1 , which implies
that a peer-exchange reduces stretch. So in our simulation
part, we will set MIN VAR = 0.

We notice that the latency for other peers to reach a cer-
tain object on exchanged nodes might have been increased.
For example, assume peer u and v exchange their identi-
fiers and keep pointers to each other. Peer i was originally
a neighbor of v, but is now a neighbor of u. If it tries to
retrieve an object stored at v, it takes it two hops instead of
one now. However, according to the above analysis, the av-
erage latency of all queries issued from all nodes to u and v
will be decreased.

Note that this is only an approximate analysis. In fact,
when the positions of the nodes change, the visited times of
each node varies accordingly. This explains why not all ex-
change operations can reduce the average latency, as shown
in the simulation experiments.

4.3 Overhead Analysis

Our method improves the overlay topology in two types
of cost: the information collection between two coopera-
tive nodes, and the reconstruction of overlay. Both of them
are determined by two factors: the number of nodes involv-
ing into one potential exchange operation and the number
of probing times. For an overlay network with n peers, we
use c to denote the average number of neighbors. For each
peer, one step of adjustment will involve (nhop + 2c) for
PROP-G, and (nhop + 2m) for PROP-O. The overhead of
PROP-O is intuitively better than PROP-G especially when
c is much larger than nhop and m. Our simulation will il-
lustrate that. As for the second factor, we investigate the
frequency of probing for each node, fp. In the worst case,
when each peer has to probe every time, the frequency will
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Figure 5. Effectiveness of PROP-G in Gnutella-like environment

be fp = 1/INIT TIMER. In fact, the topology will be-
come stable after a warm-up procedure, and the frequency
is very low after that, because we utilize a Markov chain
model to exponentially postpone the time of probing. Even
when churn occurs, the frequency of probing will reduce
quickly after a short period of time. Our simulation ex-
periments regarding performance in a dynamic environment
will demonstrate this idea.

5 Performance Evaluation

5.1 Simulation Methodology

We use the GT-ITM topology generator [22] to generate
two different transit-stub models of the physical network.
The first topology, ts-large has 70 transit domains, 5 transit
nodes per transit domain, 3 stub domains attached to each
transit node and 2 nodes in each stub domain. The sec-
ond one, ts-small, differs from ts-large in that it has only 11
transit domains, but there are 15 nodes in each sub domain.
Intuitively, ts-large has a larger backbone and sparser edge
network than ts-small. Except in the experiment of physical
topology, we always choose ts-large to represent a situation
where the overlay consists of nodes scattered in the entire
Internet and only very few nodes from the same edge net-
work join the overlay. We also assign latencies of 5, 20 and
100ms to stub-stub, stub-transit and transit-transit links re-
spectively. Then a number of nodes (default set to 1200),
are selected from the physical network as overlay nodes.

The simulation involves three P2P infrastructures,
Chord, CAN and Gnutella; and different improving meth-
ods based on them like PNS, PIS and LTM. MIN VAR is
determined by the analysis in Section 4.2. The value of
MAX INIT TRIAL is based on massive experiments. It is
difficult to set the value of INIT TIMER because it is re-
lated to the dynamics of the system. In our evaluation, we
simply set it as 1 minute. The choices of other parameters
will be discussed in the following subsections.

5.2 The Effectiveness of PROP-G

According to the analysis in Section 4, PROP-G is a
generic mechanism, which can be used in both unstruc-
tured and structured systems. Figure 5 and 6 show its ef-
fectiveness in both Gnutella-like and Chord environments.
Stretch is the metric used to characterize matching degree.
As messages are sent by the flooding method in unstruc-
tured P2P systems, it is not practical to calculate the latency
between each pair of nodes. Therefore, the average lookup
latency derived from 10,000 lookup operations is chosen in
Gnutella instead. Both stretch and average lookup latency
are varied according to time.

Figures 5(a) and 6(a) show the impact of the TTL on
stretch in two different systems. There are four typical sce-
narios as far as probing is concerned. In the main scenario,
instead of TTL packets, a random node is selected as the
probing target. In other three conditions, TTL value nhop is
set to 1, 2, 4 respectively. Neighbors’ exchange (nhop = 1)
is not suitable because it cannot reduce the stretch signif-
icantly (which is consistent with our analysis of stability),
while other three different ways have nearly the same im-
pact on stretch reduction. Given that random probing is not
practical in a distributed system, only when nhop ≥ 2 can
a good performance be attained in a P2P system. In order to
minimize the cost, nhop = 2 may be a better choice, and it
will be used in the following experiments. Figures 5(a) and
6(a) also illustrate that stretch is not reduced all the time,
which is consistent with our approximate analysis.

Figures 5(b) and 6(b) demonstrate the impact of system
size. The effectiveness of the schemes is slightly reduced
as the system size becomes larger. There are at least two
reasons. First, when the system has a larger size and PROP-
G fixes nhop as 2, the collected information is relatively
limited. Second, as we choose the nodes from the same
physical network, the overlay is getting closer to the physi-
cal topology when it is larger. Fortunately, PROP-G is still
effective even when almost all physical nodes are chosen.
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Figure 6. Effectiveness of PROP-G in Chord environment

The impact of physical topology is presented in Figures
5(c) and 6(c). We have generated two different types of
topologies: ts-large and ts-small by GT-ITM tools, both of
which contain about 2400 nodes. It is obvious that the ts-
large topology has much better performance. In the ts-large
topology, only a few stub domains are attached to tran-
sit nodes. As a result the probability that two stub nodes
belong to different transit domains is relatively high. In
other words, two far nodes can execute the exchange op-
eration with a high probability, and this kind of exchange
will greatly improve the performance of the system. PROP-
G is more efficient in ts-large topology, which is much like
the Internet as we mentioned above. Finally, comparing
structured and unstructured systems, the average lookup la-
tency in Gnutella fluctuates more markedly. This is because
Gnutella owns more random logical connections, and it is
harder to find the better candidate nodes to exchange.

5.3 The Effectiveness of PROP-O

In this section, we will compare PROP-O with PROP-
G and LTM under a Gnutella-like environment. m is al-
lowed to vary from 1 to 4, where 4 is the minimum average
degree in the system. In order to illustrate the features of
PROP-O in a heterogeneous environment, we further intro-
duce node heterogeneity in our simulations. There are many
resource factors which result in node heterogeneity, includ-
ing process speed, storage and bandwidth supported. We
merely use processing delay to represent node heterogene-
ity because we are more interested in lookup latency in this
paper. To simulate processing delay, the bimodal distribu-
tion is used. There are two kinds of nodes - fast and slow.
The processing delay of the fast nodes is 10ms, while the
delay of the slow ones is 100ms. The fraction of fast nodes
is 5% of the total population: the overall setting is similar
to that in [5]. Since the total delay is just the sum of the link
delay plus processing delay of nodes, the resulting absolute
delay will be much larger than the corresponding results for
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Figure 7. Average lookup latency for bimodal
processing delay distribution, when varying
the fraction of fast node lookup

PROP-G. To avoid any confusion, we choose a normalized
value instead of real lookup delay which is measured by
millisecond.

Figure 7 shows an important feature of PROP-O. In
real-life P2P systems, powerful nodes provide much more
services than poor ones. Accordingly, the destination of
lookup operations will be concentrated on the powerful
nodes. We simulate this phenomenon by increasing the
fraction of lookups whose destination is a fast node in the
bimodal distribution environment. When all queries are
directed to slow nodes, LTM shows best routing perfor-
mance. However, when more queries are directed to fast
nodes, the delay of both PROP-G and LTM increase. On
the other hand, the delay for PROP-O keeps decreasing. We
will explain it from the following two perspectives. On the
one hand, given that the physical network we construct is
“Internet-like”, only a few nodes from the same edge net-
work will join the overlay. So the query with largest latency
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is usually from a slow node to another slow one in different
areas. As a result, it is likely that the latency of a query to
slow node tends to be larger than the one to fast node. How-
ever, if the two slow end-nodes are connected by a num-
ber of fast intermediate nodes, maintaining the positions of
these fast nodes will have a more significant impact on the
performance of the system. Because fast nodes have more
connections, it is more likely that they will be located in
better positions after a peer-exchange, and PROP-O is able
to maintain the connection number of each node so that the
fast nodes can keep this kind of priority.

6 Conclusion

This paper proposes a family of peer-exchange methods
called PROP to solve the mismatching problem in P2P sys-
tems. PROP is adaptive scheme which can be easily embed-
ded into most P2P systems without affecting the character-
istics of the original systems. Simulation experiments show
that PROP is an efficient way to match the physical net-
work. By combining it with other recent methods, the over-
all performance can be further improved. It is also adaptive
to dynamic change of peers. Unlike most previous studies
that try to discover a better structure for P2P overlay, we ac-
cept the fact that many different structures coexist and our
approach is another choice to make P2P systems more effi-
cient.
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