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Abstract— Efficient video-on-demand (VoD) is a highly desired
service for media and telecom providers. VoD allows subscribers
to view any item in a large media catalog nearly-instantaneously.
However, systems that provide this services currently require
large amounts of centralized resources and significant band-
width to accommodate their subscribers. Hardware requirements
become more substantial as the service providers increase the
catalog size or number of subscribers. In this paper, we describe
how cable companies can leverage deployed hardware in a peer-
to-peer architecture to provide an efficient alternative We propose
a distributed VoD system, and use real measurements from a
deployed VoD system to evaluate different design decisions. Our
results show that with minor changes, currently deployed cable
infrastructures can support a video-on-demand system that scales
to a large number of users and catalog size with low centralized
resources.

I. INTRODUCTION

Video-on-Demand (VoD) has been the subject of intense
interest both in the research and commercial sectors for a
number of years. The reason for this popularity is twofold. On
one hand, VoD represents an attractive service that is expected
to draw a large number of subscribers if implemented and
deployed well. On the other, VoD services pose a challenge
due to the large storage size, high bandwidth, and connectivity
persistence required for deployment. These challenges become
particularly acute as the number of subscribers and the area
of coverage increase.

Due to these high demands, most solutions for providing
VoD services are distributed. Many solutions service multime-
dia requests using high I/O media servers scattered throughout
the deployment area. In some solutions, these servers simply
replicate the media catalog [5], [22], while others attempt to
automatically cache popular data only [4], [13]. Unfortunately,
these solutions scale poorly because an increase in subscribers
must be met with the purchase of expensive multimedia
servers. Peer-to-peer systems like [3], [12], [16] address this
scalability problem by utilizing the subscribers themselves
to serve data. Thus, as the subscriber population grows, the
number of service providers grow also.

One attractive environment to deploy a peer-to-peer VoD
system is on the infrastructure used by U.S. cable television
companies. This infrastructure is pervasive and the cable
subscriber base is large, but in recent years competition in
this industry has grown. Thus, there is significant incentive to
deploy a scalable VoD service in this environment. Also, the
infrastructure itself has two components that can facilitate the

development of a peer-to-peer system. First, the physical net-
work layer features a broadcast-based, ethernet-like network
in the last mile. Second, the cable company deploys dedicated
computers to each subscriber’s home in the form of set-top
boxes, which allow subscribers to access television services.

In this paper, we propose a method for deploying a peer-to-
peer architecture over cable infrastructure to act as a proxy-
cache for VoD data. Our approach uses set-top boxes within
each coaxial neighborhood as peer-to-peer storage for caching
content. Additionally, we exploit the broadcast capability of
the coaxial network to cache data at a local peer as it is being
viewed. To our knowledge, this is the first work on peer-to-
peer systems that specifically targets cable infrastructure. We
evaluate our system through simulation using the PowerInfo
trace [22] of real VoD usage collected from a Chinese telcom
over a number of months. This allows us to evaluate how
a real VoD service would have performed over a variety of
topologies and caching strategies.

In so doing, our work makes the following contributions.
• We show that simple caching methods produce significant

load reduction on central VoD servers.
• We show that performance scales well with increases

to neighborhood size, subscriber population, and catalog
size.

• We show that our solution is feasible using the limitations
of current technologies.

II. VIDEO-ON-DEMAND FOR CABLE NETWORKS

Video-on-demand is the next logical step in Internet-based
content delivery. Media companies such as cable (Cox, Com-
cast), satellite (DirecTV, Dish Networks), and movie rental
(Blockbuster, NetFlix) are all investigating the feasibility of
delivering digital content to the home with minimal overhead
costs. Video-on-demand through existing cable or satellite
links provides an easy deployment channel for next-generation
content distribution. Existing providers such as Cox, Com-
cast and DirecTV are already deploying prototype video-on-
demand as a value-added service.

Even as media companies experiment with video-on-
demand, they are fundamentally limited by the data distri-
bution model. Ideally, media companies could offer large
selections of movie, television, and music on-demand to all
users. Unfortunately, the resulting traffic would cripple the ex-
isting delivery infrastructure. Centralized media servers would
become disk I/O bottlenecks as well as bandwidth bottlenecks,

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00  © 2007



Fig. 1. Diagram of cable infrastructure

and poorly managed networks could become overloaded.
Consequently, companies must limit content selection or limit
accessibility to a subset of subscribers.

In particular, U.S. cable providers have a strong motivation
to provide an extensive VoD service. Companies like NetFlix
and DirectTV compete with the cable industry, and their
successful deployment of a VoD system could bite into cable
revenues. However, cable companies do have a pervasive
hardware infrastructure in place, as well as a large subscriber
base. In 1999, 99% of all homes in the U.S. reported owning
a television, and 67% subscribed to a cable service [5]. Thus,
there is tremendous incentive to deploy a scalable VoD system
over this infrastructure.

The cable infrastructure is hierarchically organized into
three components, which can be seen in figure 1. At the top
of this hierarchy is the cable operator, which is the source of
multimedia data. While separate services may be served from
different geographic areas, we represent it here as a single
source. The cable operator is connected to a collection of
headends, which are the intermediate level of the hierarchy.
Each headend is in turn connected to a set of subscribers,
forming a neighborhood and competing the hierarchy.

The Hybrid Fiber-Coax (HFC) connects these components
using two different physical networks. The cable operator
and all headends are connected via a digital, switched fiber-
optic network. This network provides high-capacity, low-
interference, end-to-end connectivity between these two com-
ponents. The headends are connected to the subscribers via a
coaxial network. This is a legacy analog broadcast network
that provided all cable services two decades ago. To broadcast
television data to subscribers, the cable company generates
data and sends it to each of the headends over the fiber
network. Each headend then rebroadcasts all data it receives
to its neighborhood on the coaxial network.

Coaxial networks have two important properties. First, they
are broadcast based–any piece of data sent by the headend is
seen by all subscribers. Likewise, any data sent by a subscriber
can be seen by other subscribers. Second, coaxial networks are
rate-limited and asymmetric. Current configurations focus on

downstream traffic, supplying between 4.9 Gb/s and 6.6 Gb/s
depending on the cable capacity. Of this, roughly 3.3 Gb/s
are used for cable television, and the rest are used for other
services. Upstream capacity receives a fixed and standardized
allocation of approximately 215 Mb/s, which is used for
IP cable modem traffic, set-top control signals, and VoIP
data for the entire neighborhood. Because these properties
have implications that negatively affect modern cable network
usage, companies often push fiber closer to the subscriber’s
homes as budgets allow.

The final piece of cable architecture we will discuss is the
set-top box, which is a specialized computer that provides
cable services in the subscribers home. Its primary function
is to pull data off the line, perform any necessary decoding,
and display it on the TV. It also fields and handles requests
for VoD, pay-per-view, or other other cable services, and may
record programs if its a digital video recorder (DVR). Finally,
it downloads targeted advertising and software upgrades and
reports usage patterns in the background. While the subscriber
can turn the set-top box “off”–thus deactivating the display and
television signal–this device must remain on.

III. RELATED WORK

There has been a significant amount of work on the efficient
distribution of video content on-demand over the network.
Video data is very large, and the expected request rates in a
VoD system are quite high. Video data ranges from 3.5 Mb/s to
8 Mb/s, depending on encoding quality, for normal-definition
MPEG-2 video data. As a result, servers must both store a
large amount of data and support a high I/O rate. The two main
techniques that are used to address this problem are proxy
caching and multicast. The former reduces server load by
caching popular data strategically throughout the system. The
later builds a multicast tree to attempt to distribute network
load evenly throughout the system.

Much work in this area focuses on using high I/O servers
to provide proxy caches for a multimedia distribution system.
However, significant attention has also been dedicated to
peer-to-peer solutions. These solutions exploit topology aware
organization and quick replica location to produce a system
that enables each peer to quickly locate and retrieve data.
Many of these systems, like [2], [3], [10], [12] make use
of structured peer-to-peer overlays [14], [19], [20], [24] to
store specific data. Others, in [16], [17], attempt to form a
less structured overlay for streaming media delivery.

A. Proxy Caching

Proxy caches serve to reduce load on a central server and
place data geographically closer to those accessing it. Systems
are deployed by placing data caches strategically throughout
the network. Clients wishing to access data first contact a
nearby cache to request the data. If the data is popular, there
is a good chance the request will score a cache hit and
be returned immediately. Otherwise, the cache retrieves the
data from a server, forwarding the response to the client and
possibly caching it in the process. This solution is similar to
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web caching, which has been successful for companies like
Akamai [1], [7].

Server based solutions place powerful machines throughout
their deployment zone to provide caches. These machines
are heavily optimized and expensive, and serve data to large
numbers of customers. Research on these systems typically
focus on sophisticated caching algorithms that achieve a high
bit-to-hit ratio [4], [9], [13], [15], [25]. Fundamentally, servers
are restricted by disk and network bandwidth. As a result, this
solution scales poorly because if demand increases and the
servers are at capacity, new servers must be purchased.

Peer-to-peer solutions attempt to address this scalability
issue by staging proxies at nearby peers. Request are served
by a peer if they can be served quickly, or by a server if
they cannot. Because there is no central location to collect
viewing patterns and compute file popularity, populating the
cache can be challenging. The systems described in [10], [11],
which uses a peer-to-peer system to augment an existing proxy
cache server, discusses this challenge. Also, because of the
performance penalty from attempting to retrieve a cached item
from a distant peer, systems must carefully address the issue
of cache locality [2], [17].

B. Multicast Trees

Multicast solutions make use of a multicast tree to distribute
data to a large number of users with minimal server bandwidth.
To accomplish this, clients requesting the same file coordinate
to build an application level multicast tree. The server streams
data to only a few nodes at the head of the tree. These
nodes then retransmit the data to their children until the data
propagates through the entire tree. Some methods, like [16],
[23], [26], use an unstructured, gossip based protocol to
multicast data. Others, like [3], [27], use a structured overlay
to build a multicast tree.

Locality plays a significant role in the multicast solution, as
low performance links can slow down every node below them
in the tree. Works in [6], [16], [27] address this problem. Tree
construction and maintenance are also challenging because
failures in the interior nodes of the tree can be costly. Systems
like [12], [21] build significant redundancy into each node in
the multicast tree to combat this. Also, trees result in a greater
savings in server bandwidth as they grow larger. Thus, systems
like [6], [16] keep a playback cache at each node. If a new
node joins the tree, it can catch up by downloading recent data
from the caches of other peers.

IV. SYSTEM ARCHITECTURE

Our system deploys a VoD service across cable infrastruc-
ture using a proxy-cache architecture. We chose this method
over multicast trees based on our analysis of VoD usage.
Our architecture follows the cable topology to implement this
system.

A. Why Not Multicast

Multicast is an extremely popular research solution for pro-
viding scalable streaming services. Therefore, it is important to
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Fig. 3. CDF of session lengths demonstrating a high frequency of short
sessions

address in detail why we do not use multicast. Our reasoning
is based on analysis of the PowerInfo trace of usage of a real
VoD system [22], which we discuss in detail in section V-A.
From this data, we determined two properties of video viewing
patterns that undermine the effectiveness of multicast trees.

First, trace data shows that program popularity is heavily
skewed. We typically see a small number of extremely popular
programs, and a very large number of unpopular ones. Figure 2
illustrates this skew. The solid line of this graph shows a
running total the number of sessions initiated in the last
15 minutes for the most popular program during a seven
day period. For the 99% quantile program, however, the
number of accesses is down to around 13, and for the 95%
quantile this number is down to 5. Multicast trees generate
the most significant savings when many peers participate in
the multicast tree. However, for the majority of programs in
the catalog, it would be challenging to construct a large tree.

The second, and more significant, problem for multicast
trees is that users in this VoD system have very short attention
spans. Figure 3 shows the ECDF of the lengths of all sessions
for the most popular file in the portion of the trace shown in
figure 2. For this 100 minute program, we see that 50% of
the sessions last less than 8 minutes. Only 13% of all sessions
surpass the half way mark. Modern multicast trees implement
a variety of mechanisms to reduce the cost of peers leaving
the tree mid-stream. However, our data shows that departures
are quite severe, significantly complicating the maintenance of
a multicast tree.
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Fig. 4. Diagram of a cache miss

Fig. 5. Diagram of a cache hit

B. A Cooperative Caching Approach

Due to our concerns regarding multicast trees, we propose
a system based on a peer-to-peer proxy cache. Proxy cache
solutions are less influenced by skew in program popularity–
they are not dependent on a large number of viewers accessing
a program at the same time to achieve significant savings.
Also, proxy caches are not effected by mid-stream attrition as
multicast solutions are.

Our organization flows logically from the underlying phys-
ical architecture of the cable distribution network discussed in
section II. The peers in our system are set-top boxes located
at the edge of the network on the coaxial line. The peers
in each neighborhood are organized into a cooperative cache
by an index server placed at each headend. This server uses
control signals to instruct peers to broadcast, store, or delete
data as necessary to maintain the cache. The index server
also monitors all requests in the neighborhood to calculate
file popularity and populate the cache.

1) Cache Implementation: The placement of data in our
system is dictated completely by the index servers. Programs
are divided into 5 minute segments and distributed among a
collection of peers. When the index server determines that
a program should be in the cache, it locates a collection of
peers to store the segments. It will also instruct peers to delete
programs from their hard drives as the cache becomes full.
Unlike many structured peer-to-peer systems, placement is not
probabilistic. Instead, the index server places data to balance
load, and keeps track of where each program is located.

The diagram in figure 4 illustrates the interactions between
the peers and index servers during a cache miss. Here, the
flow begins in the lower left-hand corner of the diagram with
a request for a program segment (1). This request is received
by the index server, which determines that the program is not
contained in the local cache. The index server sends a request
to a central media server over the fiber-optic network (2), and
broadcasts the newly received segment to the neighborhood
(3). The requester then reads the data off the wire as it is
broadcast (4). Also, if the index server has determined that
the newly accessed program should be added to the cache, it
may instruct another peer to read this same broadcast (4).

In the case of a hit, as shown in figure 5, the flow starts
in the lower left (1). Upon receiving the request, the index
server locates the peer storing the segment and instructs it to
broadcast (2). The peer broadcasts the segment (3), and it is
received by the initial requester (4).

Data is transmitted at a rate of 8.06 Mb/s. This is the
minimum rate necessary to sustain uninterrupted playback
of a high quality MPEG-2 standard definition TV media
stream. Many systems attempt to broadcast data faster than the
playback rate because it allows users to then fast forward or
skip ahead. We believe that, if network and server bandwidth
are at a premium, these features should be provided using
a more sophisticated encoding mechanism and not through
inefficient and greedy network use. For example fast-forward
functionality can be implemented by sending an index of each
segment in a program to subscribers and allowing jumps to
predetermined points [8].

2) Cache Strategies: We look at two simple caching strate-
gies that are implemented by the index servers. The most
simple is a Least Recently Used (LRU) strategy. This strategy
maintains a queue of each file sorted by when it was last
accessed. When a file is accessed, it is located in the queue,
updated, and moved to the front. If it is not in the cache
already, it is added immediately. When the cache is full the
program at the end of the queue is discarded.

The second strategy is a Least Frequently Used (LFU)
strategy. To compute the cache contents, the index server keeps
a history of all events that occur within the last N hours (where
N is a parameter to the algorithm). It calculates the number
of accesses for each program in this history. Items that are
accessed the most frequently are stored in the cache, with ties
being resolved using an LRU strategy.

3) Set-Top Box Peers: Peers in this system are provided by
the set-top boxes that are distributed to all cable subscribers.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00  © 2007



Each peer in a network contributes a fixed amount of storage
capacity to the distributed cache. The index server understands
the total cache size to be the sum of the storage space
contributed for each peer in the neighborhood. Set-top boxes
are always on, which makes them particularly attractive for
peer-to-peer systems. A major consideration for most such
systems is “churn” [18], or the constant arrival and departure
of peers. This is not an issue in our environment because of
this characteristic of set-top boxes.

4) Additional Requirements: We make two significant addi-
tional requirements on the hardware in the HFC cable network.
First, our experiments assume that the coaxial network is
equipped with bidirectional amplifiers to allow all-to-all peer
communication. Currently, most cable companies use only
unidirectional amplifiers. Second, we expect that all set-top
boxes run a peer-to-peer system and be capable of both send-
ing and receiving multimedia data. Both these requirements
demand a cost to the cable provider. Because we view the
deployment of this infrastructure as an alternative to deploying
fiber-optic cable closer to subscriber’s homes, this cost is not
unreasonable.

V. TRACE DRIVEN EVALUATION

We test our system design using a discrete event simulation.
Our simulations are based strictly on trace data collected from
a real VoD system over a period of months. We use this trace
to evaluate how well our caching architecture would have
performed if it was serving the users of a real VoD service. Our
simulation topology is designed to cover a variety of plausible
cable network configurations. We evaluate our system in terms
of the amount of VoD video data that must be served by
centralized media server. Because of our trace data, we know
exactly the load that these servers would have maintained
given the level of encoding we chose for our experiments.
This produces a realistic evaluation of how our system would
have performed for a given topology configuration.

A. PowerInfo Trace Data

The PowerInfo VoD trace [22] captures every transaction
that occurred in a deployed VoD system. The VoD service
documented in this trace was provided in major cities in China
by the China Telcom company. It was provided as part of an
ADSL package to encourage users to purchase the service.
This data set describes a single city where this service was
deployed over a seven month period from May to December
of 2004.

This data set contains 41,698 unique users who accessed a
catalog of 8,278 unique programs. It contains over 20 million
transaction records. Each of these records identifies the user,
the program, and the length of the session. Because it was
taken from a real system, the set demonstrates a variety of
access patterns, user behaviors, and program popularity. These
qualities would be difficult to model in a random and generic
way. As a result, this data set provides us with the ability
to benchmark a system as it would have performed in a real
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Fig. 6. CDF of session lengths demonstrating the approximate program
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Fig. 7. Most popular hours for VoD usage

deployment. We feel this adds a tremendous amount of realism
for our simulations.

Unfortunately, one piece of information that was lacking
from the data set was the length of each program. However,
this information can be deduced from program access patterns.
While most users watch a program for a fraction of its
length, a significant number do view the entire program. This
pattern is shown in figure 6, which is an ECDF of all the
accesses of a specific program in the system. In this graph,
we see that a significant jump occurs at approximately 1 hour.
This jump represents the fraction of users that watched the
entire program, and is a pattern that is consistent with all
program access patterns. We extrapolated the program lengths
by manually inspecting the ECDFs for every program in the
simulation for this pattern.

In this simulation, the most important metric is the peak data
rate that the various architecture components must sustain. We
know from the trace data that user activity reaches its climax
between 7PM and 11PM in the evening. Figure 7 shows the
average data rate that the VoD subscribers maintain for each
hour of the day over the course of the trace. Based on this
observation of the trace data, we focused on this three hour
period when evaluating of our simulation performance.

For a collection of experiments, we did modify the trace
data to increase both the number of users and the size of
the program catalog. In order to minimize the extent of
the changes, we strictly increased the number of agents to
a multiple of the original number (double, triple, etc.). To
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increase the size of the catalog by a factor of n, we first create
n copies of every program in the trace. For each event in the
trace, we substitute one of the n copies of the original program
at random. The method for increasing the number of users is
similar. We create n copies of each user, and for each event
in the trace, we execute n events–one for each copy–to the
same program. In this case, we randomly change the start time
between 1 and 60 seconds to eliminate problems caused by
synchronous accesses. In this way, we can scale the number of
agents in the trace without severely impacting the properties
of the trace behavior.

B. Simulation Topology and Execution

Upon initialization, the simulator associates users in the
trace with subscribers in a neighborhood. The simulator places
subscribers in neighborhoods uniformly at random. Neighbor-
hood size is specified as a parameter to the simulation, and is
chosen to reflect typical real world sized, which range between
100 and 1,000 subscribers. Peer placement is the same for
each execution of the simulation with the same neighborhood
size parameter. This is done so differences in the results
of simulator executions are caused exclusively by algorithm
performance and not user placement.

A discrete event simulation is dictated by each download
event from the trace data. When an event occurs, the user
who initiated the event locates the specified program in the
simulated topology. This program will either be cached within
the neighborhood by one of the peers, or it will be housed on
a central server. In either case, the download consumes neigh-
borhood bandwidth, and in the later case, it also consumes
server bandwidth. The data rates sustained by the centralized
servers and neighborhood networks for each hour of the day
are updated with each event. These values are reported at the
conclusion of the simulation.

C. Peer Restrictions

Because set top boxes are distributed to all subscribers, they
are optimized for low cost. As a result, their capabilities are
extremely limited, which we account for in our simulation.
Set-top boxes have limited disk space to contribute to a peer-
to-peer cache. Current models commonly support hard drives
of around 40 GB. We assume that set-top boxes will not be
able to contribute more than 10 GB of these resources. Also,
typical set top boxes cannot receive data on more than two
logical “channels” of the coaxial line. This means, at worst,
they can only receive two streams at once. We therefore limit
each set top box so that it can only be active on two streams.
The cache will trigger a miss if a segment is requested from a
peer that has more than two active streams in either direction.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the server load reduction
achieved from deploying the system we described previously.
We cover three topics in this section. First, we fully explore the
performance of two caching strategies for a variety of realistic
network configurations. Second, we demonstrate the feasibility
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Fig. 9. Server load (per-peer storage fixed to 10 GB)

of our system given the real work constraints of our target
architecture. Finally, we show that our system scales gracefully
in the face of significant increased in user population and
catalog size.

A. Effects of Caching

The presence of the cooperative proxy cache in our VoD
simulations has a significant performance impact, even with
modest cache sizes or simple cache strategies. We present
the effects of this cache for a variety of topology and cache
strategies. Our analysis covers three caching strategies. Least
Recently Used (LRU) and Least Frequently Used (LFU)
were described in section IV-B.2. We benchmark both methods
against an Oracle method, which caches the files that will be
used the most frequently in the next three days. This final
algorithm is impossible to implement, and is presented as an
example of ideal cache performance.

First, we investigate the effects of total cache size on system
performance. Figures 8 and 9 both show the average server
load during peak hours for different cache sizes. The former
changes the total cache size by keeping the neighborhood size
fixed and varying the per-peer storage, while the later fixes the
per-peer storage and varies neighborhood size. The error bars
demarcate the 5% and 95% quantiles. With no cache, central
servers must support 17 Gb/s. With 1 TB of total cache storage,
this is reduced to around 10 GB/s, which is an impressive 35%
improvement. However, a 10 TB cache size drops this load by
88% down to 2.1 GB/s.
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These graphs also reveal the differences in the two caching
strategies we investigate. These differences are most pro-
nounced in small caches, which can only accommodate the
most popular programs in the catalog. In these environments,
an inaccurate cache will occasionally discard popular files due
to a disproportionate lag between accesses or bursts of requests
for a less popular file. As the cache grows large there is little,
if any, difference between our two strategies. In these cases,
the caches are large enough that they can accommodate all
files that are accessed repeatedly. Nevertheless, we will point
out that the LFU algorithm performs the same, if not better
than, the LRU algorithm in all cases.

We investigate the differences between LRU and LFU
for small cache sizes in figure 10. This graph shows the
cache performance for different neighborhood sizes with a
total cache size of 1 TB. As the network size increases, the
performance of the LFU algorithm improves even though the
total cache size stays fixed. This is because the LFU can
make more accurate predictions of program popularity with
more usage data. The LFU algorithm attempts to calculate the
popularity of each file by looking at the number of requests
that occur for the file in the neighborhood. The 1,000 node
network will generate 10 times as much data for the LFU
algorithm, resulting in better performance.

Just as the LFU strategy is affected by the amount of
viewing information available, it is also affected by history size
Figure 11 shows the cache performance for different history
sizes of the LFU strategy in a 500 node, 2 TB neighborhood
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configuration. With a history size of 0, the LFU is simply an
LRU strategy. As the history size increases up to 24 hours,
we see little improvement over the LRU method, but after
the 24 hour mark we begin to see significant savings with
longer histories. However, this improvement tapers off with
history sizes over one week. Although increasing history size
increases the amount of data used for popularity prediction,
long history sizes are in danger of including stale data.
Figure 12 shows the number of concurrent accesses for the
most popular programs in the days after its introduction. A
week after introduction, programs are accessed 80% less often
than the first day. Thus, calculating a files popularity including
data that is a week old produces an inaccurate prediction of
its current popularity.
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Fig. 14. Traffic on the coaxial network with varying neighborhood sizes
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Fig. 16. Detailed look at server load with increases in subscriber population and catalog size

One final way to increase the data available to the LFU
algorithm is to use access data from peers outside the neigh-
borhood. Figure 13 shows the cache performance if the
neighborhood LFU algorithm is updated with usage data from
all peers in the system. The bars on the left side show an
LFU algorithm that uses complete global data to make every
caching decision in the neighborhood proxy cache. The middle
two bars show the performance if the local data is only
augmented with global information in batches after a certain
length of time has passed. The improvement from using global
popularity information is noticeable, even if the global data is
only incorporated periodically. However, the improvement in
all cases is small. Although this technique could improve cache
performance, it is unlikely to affect a significant change.

Concluding our exploration of caching strategies, we note
that our caching mechanisms resulted in significant savings
in server load. These savings are most pronounced in large
cache sizes, which are a byproduct of large neighborhoods.
Because our infrastructure is focused on reducing the high
cost of pushing fiber towards the home, this result is important.
Finally, while caching strategies do not have an overwhelming
impact on server load reduction, they do have some. In
particular, making LFU caching decisions with more program
access data results in a performance improvement due to
accurate popularity prediction.

B. Feasibility

It is important to establish, through performance results,
that the system we describe is feasible given the capabilities
of the underlying architecture. In section V, we discuss the
limitations we imposed on our infrastructure with great care.
However, one issue we have left completely undiscussed is the
strain placed on the neighborhood coaxial networks.

Figure 14 displays the average data rate sustained by the
neighborhood network during the peak hours of the simulation.
Notice the increase in traffic appears strictly linear with the
increase in network size. For large neighborhoods, the results
show a network load of 450 Mb/s on average, and 650 Mb/s
in poor cases. This equates to less than 17% of the capacity
of the coaxial line in extreme cases. This is a manageable
level of traffic. Also, its important to note that because of
the broadcast nature of the coaxial network, each file must
consume the same bandwidth whether it is sent from a peer
or the index server. This usage would not improve with a more
centralized approach.

C. Scalability

Our final experiments show that our caching strategy scales
well with increases in the user population and program catalog.
To perform these experiments, we modified the events in the
original trace in the manner described in section V-A. We
test the performance in an environment with 1,000 users and
10 GB of per-peer storage. In figure 15, each cluster of 5
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bars shows the average server load as the user population is
increased multiplicatively–from the original 41,700 users for
the leftmost cluster, up to 2 million for the rightmost. Each
of the 5 bars in a cluster represents a multiplicative increase
in the size of the catalog. The light demarcation line running
horizontally across the background at 17 Gb/s shows the server
load required to support the VoD trace data with no cache. The
information is duplicated in text form in table 16(a).

Figure 16(b) is provided to clarify the impact of population
increase on the server load. This graph duplicates the leftmost
bar in figure 15 with the rising diagonal stripe, and the leftmost
column of table 16(a). It is clear from this graph that the
relationship between server load and population size is linear–
doubling the population size also doubles the server load.
However, the percentage savings on central server load is fixed
at 88% regardless of the increase in user population. This
demonstrates the scalability of peer-to-peer solutions, where
new subscribers provide more cache servers for the system.

Figure 16(b) shows a clearer picture of the effects of
increasing the catalog size, which is seen also in the leftmost
cluster of bars in figure 15 or the top row of table 16(a).
Increasing the catalog size decreases the effectiveness of the
cache by reducing the percentage of popular files the cache can
store. This has the effect of increasing the number of popular
files and reducing cache effectiveness. However, the impact
of serving the most popular files is still the driving force in
savings, which results in the diminishing impact of increasing
the catalog size that we see here.

This data shows that, for significant increases in the scale of
services provided, the server cost remains under what would
have been necessary to supply the service with no cache.
Cumulative increases in both the population and catalog are
necessary to drive the server load over this threshold. These
results demonstrates that our system is able to gracefully deal
with increases in the scale of the services provided.

VII. CONCLUSION

Video-on-demand is the future delivery model for a wide
range of media content. In this paper, we use a complete trace
of a deployed VoD prototype system with two major effects: to
analyze the effectiveness of different solutions and to perform
a realistic simulation. We focus on distributed caching schemes
at the network edge in the form of localized set-top storage per
cable subscriber. We investigate the critical issues, including
caching algorithms, popularity prediction, medium contention,
and scalability with larger user sizes and media libraries. Our
results show that with existing wired cable infrastructures,
cable companies can deploy large video-on-demand systems
that efficiently use storage at the edge to drastically lower
bandwidth costs for VoD servers.
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