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Abstract

Today, numerous models and metrics are available to
capture and characterize static properties of online so-
cial networks. When it comes to understanding their dy-
namics and evolution, however, research offers little in
terms of metrics or models. Current metrics are limited
to logical time clocks, and unable to capture interactions
with external factors that rely on physical time clocks.
In this paper, our goal is to take initial steps towards
building a set of metrics for characterizing social net-
work dynamics based on physical time. We focus our
attention on two metrics that capture the “eagerness” of
users in building social structure. More specifically, we
propose metrics of link delay and triadic closure delay,
two metrics that capture the time delay between when
a link or triadic closure is possible, and when they ac-
tually instantiate in the trace. Considered over time or
across traces, the value of these metrics can provide in-
sight on the speed at which users act in building and
extending their social neighborhoods. We apply these
metrics to two real traces of social network dynamics
from the Renren and Facebook networks. We show that
these metrics are generally consistent across networks,
but their differences reveal interesting properties of each
system. We argue that they can be attributed to factors
such as network maturity, environmental and social con-
texts, and services offered by network provider, all fac-
tors independent of the network topology and captured
by our proposed metrics. Finally, we find that triadic
closure delays capture the ease of neighbor discovery
in social networks, and can be strongly influenced by
friend recommendation systems.

1 Introduction
Online social networks (OSNs) have been extensively stud-
ied in the last decade, with most efforts focusing on static
properties computed on single snapshots of the network.
Gradually, attention of the community has shifted towards
temporal properties of OSNs, with the goals of under-
standing patterns and mechanisms underlying their growth.
However, most temporal studies are limited to analyses
of dynamics using logical clocks (Leskovec et al. 2008),
despite the growing recognition that a full understand-
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ing of graph dynamics requires analyses using physical
clocks (Kossinets, Kleinberg, and Watts 2008).

Recent studies of network dynamics on the Renren net-
work provided a macroscopic view of network evolution,
by measuring the trend of some measures in each temporal
snapshot (Wilson et al. 2009; 2012; Zhao et al. 2012). Later
work (Gaito et al. 2012) took it a step further, by adopting a
microscopic approach using physical time. Its node-centric
analysis showed that users create links in a highly bursty
temporal pattern.

In this work, we focus on the dynamic formation of two
fundamental network-building components: dyads and tri-
ads. We propose two new metrics to aid the temporal anal-
ysis on physical clocks: link creation delay and triangle clo-
sure delay. Link delay is the time period required before two
users of a network create a link between them, i.e. the delay
between when a friendship is possible and when a friendship
link actually forms. On the other hand, triangle closings
capture the transitivity of friendships, which has proven to
be effective in modeling network evolution and link predic-
tion. Triadic closure delay captures the time of formation of
all the links of triads by considering the temporal process of
triad formation.

These two metrics enable us to study the dynamic creation
of dyads and triads, and to highlight network behavior that
would otherwise remain hidden. The main contribution of
this paper concerns the temporal features characterizing the
links and the triangle formation measured on two temporal
annotated datasets from Facebook and Renren (Section 3).
In our analysis, we find that link delays are generally very
low in absolute time, meaning if two people want to become
OSN friends, they do so very shortly after both have joined
the network. Link establishment is especially fast in early
stages of social networks. In addition, link delay results are
largely independent of the dates people join the network.
To highlight the social nature of this metric, we introduce
the term synchrony to quantify how well linked users over-
lap in lifetimes. Finally, we study if link delays correlate to
distance in the social network, and find that links spanning
more distant nodes generally form faster.

Our triadic closure delay takes into account how long a
temporal triangle takes to form. We first introduce an al-
gorithm to extract temporal triangles, which enable us to
monitor the triangle formation process, and to detect sud-
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den changes in the triangle formation behavior, possibly re-
lated to external events. In particular, we show that the in-
troduction of Facebook’s ’People You May Know’ (PYMK)
functionality had a disruptive impact on the triangle creation
process in the network, while in Renren we highlight the
impact of real life changes on the network structure.

From a microscopic perspective, we shed a light into the
physical time of the triadic closure process by introducing a
formal definition of the delay of the triangle formation. The
triangle delay represents a normalization that accounts for
the node and link arrival processes. By analyzing the above
quantity we find that triad formation is very fast, accounting
for the fact that if two persons have a common friend and
want to be online friends, they instantiate the relationship
very quickly. Yet this new metric shows slightly different
behaviors in our two datasets. In fact the bootstrap phase
captured by the Renren dataset is also faster in the triangle
formation dynamics compared to Facebook growth. Finally,
triangle closure delay allows us to identify when latent tri-
angles have been triggered by external events, thus allowing
us to evaluate the impact of these types of events.

2 Related Work
With the availability of datasets on online social networks
that evolve over time, researchers have begun to study mech-
anisms by which nodes arrive and links form or disappear.
One promising approach has been the microscopic perspec-
tive, i.e. the growth and the properties of a network re-
sult from choices made by nodes based on local informa-
tion from their neighborhood or other close-by nodes. How-
ever, microscopic mechanisms have been studied only us-
ing logical time, where the number of nodes/links repre-
sent the ’clock’ of the system. This has led to the study
of link formation in terms of likelihood or in term of age
of nodes (Leskovec et al. 2008). Only (Sun et al. 2012)
discussed the issue of predicting when a link will be built.
Recently, online social networks have been studied from a
physical time perspective, with particular focus on bursty
behavior in the neighborhood expansion mechanism (Kikas,
Dumas, and Karsai 2013; Gaito et al. 2012). However, the
temporal properties of each link have never been faced in the
physical time framework.

Among other proposed link creation mechanisms, triadic
closure is the most basic and powerful principle to model
the evolution of social networks. Specifically, this prin-
ciple states that individuals with a common friend have a
higher chance to become friends themselves at some point
in the future (Rapoport 1953). Due to the strong relation-
ship between triadic closure and clustering coefficient, a
few works have faced the dynamics of the triadic closure
process, by analyzing the temporal trends of the average
clustering coefficient. By exploring the social network dy-
namics of a portion of the arXiv repository, (Amblard et al.
2011) showed that the average clustering coefficient is quite
constant (≈ 0.5 since 1992). A more detailed analysis of the
average clustering coefficient in a Chinese social network
has been presented by (Zhao et al. 2012). Variations in the
clustering coefficient have also been observed by (Gonzalez
et al. 2013) and (Gong et al. 2012). They show that Google+

structure has become less clustered as new users joined the
largest connected component, and that the average cluster-
ing coefficient seems to follow a three-phase evolution pat-
tern: first decreasing, then increasing slowly and finally de-
creasing again. In general, the previous approaches all suffer
from the averaging effect, i.e. wide fluctuations affecting the
clustering coefficient of single nodes are lost in the average.
This produces a measure of the whole network that poorly
captures the triadic closure process.

While these studies focus on the temporal trend of the
clustering coefficient to quantify the magnitude of the clo-
sure process, others combine the snapshot paradigm with the
likelihood of a link given the number of common friends.
One of the seminal work has been carried on by (Kossinets
and Watts 2006). They found that two users are more likely
to close a triangle if they share many friends. While the
method does not explicitly focus on the process timing, it
heavily depends on the choice of the temporal gap between
two snapshots. A more detailed and wider study of the tri-
adic closure process has been conducted by (Leskovec et al.
2008). They model how a source node decides to add an
edge to some other node two hops away. They have found
the most likely mechanism is given by a combination of the
number of common friends between the nodes and the pres-
ence of recent activity at the candidate neighbor. While this
work is the most related to ours, it focuses on the choice
mechanism and not the temporal trend of triangles or the
time it takes for them to form.

(Mislove et al. 2008), (Viswanath et al. 2009), (Garg et al.
2009) have studied triadic closure in the evolution of online
social networks. In particular they analyzed the proximity
bias, i.e. the tendency of nodes to link with those nearby
in the network graph. The results on Flickr and FriendFeed
have shown that proximity bias influences the formation of
new links, making two nodes which are two hops distant
more likely to form a link. These studies only confirm the
predominant role of the triadic closure, but do not explore
the closure process. Finally, (Romero and Kleinberg 2010)
studied the triadic closure process on the Twitter network,
finding heterogeneities in the process when they consider
high degree nodes.

In contrast, we investigate the temporal dynamic proper-
ties of the triadic closure process and link formation. To
the best of our knowledge, this is the first study that ex-
plores how long the triangle formation lasts in triadic clo-
sures. Given our use of physical time, we are able to cor-
relate changes in the triadic closure process with social and
environmental contexts, as well as the introduction of new
services by the social network provider.

3 Measurement Methodology
The main goal of our work is to introduce metrics that can
quantify the microscopic dynamics in the growth of online
social networks, using physical time as reference system.
One advantage that physical time offers is the possibility of
relating the global and local changes in the growth process
to events external to the network system, since physical time
connects events inside the social network structure and any
external events.
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To introduce the new metrics, we start by presenting the
theoretical framework we adopted to describe the growth
processes in physical time. Then we introduce the datasets
on which we apply the dynamic metrics. In particular, we
need data from online social networks with fine-grained
temporal information, so as to stress the microscopic dy-
namics of their evolution. Using artifacts in our datasets,
i.e. the bootstrap phase in Renren and the Facebook tran-
sition from a university service to a business company, we
highlight and measure how different types of external events
impact on the network topology and its dynamics.

Notation
In the following, we introduce the notation we adopt to de-
scribe the growth of the whole network and its constitutive
elements. Formally, we represent the social network of our
datasets as an evolving undirected graph. Usually the net-
work growth is represented by a sequence < G1, . . . , GT >
where each Gt = (Vt, Et) is an undirected graph denoting
the state of the network at time t having |Vt| nodes and |Et|
links. As we have no information about node and edge re-
movals, the number of nodes and edges always increases in
time up to the end of the measurement process indicated by
T . At last, graph GT = (VT , ET ) will contain the whole set
of nodes and edges appearing during the growth.

To analyze the microscopic structural properties and
to simplify definitions, we project the sequence <
G1, . . . , GT > into an undirected graph G = (V,E) where
links are time-stamped by the time function τ : E → R that
assigns to each edge e = (u,w) its creation time. Given
the increasing monotonicity of the sequence, V = VT and
E = ET . In accordance with this framework, we use
Γt(u) = {w|τ(u,w) ≤ t)} to denote the set of neighbors
of u at time t and consequently the degree of node u at
time t, as kt(u) = |Γt(u)|, while its final degree is kT (u).
Since we only have temporal information about edges, we
define the time of the first appearance of node u into the
network b(u). We call this its birth date assuming that
b(u) = min(τ(u,w)|w ∈ ΓT (u)), i.e. the time of the first
link incident to u.

Finally, since the main subject of Section 5 is the dynam-
ics of transitivity, we denote a triangle composed by the ver-
tices u,w and z as ˆuwz. Exploiting the time function we can
assume that for each triangle, τ(u,w) < τ(w, z) < τ(z, u)
holds. Consequently, we have an ordering of the edges in
a triangle and we lose the triangle isomorphism typical of
static undirected graphs, i.e. ˆuwz is not equivalent to ˆwzu.

Dataset
The main obstacle to study dynamics is the challenge of
obtaining detailed data describing OSN dynamics. In this
study, we study two online social networks, Renren and
Facebook. First, we received from Renren access to an
anonymized dataset that contains the timestamped creation
of all users and edges in the Renren network (Jiang et al.
2010). Renren is the largest online social network in China.
Like Facebook, Renren was originally designed for col-
lege students. Renren was original named Xiaonei (i.e.,

in school), and changed its name to Renren (i.e. every-
one) when it expanded beyond universities. The anonymized
dataset describes the growth of each node as a timestamped
edge in the network. The first edge created in the entire
Renren history dates back to November 22, 2005, and the
dataset includes the complete evolution of the first 600,000
nodes for a total of 8 million timed edges events. In total,
our dataset covers the first year of Renren, from November
2005 to December 2006.

The second dataset is publicly available1 (Viswanath et
al. 2009). It includes the growth of the New Orleans Face-
book network with about 60,000 nodes and 800,000 links
from September 2006 to January 2009. While we have evi-
dence of the time creation of all edges in Renren because this
dataset covers the network dynamics from the kick-off date,
the Facebook dataset contains the timestamped creation of
all users and edges, except for 4.2% of vertices and 6.0% of
links. These were not considered in our analysis. As this
phenomenon is very limited, we believe the results we ob-
tained are applicable to the entire New Orleans network.

4 Link delay
In this section we introduce link delay, a novel indirect mea-
sure of the eagerness of a tie, measuring the elapsed time
between the potential establishment of a link and its real cre-
ation. A link is possible when all the enabling conditions are
set but the link has not yet been created. Below, we first de-
fine the metric capturing the time spent to establish a link
between two nodes, i.e. the delay of that link. Then we eval-
uate the link delay properties on Renren and Facebook. We
find that link delay is very low, meaning if two users wish
to establish a friendship relation, they create the link very
quickly once both users join. Finally, we correlate link de-
lay with the “ages” of the connected nodes (how long they
have been in the network) and with their topological prox-
imity. The results confirm that the delay is independent of
age difference of the nodes, and point out that few fast links
have been established between topologically distant users.

Definition
We assume that nodes are free to enter the network anytime
during the network lifetime. To properly mirror this assump-
tion in the link delay definition we apply a simple normal-
ization on the values returned from the time function τ in-
cluding the birth date b of a node. This leads us to define
link delay d(u,w) as follows:

Given G = (V,E) and its time function τ , the delay d :
E → R of the link (u,w) is defined as

d(u,w) = τ(u,w)−max(b(u), b(w)) (1)

where themax function on the birth date implies that both
nodes need to be created in the graph. d(u,w) measures the
elapsed time between the potential link creation time (when
all conditions hold) and the actual link creation time. The
lower the delay, the faster the two nodes actualize the poten-
tial link.

1http://socialnetworks.mpi-sws.org
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Figure 1: 1(a) and 1(b): CDFs of link delay and link synchrony measured on Renren, Facebook First Year and Facebook.
Figures have different y-axis scales: 1(a) starts from 0.2 while 1(b) starts from 0.1. 1(c) and 1(d): The trends of links organized
by link delay during the growth of Renren and Facebook. Color intensity is inversely proportional to link delay (upper and
lower bound of the groups are in days). 1(e) and 1(f): CDF of the link delay for links grouped by hop distance. 1(g), 1(h) and
1(i): relative and absolute volume of links grouped by link delay, considering links spanning more than 4 hops (g) and 2 hops
(h) in Renren, and links spanning more than 4 hops (i) in Facebook New Orleans.

Link delay analysis
Link delay analysis can shed light on a few properties of
OSN friendship: i) how much time people take to become
friends once they both join the OSN; ii) how link delay dif-
fers between different networks as a function of their differ-
ent user populations and the stage of their evolution captured
by our datasets. We analyze dynamics of a network at its in-
fancy (Renren), and the first year of Facebook dataset where
Facebook becomes an open service, and its consolidation
period (overall Facebook dataset).

First, we compute and analyze the distribution functions
of link delay in both datasets. Figure 1(a) shows the Cu-
mulative Distribution Function (CDF) of the link delay ex-
tracted from the Renren dataset (red line), from the first
year of Facebook dataset (green line) and from the entire
Facebook dataset (blue). The link delay distribution al-
ways shows a very quick shift from potential to actual link
state. In fact, for all three distributions, links were created
within a day in 20− 27% of the cases, and within a week in
32− 50% of the instances. These results highlight that gen-
erally speaking, a pair of nodes create friendship links soon
after both users have joined the network.

Beyond this property, some differences can be noted

among the two networks and different time periods. First,
a comparison between Renren and Facebook shows that the
two distributions diverge right after the first week, when
Renren users begin forming friendships more quickly than
their Facebook counterparts. The same trend remains true if
we consider the first year of Facebook. Secondly, the com-
parison between Facebook and its first year strengthens the
existence of different behavior in link delay as the network
grows, i.e. links are formed faster in early stages of the net-
work.

A possible explanation of the slight differences between
Renren and Facebook lies in the different phases captured
by the datasets. In the bootstrap of the network (Renren) the
information about the presence of possible friends’ nodes
spreads faster than in a later period (Facebook) because
of the social environment where Renren initially operated:
namely, a university campus where Renren was adopted
as a social service. Information about a friend’s network
presence might have spread not only on the “network,” but
also via other forms of offline networks (classroom, dormi-
tory, etc.), accelerating the adoption of the service. This ef-
fect, although smoother because its coverage of users over
a larger geographical area, remains visible in the first year
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of Facebook. The same phenomenon may underlie the dif-
ferent behaviors during the different Facebook macroscopic
snapshots; in a network’s early phase the information about
the establishment of new friendship relation reaches nodes
faster, while it has slowed down significantly for a network
in its consolidation phase.

We can obtain more information by taking into account
when links are created. This way we obtain the temporal
trend of the link delay groups as shown in Figures 1(c) and
1(d). We group all links into “delay groups” based on their
link delays. We compute, for each week, the percentage of
new links belonging to the different groups. Obviously the
number of groups depends on the dataset, because they cover
different time periods. Renren is characterized by three dif-
ferent stages. From its birthdate to the end of January, i.e.
the first three months, most links are established suddenly
(with low link delay). At the beginning of February, a drastic
change in link delay occurs, because users tend to establish
unexpressed links, and the volume of quick links increases
abruptly. During the summer the delayed links increase in
number and quick links decrease, before a reversal after the
summer. The resulting phenomenon is characterized by a
certain degree of fluctuation in the ratio of link delay.

In order to quantify the instability, we measure the stan-
dard deviation of the group’s time-series. The further the
standard deviation is from 0, the more the time-series is dis-
persed and fluctuates in time. The computed values indicate
that [7−14] and the [14−30] days delay groups are the most
stable (σ = 3%) and contain on average 28% of the over-
all created links, while the quickest link and most delayed
groups are the most unstable. In addition, the relative time-
series seem to be inversely correlated: when the portion of
quick link increases, the most delayed diminishes and vice
versa.

We observe different results in our Facebook dataset. The
component of links having a delay within a week represents
32% of overall links, and is characterized by a quite con-
stant trend. In fact, the dark green group in Figure 1(d) is al-
ways between 20% and 40%. A more evident phenomenon
happens on March 26, 2008, where we observe a drastic in-
crease in the volume of delayed links. This date corresponds
to the introduction of Facebook’s “People You May Know”
(PYMK) functionality. By analyzing the delay, we can high-
light i) how this features acts and ii) how long its effect lasts.

The friend recommendation system highly amplifies the
tendency of establishing “old potential” links that could have
been created a long time ago. 60% of links created in the
week of the PYMK introduction have a delay greater than
6 months, and 20% had a delay greater than a year. Ob-
serving the group trends the weeks after PYMK introduc-
tion, we note that the initial behavior in preferring delayed
links disappears, and after the summer of 2008 reaches pre-
PYMK percentages. Although the link delay reveals inter-
esting characteristic in edge creation process, it is not able
to capture the reason behind it, i.e. which process causes the
observed effects or which algorithms were active in the early
rollout of the PYMK feature. In Section 5 we explore these
effects correlating them to the triadic closure process.

Finally we apply the stability time-series analysis as we

did for Renren, excluding the 10 weeks after March 26 to
reduce the PYMK impact. The analysis of the standard de-
viation shows that fluctuated and stable components simul-
taneously act during the Facebook New Orleans growth: 1)
unstable quick links and 2) stable more delayed links.

Link speed and link synchrony
The link delay observations provided so far are independent
of the reciprocal network age of the nodes involved in links.
However, the birth date b allows us to verify whether or not
link creation favors pairs of nodes with similar network ages.
To quantify this type of behavior, we introduce the notion of
synchrony of a link:

Given G = (V,E) and the birth date function b, syn-
chrony s : E → R of a link (u,w) is defined as

s(u,w) = |b(u)− b(w)| (2)

In Figure 1(b), we show the metric of synchrony obtained
from our datasets (Renren: red and Facebook: blue). In both
cases we observe that the probability of having a link be-
tween peer nodes is low, and nearly 50% of links are es-
tablished between nodes with different creation times: one
month apart in Renren and 5 months in Facebook. We argue
that this result is the direct consequence of previously ob-
served bursty behaviors in the edge creation process (Kikas,
Dumas, and Karsai 2013; Gaito et al. 2012). In fact, old
nodes continue to generate or receive (as we consider an
undirected graph) links even if they are aging because 20%
of links are created 9 months or one year after a node’s birth-
day respectively.

By comparing link delay and synchrony distribution, as
shown in Figure 1(b), we can derive that low link delay has
an higher influence on the link population than low link syn-
chrony. In fact, the impact of low synchrony (≤ 7 days) is
at most 10%, and lower than the contribution given by low
delay links (at most 50%). This proposes the link delay as
a relevance feature in the future growth of the networks and
on the underlying processes.

Link delay and edge locality
We relate two kinds of locality of the edge: topological and
temporal. Topological locality of a link (u,w) is measured
by the number of hops h it spans, i.e. the length of the short-
est path from u to w removing the edge (u,w). Temporal
proximity is given by the link delay. In Figure 1(e) and Fig-
ure 1(f) we study the distribution of the link delay in four
groups of geodesic distance (2 hops, 3 hops, 4 hops and >4
hops2).

For Renren we observe that the distribution for the > 4-
hops group lies above the other groups, indicating that edges
that connect nodes more than 4 hops distant establish earlier
than closer nodes. The same behavior, to a lesser extent,
involves also the 4-hops group. This fact characterizes not

2For computational constraints distances have been computed
by a truncated version of the shortest path Dijkstra’s algorithm that
terminates 4 hops far the node, so >4 hops group could contain
edges connecting different connected components.
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only the early bootstrap phase of the network, where the ser-
vice has a small group of subscribers but remain constant
during the network growth, as shown in Figure 1(g). It re-
ports both the absolute number and the percentage of links
spanning more than 4 hops divided in the same delay groups
adopted in the temporal analysis. We note that more than
80% of the far links keep actualizing in less than 2 weeks.
Figure 1(h) shows a different phenomenon occurs in the 2-
hops group. Here we observe that some friendships were
created with an delay greater than 3 months, even though
the two users were already connected by at least one com-
mon friend.

In Facebook we obtain a trend similar to Renren, but
smoother. As shown in Figure 1(f), edges spanning four or
more hops exhibit a lower delay compared to those that span
closer nodes. Also in this case, the lowest components (≤ 7
and (7 − 14]) score the 40 − 50% of links along the period
indicating a stable behavior, as shown in Figure 1(i).

In general these results suggests a quite surprising behav-
ior involving link delay and edge locality. While some works
(Leskovec et al. 2008), (Easley and Kleinberg 2010) report
that closer nodes are more likely to establish a new link, our
results suggest that a high link likelihood does not always
corresponds to fast link creation. Links that span farther
nodes generally instantiate faster. In such cases, the net-
work connectivity is less important than offline friendships.
To go deeper, we explore the degree and the age of the nodes
forming far and close links. We find that on average, nodes
further away in the network are the youngest and are charac-
terized by low degrees. That strengths the observation that
nodes just entering into the network exploit some external
relationships (offline or other social networks) during link
creation.

5 The Triadic Closure Process
The availability of temporal annotated networks has allowed
the study of the network’s evolution over time, and has led to
a deep understanding of the mechanisms governing node and
link arrival and creation. In this section, we study the evolu-
tion mechanisms of online social networks, mainly focusing
on the basic growth principle underpinning these networks:
triadic closure.

Observed as one of the most frequent processes of link
formation, triadic closure has been widely adopted in differ-
ent disciplines. For instance, the sociological principle for
triadic closure is the transitivity of friendship, which says
that two individuals have a high likelihood of establishing
a friendship if they share a common friend. The transitiv-
ity of friendship has been proved to be effective in modeling
network evolution and predicting future link formation. De-
spite its commonly accepted value, the foundational princi-
ples governing triadic closure have not yet been analyzed in
depth.

Here we characterize the triadic closure process by delv-
ing into its temporal aspects. We consider two perspectives.
First we analyze the triangle formation growth from the net-
work point of view, by counting new formed triangles on
the overall dataset. To reach this goal we adopt an algo-
rithm able to extract temporal annotated triangles. Temporal

information are used to monitor the number of triangles day-
by-day. By analyzing the triangle time-series we are able to
map sudden changes of the triangle formation onto events
external to the network, such as the introduction of a new
feature in the service or seasonal events involving most of
nodes.

We move apart from the network perspective to embrace
a microscopic point of view focusing on the formation of
the single triangles. In particular we study the speed of the
formation of triangles. Our goal is to shed a light on the
dynamical properties of the triadic closure process by intro-
ducing the formalism to capture the time a triangle takes to
be established. This way we define the triadic closure delay
and we show how this new metric captures different behav-
iors in the datasets under investigation.

Temporal triadic closure
We believe that the dynamical analysis of network evolution
cannot disregard the transitivity closure process, for the lit-
erature has shown its importance in the formation of social
networks - despite the fact that a temporal analysis of the tri-
adic closure poses both algorithmic and methodology issues.
The first concerns the extraction and counting of temporal
annotated triads. While many approaches have been pro-
posed in literature, most are suitable for static networks and
so cannot be adopted in our microscopic view. Our approach
in the study of triadic closure dynamics advocates, rather,
an extension of the triangle enumeration methods in order to
swallow the temporal information. 3 Our starting point is the
observation that time annotation impacts the number of iso-
morphic triangles. In a simple undirected graph the number
triangles isomorphic to ˆuwz is 6 (3!), while in the temporal
case the ordering induced by time makes the isomorphism
disappear.

Once the triangles have been extracted, we have all the
information we need to study the triangle creation process
during network evolution. In Figure 2, we show the volume
of triangles that are created daily in Renren and in Facebook.
On December 13, 2006 the Renren network was composed
of more than 12 million triangles, two thirds of which result-
ing from an activity of triangle creation started in August. In
Facebook, instead, during the three years of observation, we
count more than 1.7 million temporal triads. By observing
the triangle trend in the two datasets over the overall periods,
we note a general skew in the triadic closure process.

Obviously, triangle and link volumes are strongly related,
as the increasing number of triangles could impact the over-
all number of new links. This is true even though not all
links derive from the triadic closure process. For instance,
they could be the consequence of new node arrival or some
other effects, namely a preferential attachment process or
search for new friends by graph exploration.

3Methods for frequency-based pattern and temporal graph
matching (Berlingerio et al. 2009) are not suitable for our purposes
because of combinatorial arguments based on integer partition. For
each integer i we should extract all the triangles such that the rel-
ative times of their links sum to i. In fact we are not interested in
temporal pattern shifted in time.
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Figure 2: Number of new links (red) and triangles (blue) formed during the growth of Renren and Facebook New Orleans,
sampled each day. The magenta line represents the ratio between the triangle and the links created in a day (y-scale on the
right).

A first hint in the validation of the impact of triadic clo-
sure on the creation of new links can be given by the compar-
ison between the arrival of the new edge and the formation
of the new triangle. In fact by comparing the link and the tri-
angle time-series in Figure 2, we observe the same trend; an
increase/decrease in the new link volume corresponds to an
increase/decrease in the number of triads. In order to quan-
tify this relation, in the same figure we plot the ratio between
the triangle and the link time-series. Thus we can quantify,
on average, the number of triangles closed by a link. Ob-
viously, the average value does not account for the per-link
fluctuation, although it gives an idea of the role played by the
triadic closure process. Despite the above limitations, by an-
alyzing the link/triangle ratio we find two interesting results
- both of which are related to events more or less external to
the network.

In the Renren network the ratio in the last eight months re-
mains quite constant and stabilizes at 1.5 triangle/link, sug-
gesting a steady-state. Yet interestingly, we can also observe
the peak in the triangle/link ratio in late August, when a
spike in triadic closures occurs. This peak deserves further
study. We conjecture that external events are intervening
to speed up the network growth processes. In this case we
could speak of ’summer effect’ due to the combination of
two facts: i) in the period we are analyzing Renren got tar-
geted as a service for college students and ii) in those days
Chinese students had a break from courses, so had extra time
to pursue other interests and meet new people. As a conse-
quence, offline encounters were also mirrored in the online
network.

A more extensive and substantial result emerges from the
triadic closure counting on the Facebook network. As evi-
dent in Figure 2(b), the network shows an abrupt transition
after March 26, 2008. This date corresponds to the introduc-
tion of Facebook ”People You May Know” (PYMK) func-
tionality, which promptly impacts both network and trian-
gles. In fact, prior to the launch of PYMK, the triangles/links
ratio is quite similar to Renren’s, then rapidly increases and
stabilizes at the greater value of 3-4 triangles/link. We note
how the PYMK mechanism highly impacts the microscopic
characteristic of the network structure. In particular, it in-
fluences the link creation process to highly favor triadic clo-
sures. This strong effect cannot be captured by analyzing
only the link creation over time. In fact we observe only a

medium increase in the new link volume as shown in Fig-
ure 2(b). This observation stresses the importance of adopt-
ing different indexes in describing the network evolution; in
fact, the number of new links alone would not be enough to
let the phase transition emerge in the triadic closure process.

As in the Renren case, we see how events external to the
network topology can highly influence its dynamical prop-
erties. But Renren and Facebook show totally different trig-
gering events. In Renren the event is seasonal and behav-
ioral, absolutely external to the network. In Facebook the
event is external to the network but internal to the service.
These observations have two main implications: 1) new fea-
tures of the service could rapidly and massively modify the
structure it manages, in a sort of feedback effect; 2) truly
external events trigger changes but have a limited temporal
impact on the network topology and, as a consequence, are
harder to detect.

We have shown how the triadic closure process is a funda-
mental mechanism in the growth of online social networks
and how it impacts their evolution. Nevertheless, we only
consider the result of the process, i.e the triangle which has
already been formed, and make no mention of how it got
there. The question which comes to mind is how long we
have to wait before observing the triadic closure effects, i.e.
how long a triangle takes to be established.

Triadic Closure Delay
The triadic closure process has never been analyzed in tem-
poral networks evolution. The total amount of time a trian-
gle takes to be closed and the temporal relation among the
constitutive links still await further study.

Definition The definition of the time taken by a triangle to
establish is tricker since we are considering a dynamic pro-
cess, where the components could appear at different times.
The usual definition of triangle closure is the conditional
probability that a link (u, z) is formed given that links (u,w)
and (w, z) exist. In physical time, its delay is captured sim-
ply by τ(z, u)−max(τ(u,w), τ(w, z)). It accounts for the
time to close the last link of a triangle. While this metric
is very useful to understand triangle features within a static
context, it cannot capture the timing creation of the links of
a triangle, and is thus unable to shed a light on the temporal
formation process of triads. We introduce a new definition
of triadic closure delay which embeds the time of formation
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Figure 3: Steps in the formation of the triangle and the definition of its constitutive elements. In 3(a) the potential triangle
(dotted links) which will form at the end of triadic closure. In 3(b) the link (u,w) (red) establishes in t∆(u,w) unit time. In
3(c) the second link (w, z) forms in t∆(w, z) time and finally in 3(d) the last link takes t∆(z, u) to be created and the process
ends.

of all the links of triads, by considering the temporal process
of triad formation as given by both the nodes and the links
appearing in the network.

For example, in a triangle ˆuwz the creation of the edge
(u,w) depends on the presence of nodes u and w and the
remaining links. To take into account these arguments, we
employ the birth date b(u), which denotes the time of the
first appearance of node u into the network.

Once the birth date has been defined, we can normalize
the triangle creation time swallowing the temporal gap of
node appearance, thereby capturing the real feasibility of a
triangle. To attain a global definition of triadic closure time,
we focus on the definition of its constitutive elements. We
indicate the normalized time of the link (u,w) in a triangle
∆ = ˆuwz as t∆(u,w).

To give a general definition of the triangle delay, we fol-
low the steps that characterize the triadic closure process
shown in Figure 3. In 3(a) we show the potential triangle
with no links among nodes. The first element to be created
is the red link (u,w) in Figure 3(b) and we have to measure
how long it takes to be established. It corresponds to the
delay of the link (u,w), so

t∆(u,w) = d(u,w)

The triadic process is still in node w as the link (w, z)
has not been created yet. Two possible situations could arise
just before the creation of the red link in Figure 3(c): 1)
node z is already in the network, so τ(u,w) > b(z) and
t∆(w, z) = τ(w, z) − τ(u,w); 2) node z is absent, so the
closure has to wait for its appearance. In the latter case we
have b(z) > τ(u,w), so we discount the waiting time of the
process in the node w, τ(u,w)−b(z), obtaining t∆(w, z) =
τ(w, z)−b(z). Putting together the conditions we obtain the
general definition for t∆(w, z):

t∆(w, z) = τ(w, z)−max(b(z), τ(u,w))

The last step involves the creation of the link z, u as de-
picted in Figure 3(d). By definition of b and the ordering of
the time values of the links, at the creation of the link (z, u),
nodes w and z are already participating, so

t∆(z, u) = τ(z, u)− τ(w, z)

.
Once the delay of each constitutive element has been de-

fined, we can define the triadic closure delay.

Let G be a temporal undirected graph and ˆuwz a temporal
admissible triangle, i.e. τ(u,w) < τ(w, z) < τ(z, u), the
triadic closure delay of ˆuwz, d( ˆuwz) is defined as the sum
of the normalized times of its links

d( ˆuwz) = t∆(u,w) + t∆(w, z) + t∆(z, u)

which corresponds to

d( ˆuwz) = d(u,w)−max(b(z), τ(u,w)) + τ(z, u)

From the above definition we must observe that the triadic
closure delay does not depend on the creation time of the
middle link (w, z). The normalization given by the birth date
is quite important since it covers all nodes. In Figures 4(a)
and 4(b) we quantify the effects of the normalization through
the distribution of τ(z, u) − τ(u,w) − d( ˆuwz), that repre-
sents the difference between the triadic delay and the delay
not normalized, i.e. τ(z, u)− τ(u,w). We can observe that
the normalization impacts on 50% of triangles. In particular,
40% of triads are involved in a delay normalization of more
than a month.

Triadic closure delay properties We analyze the triadic
closure delay and the t∆ of each link in a triangle and then
compare the different evolutions of the two networks we are
studying. In fact, the temporal information not only allows
us to measure the triangle delay but also to temporally place
it. This enabled us to verify whether or not the fast triangle
trend is stable during the network growth and to see if ex-
ternal mechanisms, e.g. Facebook’s PYMK, modified this
trend.

In Figure 4 we report the delay CDF for Renren and Face-
book. Considering the Renren distribution in Figure 4(a)
we observe that most triangles have a high speed formation,
given that half of the triangles close in less than 25 days.
This fact stresses the importance of the study of triangle
formation dynamics. In effect, triadic closure impacts the
network structure both significantly and quickly. As shown
in Figure 4(b), we observe a different behavior in Facebook.
The measured delay is much greater than in the Renren case,
as half of the triangles get established in five months at most.

We question if all the elements are necessary to predict the
triadic closure delay. This corresponds to verifying whether
or not certain relationships occur among the different el-
ements. For example, if t∆(u,w) and t∆(w, z) are low,
what can we say about the delay of t∆(u, z). Will it be low
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Figure 4: CCDF of the triadic closure delay and its constitutive elements. The black CDF in both figures represents the effect
of the normalization of the triadic delay definition w.r.t. the simple definition that does not consider the node arrival process.
4(c) and 4(e): The number of triangle created in each week and divided in different delay groups. 4(d) and 4(f): The volume
trends (percentage) of the triangle delay groups during the growth of Renren and Facebook. Group green intensity is inversely
proportional to triangle delay (upper and lower bound of the groups are in days).

too? To stress possible relationships among the elements we
adopt two approaches. First, we randomize the t∆s to delete
any relations between the triangle elements. Then we com-
pare the resulting delay distribution with the real one. The
randomization is obtained by shuffling the elements in each
column of the matrix T∆ = [t∆(u,w), t∆(u,w), t∆(u,w)].
We find that the delay and the shuffled delay distributions are
quite similar. This observation suggests a lack of a particular
relation between the delay elements of a triangle. Further-
more we confirm the above result by computing the corre-
lation matrix among t∆(u,w),t∆(z, w) and t∆(z, u). More
specifically we find correlation coefficients close to 0 (from
0.03 to 0.05) for each pair of variables.

Generally, these observations suggest that the single de-
lay of the constitutive elements is not sufficient to explain
the total delay of triangles. In other words, the triadic clo-
sure delay cannot be predicted by simply observing a single
element.

Delay dynamics in the network growth As shown in Fig-
ure 2, in both datasets the triangle formation trend is not
regular. Now through triadic closure delay we are to able
to capture what kind of triangles (low or high delay) con-
tribute to the observed irregularity. In Figure 4 we show the
impact of the triadic closure delay groups during network
growth. In Figure 4(c) and 4(e), we divide the new triangles
created in each week into groups according to their delays.
In Figure 4(d) and 4(f), we maintain the same groups but we
normalize the contribution of each group with respect to the
total number of triangles formed during the week. This way
we quantify the absolute and relative contributions of each
group to the triangle formation dynamics. For example, a
group could undergo a rapid increase (absolute volume) but
have an overall low impact (relative) simply because a gen-
eral boost of formation activity of the triads.

By analyzing the absolute and the relative volume of tri-
angles grouped in group delay in Renren, (Figures 4(c) and
4(d)) we observe three behaviors. First, groups with a delay
less than a month run into a continuous decrease from the
beginning of June, when they reach the maximum activity,
to the beginning of August, i.e. during the summer. This fact
may be relevant to the relative drop of the link creation. Sec-
ond, we see a peak of the [60− 90] days group that spans all
August. This fact indicates that during August the potential
triangles, begun before the summer, actualize. Finally, af-
ter the summer, a component of high delay triangles (yellow
group) appears and stabilizes on 30% of the new triangles.
In general, seasonal effects on Renren are influential, and the
triadic closure delay is able to measure which latent triangles
it acts on.

As for the absolute volume in Facebook, in Figure 4(e) we
observe that the eight first delay groups keep slowly increas-
ing. That accounts for a component of fast triangles which is
independent from the stage of the network and that involves
a similar number of triangles. Other groups, characterized
by a higher delay, manifest after the PYMK service and stay
quite constant until the end of the sampling period. Rela-
tive to the volume trends, in Figure 4(f) we observe that the
PYMK service primarily acts on the ’old’ triangles. This
implies that the suggestion mechanism based solely on the
common-neighbors friend recommendations, awakens latent
links long asleep.

In addition, we can quantity the long period effects of the
mechanism. Specifically, we observe that after a brief period
from the PYMK introduction, the relative volumes stabi-
lize, with the exception of the [30-90] groups which increase
slightly. By comparing the distribution of the triadic closure
delay groups before and after the introduction of the friend
suggestion system, we observe (Figure 4(f)) that PYMK is
likely to promote higher delay triangles. By analyzing the
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triadic closure delay during the temporal evolution of Face-
book, we were able to quantify the effects and the impact of
the PYMK feature.

6 Conclusion
This paper takes a first step in the direction of building a set
of metrics capable to characterize social network dynamics.
Until now, in fact, when it comes to understanding detailed
dynamics and evolution inside these networks, current re-
search offers very little in terms of metrics or models. We
focus our attention on two metrics: link delay and triadic
closure delay. They can capture the time delay between
when a link or triadic closure is possible, and when they ac-
tually instantiate in the trace. We have applied these metrics
to two real traces of social network dynamics from Renren
and Facebook, and we have shown that they are generally
consistent across networks, but their differences shed light
on interesting properties of each system.
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