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ABSTRACT

From network topologies to online social networks, many of to-
day’s most sensitive datasets are captured in large graphs. A sig-
nificant challenge facing the data owners is how to share sensitive
graphs with collaborators or authorized users, e.g. ISP’s network
topology graphs with a third party networking equipment vendor.
Current tools can provide limited node or edge privacy, but signifi-
cantly modify the graph reducing its utility.

In this work, we propose a new alternative in the form of graph

watermarks. Graph watermarks are small graphs tailor-made for a
given graph dataset, a secure graph key, and a secure user key. To
share a sensitive graph G with a collaborator C, the owner gener-
ates a watermark graph W using G, the graph key, and C’s key as
input, and embeds W into G to form G′. If G′ is leaked by C,
its owner can reliably determine if the watermark W generated for
C does in fact reside inside G′, thereby proving C is responsible
for the leak. Graph watermarks serve both as a deterrent against
data leakage and a method of recourse after a leak. We provide
robust schemes for embedding and extracting watermarks, and use
analysis and experiments on large real graphs to show that they are
unique and difficult to forge. We study the robustness of graph wa-
termarks against both single and powerful colluding attacker mod-
els, then propose and evaluate mechanisms to dramatically improve
resilience.

1. INTRODUCTION
Many of today’s most sensitive datasets are captured in large

graphs. Such datasets can include maps of autonomous systems in
the Internet, social networks representing billions of friendships, or
connected records of patent citations. Controlling access to these
datasets is a difficult challenge. More specifically, it is often the
case that owners of large graph datasets would like to share ac-
cess to them to a fixed set of entities without the data leaking into
the public domain. For example, an ISP may be required to share
detailed network topology graphs with a third party networking
equipment vendor, with a strict agreement that access to these sen-
sitive graphs must be limited to authorized personnel only. Simi-
larly, a large social network like Facebook or LinkedIn may choose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
COSN’15, November 2–3, 2015, Palo Alto, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3951-3/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2817946.2817956.

to share portions of its social graph data with trusted academic col-
laborators, but clearly want to prevent their leakage into the broader
research community.

One option is to focus on building strong access control mech-
anisms to prevent data leakage beyond authorized parties. Yet in
most scenarios, including both examples above, data owners can-
not restrict physical access to the data, and have limited control
once the data is shared with the trusted collaborator. It is also the
case that no matter how well access control systems are designed,
they are never foolproof, and often fall prey to attacks on the hu-
man element, i.e. social engineering. Another option is to modify
portions of the data to reduce the impact of potential data leak-
ages. This has the downside of making the data inherently noisy
and inaccurate, and still can be overcome by data reconstruction or
de-anonymization attacks using external input [27]. Finally, these
schemes are hard to justify, in part because it is very difficult to
quantify the level of protection they provide.

In this work, we propose a new alternative in the form of graph

watermarks. Intuitively, watermarks are small, often imperceptible
changes to data that are difficult to remove, and serve to associate
some metadata to a particular dataset. They are used successfully
today to limit data piracy by music vendors such as Apple and Wal-
mart, who embed a user’s personal information into a music file at
the time of purchase/download [3]. Should the purchased music be
leaked onto music sharing networks, it is easy for Apple to track
down the user who was responsible for the leak. In our context,
graph watermarks work in a similar way, by securely identifying a
copy of a graph with its “authorized user.” Should a shared graph
dataset be leaked and discovered later in public domains (on Bit-
Torrent perhaps), the data owner can extract watermark from the
leaked copy and use it as proof to seek damages against the col-
laborator responsible for the leak. While not a panacea, graph wa-
termarks can provide additional level of protection for data owners
who want to or must share their data, and perhaps encourage risk-
averse data owners to share potentially sensitive graph data, e.g.

encourage LinkedIn to share social graphs with academic collabo-
rators.

To be effective, a graph watermark system needs to provide sev-
eral key properties. First, graph watermarks should be relatively
small compared to the graph dataset itself. This has two direct con-
sequences: the watermark will be difficult to detect (and remove)
by potential attackers, and adding the watermark to the graph has
minimal impact on the graph structure and its utility. Second, wa-
termarks should be difficult to forge and should not occur naturally
in graphs, ensuring that the presence of a valid watermark can be
securely associated with some user, i.e. non-repudiation. Third,

both the embedding and extraction of watermarks should be effi-
cient, even for extremely large graph datasets with billions of nodes
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and edges. Finally, our goal is to design a watermark system that
works in any application context involving graphs. Therefore, we
make no assumptions about the presence of metadata. Instead, our
system must function for “barebones” graphs, i.e. symmetric, un-
weighted graphs with no node labels or edge weights.

In this paper, we present initial results of our efforts towards the
design of a scalable and robust graph watermark system. Highlights
of our work can be organized into the following key contributions.

• First, we identify the goals and requirements of a graph watermark
system. We also describe an initial design of a graph watermark
system that efficiently embeds watermarks into and extracts them
out of large graphs. Graph watermarks are uniquely generated
based on a user private key, a secure graph key, and the graph
they are applied to. We describe constraints on its applicability,
and identify examples of graphs where watermarks cannot achieve
desirable levels of key properties such as uniqueness.

• Second, we provide a strict proof of uniqueness of graph water-
marks, showing that it is extremely difficult for attackers to forge
watermarks.

• Third, we evaluate our watermarks in term of distortion, unique-
ness, and efficiency on several large graph datasets.

• Fourth, we identify two attack models, describe additional fea-
tures to boost robustness, and evaluate them under realistic condi-
tions.

To the best of our knowledge, our work is the first practical pro-
posal for applying watermarks to graph data. We believe graph wa-
termarks are a useful tool suitable for a wide range of applications
from tracking data leaks to data authentication. Our work identifies
the problem and defines an initial groundwork, setting the stage for
follow-up work to improve robustness against a range of stronger
attacks.

2. BACKGROUND AND RELATED WORK
In this section, we provide background and related work on

graph privacy and watermark techniques in applications.

Graph Privacy. Graph privacy is a significant problem that
has been magnified by the arrival of large graphs containing sensi-
tive data, e.g. online social graphs or mobile call graphs. Recent
studies [4, 27] show that deanonymization attacks can defeat most
common anonymization techniques.

A variety of solutions have been proposed, ranging from
anonymization tools that defend against specific structural attacks,
or more attack-agnostic defenses. To protect node- or edge-privacy
against specific, known attacks, techniques utilize variants of k-

anonymization to produce structural redundancy at the granularity
of subgraphs, neighborhoods or single nodes [23, 46, 12, 48]. Al-
ternatively, randomization provides privacy protection by randomly
adding, deleting, or switching edges [10, 44]. Others partition the
nodes and then describe the graph at the level of partitions to avoid
structural re-identification [11]. Finally, a different approach is
taken by producing model-driven synthetic graphs that replicate
key structural properties of the original graphs [35]. One exten-
sion of this work utilizes differential privacy techniques to provide
a tunable accuracy vs. privacy tradeoff [36].

Our goals are quite different from prior work on graph
anonymization, meant to protect data before its public release. We
are concerned with scenarios where graph data is shared between
its owner and groups of trusted collaborators, e.g. third party net-
work vendors analyzing an ISP’s network topology, or Facebook
sharing a graph with a group of academic researchers. The ideal
goal in these scenarios is to ensure the shared data does not leak

into the wild. Once data is shared with collaborators, reliable tools
that can track leaked data back to its source serve as an excellent
deterrent. Watermarking techniques have addressed similar prob-
lems in other contexts, and we briefly describe them here.

Background on Digital Watermarks. Watermarking is the
process of embedding specialized metadata into multimedia con-
tent [14]. The embedded watermark is later extracted from the file
and used to identify the source or owner of the content. These sys-
tems include an embedding component and an extraction compo-
nent. The embedding component takes three inputs: a watermark,
the original data, and a key, aiming to embed the watermark with
minimum impact on the data. The key is used as a parameter to gen-
erate a unique watermark for a specific user, and is kept confidential
by the data owner. Extraction takes as input the watermarked data,
the key, and possibly a copy of the original data. Extraction can
directly produce the embedded watermark or a confidence measure
of whether it is present.

Watermarking is widely used today to protect intellectual prop-
erty. Significant work has been done in digital watermarking, par-
ticularly image watermarking [37, 24, 5, 34, 42]. Watermark tech-
niques [29, 30] have been studied to protect the abuse of digital
vector maps. Watermarks have also been used to protect software
copyrights [47, 7], by adding spurious execution paths in the code
that would not be triggered by normal inputs [39]. Moreover, wa-
termark algorithms have been proposed for relational datasets [1,
22, 13]. Much of this has focused on modifying numeric attributes
of relations, using the primary key attribute as an indicator of wa-
termark locations, assuming that the primary key attribute does not
change. Finally, watermarks, in the form of minute changes, have
been applied to protect circuit designs in the semiconductor indus-
try [31, 41].

3. GOALS AND ATTACK MODELS
To set the context for the design of our graph watermark system,

we need to first clearly define the attack models we target, and use
them to guide our design goals.

Graph watermarks at a glance. At a high level, we envision
the graph watermark process to be simple and lightweight, as pic-
tured in Figure 1. Embedding a watermark involves overlaying the
original graph dataset (G) with a small subgraph (W ) generated
using the original graph and a secret random generator seed (Ω).
Embedding the watermark simply means adding or deleting edges
between existing nodes in the original graph G, based on the wa-
termark subgraph W . Each authorized user i receives only a water-
marked graph customized for her, generated using a random seed
Ωi securely associated with her. The seed is generated through co-
operation of her private key and a key securely associated with the
original graph.

If and when the owner detects a leaked version of the dataset, the
owner takes the leaked graph, and “extracts the watermark,” by it-
eratively producing all known watermark subgraphs Wi associated
with G and each of the seeds Ωi associated with an authorized user.
The “extraction” process is actually a matching process where the
data owner can conclusively identify the source of the leaked data,
by locating the matching Wi in the leaked graph.

In our model of potential attackers and threats, we assume that
attackers have access to the watermarked graph, but not the original
G. Clearly, if an attacker is able to obtain the unaltered G, then
watermarks are no longer necessary.

Attack Models. The attackers’ goal is to destroy or remove
graph watermarks while preserving the original graph. Watermarks
are designed to protect the overall integrity of the graph data. Thus
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Figure 1: Embedding and extracting graph watermarks.

we do not consider scenarios where the attackers sample the graph
or distort it significantly to remove the watermark. Under these
constraints, we consider two practical attack models below.

• Single Attacker Model. For a single attacker with access to one
watermarked graph, it will be extremely difficult to detect the em-
bedded watermark. Without the key associated with another user,
forging a watermark is also impractical. Instead, their best attack
is to disrupt any potential watermarks by adding or deleting nodes
or edges.

• Collusion Attack Model. If multiple attackers join their efforts,
they can recover the original graph by comparing multiple water-
marked graphs, identifying the differences (i.e. watermarks), and
removing them.

Design Goals. The attack models help us define the key charac-
teristics required for a graph watermarking system.

• Low distortion. The addition of watermarks should have a small
impact on overall structure of the original graph. This preserves
the utility of the graph datasets.

• Robust to modifications. Watermarks should be robust to mod-
ification attacks on watermarked graphs, i.e. watermarks should
remain detectable and extractable with high probability, even after
the graph has been modified.

• Low false positives. It is extremely unlikely for our system to
successfully identify a valid watermark Wi in an unwatermarked
graph or a graph watermarked by Wj where i 6= j. When we em-
bed a single watermark (Section 4), we also refer to this property
as watermark uniqueness.

Within the constraints defined above, designing a graph water-
mark system is quite challenging, for several reasons. First, the
subgraph that represents the watermark must be relatively “unique,”
i.e. it is highly unlikely to occur naturally, or intentionally through
forgery. A second, contrasting goal is that the watermark should
not change the underlying graph significantly (low distortion), or
be easily detected. Walking the fine line between this and prop-
erties of “uniqueness” likely means we have to restrict the set of
graphs which can be watermarked, i.e. for some graphs, it will be
impossible to find a hard to detect watermark that does not occur
easily in graphs. Finally, since any leaked graph can have all meta-
data stripped or modified, watermark embedding and extraction al-
gorithms must function without any labels or identifiers. Note that
the problem of subgraph matching is known to be NP-complete [8].

4. BASIC WATERMARK DESIGN
We now describe the basic design of our graph watermarking

system. The basic design seeks to embed and extract watermarks
on graphs to achieve watermark uniqueness while minimizing dis-
tortion on graph structure. Our design has two key components:

• Watermark embedding: The data owner holds a graph key KG

associated with a graph G known only to her. Each user i gener-
ates its public-private cryptographic key pair < Ki

pub,K
i
priv >

through a standard public-key algorithm [25], where Ki
pub is user

i’s public key and Ki
priv is its corresponding private key. To share

the graph G with user i, the system combines input from user i’s

digital signature Ki
priv(T ) and graph key KG to form a random

generator seed Ωi, and use Ωi to generate a watermark graph Wi

for graph G. The system embeds Wi into G by selecting and mod-
ifying a subgraph of G that contains the same number of nodes as
Wi. The resulting graph GWi is given to user i as the watermarked
graph.

• Watermark extraction: To identify the watermark in G′, we use
Ωi to regenerate Wi and then search for the existence of Wi within
G′, for each user i.

In this section, we focus on describing the detailed procedure
of these two components. We present detailed analysis on the two
fundamental properties of graph watermarks, i.e. uniqueness and
detectability in Section 5.

4.1 Watermark Embedding
The most straightforward way to embed a watermark is to di-

rectly attach the watermark graph to the original graph. That is, if
Wi represents the watermark graph for user i, and G represents the
original graph, the embedding treats Wi as an independent graph,
and adds new edges to connect Wi to G. However, this approach
has two disadvantages. First, direct graph attachment makes it easy
for external attackers to identify and remove Wi from G with-
out using graph key KG and user i’s signature Ki

priv(T ). New
edges connecting Wi and G must be carefully chosen to reduce the
chance of detection, which is very challenging. Second, attaching
a (structurally different) subgraph Wi directly to a graph G intro-
duces larger structural distortions.

Instead, we propose an alternative approach that embeds the wa-
termark graph “in-band.” That is, the embedding process first se-
lects k nodes (k is the number of nodes in Wi) from G and identi-
fies S, the corresponding subgraph of G induced by these k nodes.
It then modifies S using Wi without affecting any other nodes in
G. Because the watermark graph Wi is naturally connected with
the rest of the graph, both the risk of detection and amount of dis-
tortion induced on the original graph G are significantly lower than
those of the direct attachment approach.

We now describe the details of “in-band” watermark embedding,
which consists of four steps: (1) generating a random generator
seed Ωi from user i’s signature Ki

priv(T ) and graph key KG; (2)
generating the watermark graph Wi from the seed Ωi; (3) selecting
the placement of Wi on G by picking k nodes from G and identi-
fying the corresponding subgraph S induced by these k nodes; and
(4) embedding Wi into G by modifying S to match structure of
Wi.

Step 1: Generating a random generator seed Ωi. To generate
an unforgettable watermarked graph, we form a random generator
seed Ωi [9] using user i’s signature Ki

priv(T ) and graph key KG.
Suppose the system intends to generate a watermarked version

of graph G at time T to share with user i. We begin by first sending
user i with the timestamp T . User i responds with its signature
Ki

priv(T ), by encrypting the timestamp with its private key Ki
priv .

Before proceeding further, we validate Ki
priv(T ) to ensure it is

from user i, by decrypting it with user i’s public key Ki
pub. If

the timestamps match, we combine the signature Ki
priv(T ) and the

graph key KG to form the random generator seed Ωi for user i. A
mismatch may indicate that user i is a potential malicious user.

Note that Ωi cannot be formed alone by the data owner who only
holds the graph key KG, or by user i who only owns its private
key Ki

priv . Thus, results computed using Ωi, including the ran-
dom graph Wi generated (Step 2) and the choice of graph nodes to
mark (Step 3), cannot be derived independently by the data owner
or identified by user i.
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Step 2: Generating the watermark graph Wi. We generate
Wi as an Erdos-Renyi random graph with edge probability of p and
node count k (k≪n, where n is the number of nodes in G). The
random edge generator uses Ωi as the seed [9]. The k nodes of Wi

are ordered as {v1, v2, ..., vk}.
The key factor here is choosing the node count k and the edge

probability p. To ensure watermark uniqueness, Section 5.1 shows
that the two parameters must satisfy k ≥ (2 + δ) logq n, where
q = 1

max (p,1−p)
and δ is a constant > 0. Furthermore, it is easy

to prove that p = 1
2

minimizes the node count k and the average
edge count p ·

(

k

2

)

of the watermark graph Wi. Intuitively, using a
compact watermark graph not only reduces the amount of distortion
to G, but also improves its robustness against malicious attacks.
Thus, we configure p = 1

2
and therefore k = (2 + δ) log2 n. This

produces a reasonably sized watermark graph (k <100) even for
extremely large graphs, e.g. the complete Facebook social graph
(∼1 billion nodes in 2014).

Step 3: Selecting the watermark placement on graph G.

Next, we identify k nodes from G and its corresponding subgraph
S to embed the watermark graph. To ensure reliable extraction, we
must choose these k nodes carefully, meeting these two require-
ments. First, using Ωi generated in Step 1, the k nodes must be
chosen deterministically and remain distinguishable from the other
nodes of G. Second, the set of the k nodes chosen for different
watermarks (or different Ωi values) must be easily distinguishable
from each other to reinforce watermark uniqueness. Our biggest
challenge in meeting these requirements is that we cannot use node
IDs to distinguish nodes from each other. Node IDs or any type
of metadata can be easily altered or stripped by attackers before or
after leaking G′, thereby making extraction impossible.

We address this challenge by using local graph structure around
each node as its “label.” Specifically, we define a node structure

description (NSD) as a descriptive feature of each node. A node
v’s NSD is represented by an array of v’s sorted neighbor degrees.
For example, if node v has three neighbors with node degrees 2,
6, 4, respectively, then v’s NSD label is “2-4-6.” We then hash v’s
NSD label into a numerical value using a secure one-way hash e.g.

SHA-1 [33], and refer to the result as node v’s NSDhash.
Next, we use Ωi as the seed to randomly generate k hash values,

and use each as an index (e.g. using a mod function) to identify a
node in G. It is possible that multiple nodes have the same NSD-
hash, i.e. a collision. If this happens, we resolve the collision by
using Ωi again as an index into a sorted list of these nodes with
the same NSDhash. The nodes can be sorted by any deterministic
order, e.g. node IDs in the original graph. Note that this process is
only required for embedding (and not extraction), so any determin-
istic order chosen by the graph owner will suffice.

At the end of this step, we obtain k ordered nodes from G,
X = {x1, x2, ..., xk}, and the corresponding subgraph S = G[X]
induced by the node set X on G.

Step 4: Embedding the watermark graph Wi into graph G.

In this step, we embed the watermark graph Wi by modifying the
subgraph S = G[X] to match Wi. Specifically, we match each
(ranked) node in Wi, {v1, v2, ..., vk} with the corresponding node
in S (or X), {x1, x2, ..., xk}, i.e. f : W → S, f(vi) = xi. And
once the nodes are mapped, we then apply an XOR operation on
each edge of the two graphs. That is, we consider the connection
between (vi, vj) or (xi, xj) as one bit, i.e. an edge between (vi, vj)
or (xi, xj) means 1 and no edge between (vi, vj) or (xi, xj) means
0. If an edge (vi, vj) exists in Wi, we modify the corresponding
edge value in S from (xi, xj) to (xi, xj)⊕1; and if no edge (vi, vj)
exists in Wi, we modify the edge value (xi, xj) to (xi, xj) ⊕ 0.

When the above edge modification process ends, we also explicitly
create edges between nodes xi and xi+1 to maintain a connected
subgraph. As a result, we transfer the subgraph S into SWi with the
watermark graph Wi embedded. The reason for choosing the XOR
operation is that it allows the same watermark to be embedded in
the graph multiple times (at multiple locations), thus reducing the
risk of the watermark being detected and destroyed by attacks such
as frequent subgraph mining. We will discuss this in more details
in Section 6.

At the end of this step, we obtain a watermarked graph GWi for
user i. Before we distribute it to user i, we anonymize GWi by
completely (randomly) reassigning all node IDs. Such anonymiza-
tion not only helps to protect user privacy, but also minimizes
the opportunity for colluding attackers with multiple watermarked
graphs to identify the embedded watermark (see Section 6).

4.2 Watermark Extraction
The watermark extraction process determines if a watermark

graph Wi is embedded in a target graph G′. If so, then G′ is a legit-
imate copy distributed to user i. The extraction process faces two
key challenges. First, the target graph G′ can easily be modified
by users/attackers during the graph distribution process. In partic-
ular, all node IDs can be very different from that of the original G.
Thus extraction cannot rely on node IDs in G′. Second, identify-
ing whether a subgraph exists in a large graph is equivalent to a
subgraph matching problem, known to be NP-complete. To handle
large graphs, we need a computationally efficient algorithm.

Our design addresses these two challenges by leveraging knowl-
edge on the structure of the subgraph where the watermark was
embedded. This eliminates the dependency on node IDs while sig-
nificantly reducing the search space during the subgraph matching
process. We describe our proposed design in detail below.

Step 1: Regenerating the watermark. The owner performs the
extraction, and has access to the original graph G, graph key KG,
and user’s signature Ki

priv(T ). For each user i, we combine its sig-
nature Ki

priv(T ) and graph key KG to form its random generator
seed Ωi. Then, we follow step 2 − 4 described in Section 4.1 to
regenerate the watermark graph Wi, identify the k ordered nodes
from G and their NSD labels, and finally the modified subgraph
SWi that was placed on a “clean” version of the watermarked graph
GWi .

Step 2: Identifying candidate watermark nodes on G′. Given
the k nodes X = {x1, x2, ..., xk} identified from the original
graph G, in this step we need to identify for each xj , a set of can-
didate nodes on the target graph G′ that can potentially become xj .
We accomplish this by identifying all the nodes on G′ whose NSD
labels are the same of xj in the “clean” version of the watermarked
graph GWi . Since multiple nodes can have the same NSD label,
this process will very likely produce multiple candidates. To shrink
the candidate list, we examine the connectivity between candidate
nodes of X on G′ and compare it to that among X on GWi . If two
nodes xm and xn are connected in GWi , we prune their candidate
node lists by removing any candidate node of xm that has no edge
with any candidate node of xn on G′ and vice versa. This pruning
process dramatically reduces the search space. After this step, we
obtain for each xi the candidate node list Ci on the target graph G′.

Step 3: Detecting watermark graph SWi on G′. Given the
candidate node list of each node in X , we now search for the ex-
istence of SWi on the target graph G′. For this we apply a re-
cursive algorithm to enumerate and prune the combinations of the
candidate sets, until we identify SWi or exhaust all the node can-
didates. The detailed algorithm is listed in Algorithm 1. In this
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Algorithm 1 Recursive Algorithm for Detecting SWi on G′.

1: Function: SubgraphDetection(G′ , SWi , {C1, C2, ..., Ck}, Y , m)
2: Input: Graph G′, watermark graph SWi , candidate node list Ci for

each node xi in X , identified node list Y = {y1, y2, ..., ym} (m < k)
3: Output: Identified node list Y = {y1, y2, ..., ym+1}
4: for each node c ∈ Cm+1 do
5: if c 6∈ Y and each edge (c, yt) in G′ (t = 1..m) is the same as the

edge (xm+1, xt) in SWi (t = 1..m) then
6: Y = Y ∪ c
7: m = m+ 1
8: if m == k then
9: Return Y

10: else
11: SubgraphDetection(G′ , SWi , {C1, C2, ...,Ck},Y , m)
12: end if
13: Y = Y \ c
14: m = m− 1
15: end if
16: end for
17: Return Y

algorithm, we use a node list Y to record the nodes in G′ which
we have already finalized as the corresponding nodes in SWi , i.e.

Y = {y1, y2, ..., ym} (m ≤ k). When the process starts, Y = ∅,
m = 0.

Discussion. The above design shows that our watermark extrac-
tion algorithm simplifies the subgraph search problem by restrict-
ing it to a small number of selected nodes from a graph, thus avoid-
ing the NP-complete subgraph matching problem.

To illustrate the efficiency of our algorithm, we now show an es-
timation of the computational complexity. Assume that the number
of candidates for each watermark node xi is |Ci|, and the proba-
bility that an edge between node cim ∈ |Ci| and node cjn ∈ |Cj |
is pij . Moreover, since we prove that the probability of an edge
between node xi and node xj is 1

2
in Section 5.1, the probability

that the connectivity between (cim, cjn) matches the connectivity
between (xi, xj) is 1

2
· pij + 1

2
· (1 − pij) = 1

2
. We can show

that to identify a node list with m nodes in Algorithm 1, we need
to match

(

m

2

)

node pairs. Thus, the probability to identify a node

list with m nodes is 1
2
(m2 ), and the expected number of node com-

binations is
∏m

i=1 |Ci| · 1
2
(m2 ). Thus, the computational complexity

of Algorithm 1 is proportional to the sum of node combinations at

each step, i.e. O(
∑k

m=2

∏m

i=1 |Ci| ·
1
2
(m2 )). Note that we do not

consider the fixed k − 1 edges between (xi−1, xi) for simplicity.
This result shows that as more nodes are identified in Algorithm

1, fewer node combinations exists, which approximates to 0 (as
shown in Section 5.1). This means the major computation cost of
our algorithm comes from the initial few steps and is dominated by
the size of their candidates. Note that we target real graphs with
very high level of node heterogeneity, e.g. small-world, power-
law or highly clustered graphs, which leads to small candidate size
in most cases. In other words, the computational complexity of
our algorithm is low in real graphs. In practice, our system can
efficiently extract watermarks from real, million-node graphs, and
do so in a few minutes on a single commodity server (Section 7.3).

5. FUNDAMENTAL PROPERTIES
Having described the basic watermark system, we now present

detailed analysis on its two fundamental properties: watermark

uniqueness where each watermark must be unique to the corre-
sponding user, and watermark detectability where the presence of a
watermark should not be easily detectable by external users without
the knowledge of the seed Ωi associated with user i.

5.1 Watermark Uniqueness
As a proof of ownership, each embedded watermark should be

unique for its user. That is, given the original graph G and the seed
Ωi associated with user i, the embedded watermark graph SWi

should not be isomorphic to any subgraph of GWj (i 6= j) where
GWj is the watermarked graph for user j. Meanwhile, SWi should
not be isomorphic to any subgraph of the original graph G. The fol-
lowing proof shows that with high probability, our proposed graph
watermark system produces unique watermarks for any graph G.

THEOREM 1. Given a graph G with n nodes, let k ≥ (2 +
δ) log2 n for a constant δ > 0. We apply the following process to

create a watermarked graph GWi for user i:

• We create k nodes, V = {v1, v2, ..., vk}, and generate a random

graph Wi on V with an edge probability of 1
2

.

• We randomly select k nodes, X = {x1, x2, ..., xk} from G, and

identify the subgraph corresponding to these k nodes S = G[X].

• Using Wi, we modify S as follows: we first map each node xi in

X to a node vi in V . Let e(u, v) = 1 denote an edge exists be-

tween node u and v and e(u, v) = 0 denote otherwise. We modify

each e(xi, xj) in S to e(xi, xj) ⊕ e(vi, vj). We then explicitly

connect nodes xi and xi+1, i.e. e(xi, xi+1) = 1. The resulting S
now becomes SWi , and the resulting G becomes GWi .

Let GWl denote a watermarked graph for user l (l 6= i), built using

a different seed Ωl. Then with low probability, any subgraph of

GWl or G is isomorphic to SWi .

PROOF. We first show that with low probability, any subgraph
of GWl is isomorphic to SWi . Let Y = {y1, y2, ...yk} be a set of
ordered nodes in GWl , where each yi maps to a node xi in X . We
define an event EY occurs if the subgraph GWl [Y ] is isomorphic to
GWi [X] or SWi . Then the event E representing the fact that there
exists at least one subgraph on GWl that is isomorphic to SWi is
the union of events EY on all possible Y , i.e. E = ∪Y EY .

Next, we compute the probability of event E by those of in-
dividual event EY . Specifically, we first show that the probabil-
ity of an edge exists between node xi and xj (j 6= i + 1) in
SWi = GWi [X] is 1

2
. This is because each edge in the random

graph Wi is independently generated with probability 1
2

. After
performing the XOR operation between Wi and S, the probabil-
ity of an edge exists between xi and xj (j 6= i + 1) on Swi is
1
2
· pij + (1 − pij) ·

1
2
= 1

2
where pij is the probability that an

edge exists between xi and xj on S. Thus the result of XOR be-
tween Wi and S is also a random graph, and its edge generation
is independent of that in GWl , l 6= i. Furthermore, it is easy to
show that our design applies XOR operations on

(

k

2

)

− (k − 1)
node pairs on the k nodes, and each node pair has an edge with a
probability of 1

2
. Thus, the probability of a subgraph GWl [Y ] be-

ing isomorphic to SWi is P (EY ) =
1
2
(k2)−(k−1)

·β where β ≤ 1 is
the probability that every (yi, yi+1) pair in GWl [Y ] is connected.

Thus P (EY ) ≤ 1
2
(k2)−(k−1)

.
Since E = ∪Y EY and there are less than nk possible sets of k

ordered nodes in GWl , we use the Union Bound to compute the
probability of event E as follows:

P (E) < nk · P (EY ) ≤ nk ·
1

2

(

k
2

)

−(k−1)

= 2
k2

2+δ ·
1

2

k2
−3k
2

+1

=
1

2

δk2

2(2+δ)
− 3k

2
+1

(1)

The above equation shows that the probability P (E) reduces expo-
nentially to 0 as k increases.
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Graph
Graph # of Nodes # of Edges Avg. Deg. k

Node Degree Criterion k-node Subgraph Density Criterion
Suitability

Category (k + 1)/2 [Nmin(G), Nmax(G)] Watermark [Dmin(k), Dmax(k)]

Facebook
Russia 97,134 289,324 6.0 39 20 [1, 748] 390 [45, 701] Yes

L.A. 603,834 7,676,486 25.4 45 23 [1, 2141] 517 [44, 975] Yes

London 1,690,053 23,084,859 27.3 48 24 [1, 1483] 588 [47, 1128] Yes

Epinions (1) 75,879 405,740 10.7 38 19 [1,3044] 370 [47,649] Yes

Slashdot (08/11/06) 77,360 507,833 13.1 38 19 [1, 2540] 370 [38, 668] Yes

Twitter 81,306 1,342,303 33.0 38 19 [1, 3383] 370 [44, 703] Yes

Other Slashdot (09/02/16) 81,867 497,672 12.2 38 19 [1, 2546] 370 [38, 669] Yes

Social Slashdot (09/02/21) 82,140 500,481 12.2 38 19 [1, 2548] 370 [38, 669] Yes

Networks Slashdot (09/02/22) 82,168 543,381 13.2 38 19 [1, 2553] 370 [38, 673] Yes

GPlus 107,614 12,238,285 227.5 39 20 [1, 20127] 389.5 [53, 741] Yes

Epinions (2) 131,828 711,496 10.8 40 20 [1, 3558] 409.5 [51, 780] Yes

Youtube 1,134,890 2,987,624 5.3 47 24 [1, 28754] 563.5 [47, 815] Yes

Pokec 1,632,803 22,301,964 27.3 48 24 [1, 14854] 587.5 [47, 979] Yes

Flickr 1,715,255 15,555,041 18.1 48 24 [1, 27236] 588 [51, 1128] Yes

Livejournal 5,204,176 48,942,196 18.8 52 26 [1, 15017] 689 [51, 1326] Yes

Citation Patents 23,133 93,468 8.1 34 17 [1, 280] 297 [37, 373] Yes

Networks ArXiv (Theo. Cit.) 27,770 352,304 25.4 34 17 [1, 2468] 297 [36, 534] Yes

ArXiv (Phy. Cit.) 34,546 420,899 24.4 35 18 [1, 846] 314.5 [36, 544] Yes

ArXiv (Phy.) 12,008 118,505 19.7 32 16 [1, 491] 263.5 [45, 496] Yes

Collaboration ArXiv (Astro) 18,772 198,080 21.1 33 17 [1, 504] 280 [37, 528] Yes

Networks DBLP 317,080 1,049,866 6.6 43 22 [1,343] 472.5 [43,903] Yes

ArXiv (Condense) 3,774,768 16,518,947 8.8 51 26 [1, 793] 663 [50,1063] Yes

Communication Email (Enron) 36,692 183,831 10.0 35 18 [1,1383] 314.5 [43,515] Yes

Networks Email (Europe) 265,214 365,025 2.8 42 21 [1,7636] 451 [74,683] Yes

Wiki 2,394,385 4,659,565 3.9 49 25 [1, 100029] 612 [65, 1066] Yes

Stanford 281,903 1,992,636 14.1 42 21 [1,38625] 451 [66,861] Yes

Web NotreDame 325,729 1,103,835 6.8 43 22 [1,10721] 472.5 [60,903] Yes

graphs BerkStan 685,230 6,649,470 19.4 45 23 [1,84230] 517 [79,990] Yes

Google 875,713 4,322,051 9.9 46 23 [1, 6332] 540 [72, 1033] Yes

Location based Brightkite 58,228 214,078 7.4 37 19 [1,1134] 351 [41,665] Yes

OSNs Gowalla 196,591 950,327 9.7 41 21 [1,14730] 430 [44,723] Yes

Oregon (1) 11,174 23,409 4.2 31 16 [1,2389] 247.5 [95,352] Yes

AS Oregon(2) 11,461 32,730 5.7 32 16 [1,2432] 263.5 [79,476] Yes

Graphs CAIDA 26,475 53,381 4.0 34 17 [1,2628] 297 [113,436] Yes

Skitter 1,696,415 11,095,298 13.1 48 24 [1, 35455] 588 [52, 1128] Yes

Gnutella (02/08/04) 10,876 39,994 7.4 31 16 [1,103] 247.5 [30,80] No
Gnutella (02/08/25) 22,687 54,705 4.8 34 17 [1,66] 297 [0,0] No

P2P networks Gnutella (02/08/24) 26,518 65,369 4.9 34 17 [1,355] 297 [0,44] No
Gnutella (02/08/30) 36,682 88,328 4.8 35 18 [1,55] 314.5 [35,70] No
Gnutella (02/08/31) 62,586 147,892 4.7 37 19 [1, 95] 351 [39,76] No
Amazon (03/03/02) 262,111 899,792 6.9 42 21 [1,420] 451 [88,132] No

Amazon Amazon (2012) 334,863 925,872 5.5 43 22 [1,549] 472.5 [0,0] No
Co-purchasing Amazon (03/03/12) 400,727 2,349,869 11.7 43 22 [1,2747] 472.5 [52,285] No

Networks Amazon (03/06/01) 403,394 2,443,408 12.1 43 22 [1, 2752] 473 [52, 333] No
Amazon (03/05/05) 410,236 2,439,437 11.9 43 22 [1,2760] 472.5 [50,333] No

Road Pennsylvania 1,088,092 1,541,898 2.8 47 24 [1,9] 563.5 [0,0] No
Networks Texas 1,379,917 1,921,660 2.8 47 24 [1,12] 563.5 [0,0] No

California 1,965,206 2,766,607 2.8 49 25 [1, 12] 612 [0, 0] No

Table 1: Suitability of watermarking for 48 of today’s network graphs, determined by comparing their node degree distribution

[Nmin(G), Nmax(G)] and k-node subgraph density [Dmin(k), Dmax(k)] to those of the embedded watermark graphs. 35 out of

these 48 graphs are suitable for watermarking.

Finally, we can apply the same method to show that with low
probability, any subgraph of G is isomorphic to SWi . This is be-
cause the XOR operations between Wi and S produce a random
graph that is independent of G.

5.2 Watermark Detectability
In addition to providing uniqueness, a practical watermark de-

sign should also offer low detectability, i.e., with low probability
each watermark gets identified by external users/attackers. This
means that without knowing the seed Ωi associated with user i, the
embedded watermark graph SWi should not be easily distinguish-
able from the rest of the graph GWi . Therefore, the detectability
would depend heavily on the topology of the original graph G, i.e.

a watermark graph can be well hidden inside a graph GWi if its
structural property is not too different from that of G.

In the following, we examine the detectability of watermarks in
terms of a graph’s suitability for watermarking. This is because
directly quantifying the detectability is not only highly computa-

tional expensive1 , but also lacks a proper metric. Instead, we cross-
compare the key structural properties of SWi and G, and define
G as being suitable for watermarking if its structure properties are
similar to that of SWi , implying a low watermark detectability.

Suitability for Watermarking. To evaluate a graph’s suitabil-
ity for watermarks, we first study the key structural property of the
embedded watermark graph SWi . To guarantee watermark unique-
ness and minimize distortion, the watermark graph SWi needs to be
a random graph with an edge probability of 1

2
(except for the fixed

edges between xi, xi+1 node pairs), and include k = (2+δ) log2 n
nodes. Thus its average node degree is at least (k + 1)/2 and its
average graph density is (

(

k

2

)

+ k − 1)/2.

1Each embedded watermark graph is similar to a random graph with 1
2

edge probability. Thus the detectability is low if certain subgraphs of G are
also random graphs with similar edge probabilities. Yet identifying these
subgraphs (and the embedded watermark graph) on a large graph incurs
significant computation overhead.
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Graph
Subgraph Watermark Graph

Suitability
Node # Avg. Deg. k Avg. Deg.

Russia 4,794 22.2 39 20.0 Yes

L.A. 196,174 49.2 45 23.0 Yes

London 562,075 56.1 48 24.5 Yes

Epinions (1) 7,083 68.7 38 19.5 Yes

Slashdot (08/11/06) 9,908 53.4 38 19.5 Yes

Twitter 34,014 60.5 38 19.5 Yes

Slashdot (09/02/16) 10,065 53.0 38 19.5 Yes

Slashdot (09/02/21) 10,105 53.2 38 19.5 Yes

Slashdot (09/02/22) 10,605 53.4 38 19.5 Yes

GPlus 68,828 347.1 39 20.0 Yes

Epinions (2) 10,363 83.5 40 20.5 Yes

Youtube 31,720 45.1 47 24.0 Yes

Pokec 564,001 53.0 48 24.5 Yes

Flickr 136,202 174.5 48 24.5 Yes

Livejournal 945,567 57.5 52 26.5 Yes

Patents 2,370 15.6 34 17.5 Yes

ArXiv (Theo. Cit.) 12,054 43.4 34 17.5 Yes

ArXiv (Phy. Cit.) 14,785 37.9 35 18.0 Yes

ArXiv (Phy.) 2,860 62.5 32 16.5 Yes

ArXiv (Astro) 6,536 42.9 33 17.0 Yes

DBLP 15,004 17.3 43 22.0 Yes

ArXiv (Condense) 178,455 16.0 51 26.0 Yes

Email (Enron) 3,481 48.2 35 18.0 Yes

Email (Europe) 1,779 44.0 42 21.5 Yes

Wiki Talk 21,253 83.1 49 25.0 Yes

Stanford 35,600 42.1 42 21.5 Yes

NotreDame 16,831 38.7 43 22.0 Yes

BerkStan 110,202 57.0 45 23.0 Yes

Google 55,431 14.8 46 23.5 Yes

Brightkite 4,586 30.8 37 19.0 Yes

Gowalla 17,946 39.3 41 21.0 Yes

Oregon (1) 264 17.1 31 16.0 Yes

Oregon(2) 579 31.0 32 16.5 Yes

CAIDA 575 16.0 34 17.5 Yes

Skitter 146,601 50.0 48 24.5 Yes

Gnutella (02/08/04) 796 5.2 31 16.0 No
Gnutella (02/08/25) 499 2.0 34 17.5 No
Gnutella (02/08/24) 709 2.7 34 17.5 No
Gnutella (02/08/30) 1,001 3.8 35 18.0 No
Gnutella (02/08/31) 1,276 3.6 37 19.0 No
Amazon (03/03/02) 3,727 2.8 42 21.5 No

Amazon (2012) 5,318 2.5 43 22.0 No
Amazon (03/03/12) 25,717 6.7 43 22.0 No
Amazon (03/06/01) 28,081 7.3 43 22.0 No
Amazon (03/05/05) 28,044 7.5 43 22.0 No

Pennsylvania 0 0 47 24.0 No
Texas 0 0 47 24.0 No

California 0 0 49 25.0 No

Table 2: Size and density of subgraph on nodes with degree

> (k + 1)/2 in each graph. Size is the number of subgraph

nodes, and density is quantified as average edges each node hav-

ing inside the subgraph.

Given these properties of the embedded watermark, we note that
watermark node degree and density can be higher than those of
many real-world graphs, such as those listed in Table 1. Intu-
itively, to ensure low detectability of such a watermark graph, suit-
able graphs should include a set of nodes (D) that are difficult to
distinguish from the watermark nodes in term of node degree and
subgraph density. Specifically, a suitable graph dataset needs to
contain a set of nodes D with degree comparable or higher than
the watermark graph node degree; and the density of the subgraph
on D is at least comparable to the watermark graph density. If
these two properties hold, the embedded watermark graph cannot
be easily distinguished from D in the graph, and therefore cannot
be detected by attackers.

To capture the above intuition, we define that a graph G is suit-
able for watermarking if its node degree and graph density satisfy
the following two criteria. First, the minimum and maximum node

degree of G, denoted as Nmin(G) and Nmax(G) respectively,
need to satisfy Nmin(G) ≤ (k + 1)/2 ≤ Nmax(G). Second,
across all k-node subgraphs of G whose node degree expectation
is greater than (k + 1)/2, the minimum and maximum graph den-
sity need to satisfy Dmin(k) ≤ (

(

k

2

)

+ k − 1)/2 ≤ Dmax(k)
2.

Together, these two criteria ensure that the embedded watermark
graph can be “well hidden” inside GWi .

Suitability of Real Graph Datasets. We measure the suit-
ability of watermarks in 48 real networks graphs. These graphs
represent vastly different types of networks and a wide range
of structural topologies with size ranging from 10K nodes and
39K edges to 5M nodes and 48M edges. These graphs repre-
sent vastly different types of networks and a wide range of struc-
tural topologies. They include 3 social graphs generated from
Facebook regional networks matching Russia, L.A., and Lon-
don [40]. They include 12 other graphs from online social net-
works, including Twitter [21], Youtube [43], Google+ [21], Slo-
vakia Pokec [38], Flickr [26], Livejournal [26], 2 snapshots from
Epinions [32], and 4 snapshots from Slashdot [20]. We also add
3 citation graphs from arXiv and U.S. Patents [18], 4 graphs cap-
turing collaborations in arXiv [18] and DBLP [43], 3 communica-
tion graphs generated from 2 Email networks [19, 20] and Wiki
Talk [17], 4 web graphs [16, 2], 2 location-based online social
graphs from Brightkite and Gowalla [6], 5 snapshots of P2P file
sharing graph from Gnutella [19], 4 Internet Autonomous Sys-
tem (AS) maps [18], 5 snapshots of Amazon co-purchasing net-
works [15, 43], and 3 U.S. road graphs [16]. The statistics of all
graphs are listed in Table 1.

For all graphs, we use δ = 0.3 to ensure a 99.999% watermark
uniqueness, and list their watermark size k in Table 1. We also
show the two above criteria: node degree and k-node subgraph den-
sity. If a graph satisfies both criteria, our results will hold for any
watermarks embedded on it.

We can make two observations from Table 1. First, 35 out of
our 48 total graphs are suitable for watermarking. Also note that
graphs describing similar networks are consistent in their suitabil-
ity. For example, all 15 graphs from various online social networks
are suitable for watermarks! Second, all the 13 graphs unsuitable
for watermarks come from only 3 kinds of networks, i.e. copur-
chasing networks, P2P networks, and Road networks. These re-
sults in each group are self consistent. These results support our
assertion that our proposed watermarking mechanism is applica-
ble to most of today’s network graphs with low detection risk. In
practice, the owner of a graph can apply the same mechanism to
determine if her graph is suitable for our watermark scheme.

To understand key properties determining whether a graph is
suitable for watermarking, we measure various graph structural
properties, including average node degree, node degree distribu-
tion, clustering coefficient, average path length, and assortativity.
We also consider the size and density of subgraphs on nodes with
degree more than watermark minimum average degree (k + 1)/2.
Our measurement results show that the size and density of sub-
graphs on nodes with degree > (k + 1)/2 are the most impor-
tant properties to determine suitability. Here, the size of these sub-
graphs is the number of nodes in the subgraph, and the density of
the subgraph is measured as the average edges each node has inside
the subgraph, i.e. average degree inside the subgraph. As shown in
Table 2, unsuitable graphs do not have subgraphs with density to
comparable to watermarks, while subgraphs with the desired den-

2To avoid computationally prohibitive subgraph enumeration, we apply a
sampling method to estimate them with full details in [45].
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sity can be found in graphs deemed suitable. These results are con-
sistent with our intuition on quantifying suitability of watermarks.

Summary. Since the average watermark subgraph has high node
degree and density, a graph suitable for watermarking must include
a set of nodes, whose degree and subgraph density are comparable
or even higher than watermark subgraphs. We propose two crite-
ria targeting at node degree and subgraph density respectively to
quantify whether a graph is suitable for watermarking. We collect
a large set of available graph datasets and find 35 out of 48 real
graphs are suitable. We expect similar suitability results in other
real network graphs.

6. MORE ROBUST WATERMARKS
Our basic design provides the fundamental building blocks of

graph watermarking with little consideration of external attacks.
In practice, malicious users can seek to detect or destroy water-
marked graphs. Here, we first describe external attacks on water-
marks, and then present advanced features that defend against the
attacks. Note that these improvement techniques aim to increase
the cost of attacks rather than disabling them completely. Finally,
we re-evaluate the watermark uniqueness of the advanced design.

6.1 Attacks on Watermarks
As discussed earlier, our attack model includes attacks trying to

destroy watermarks while preserving the topology of the original
graph. Based on the number of attackers, attacks on watermarks
fall under our two models: single attacker and colluding attack-
ers. With access to only one watermarked graph, a single attacker
can modify nodes and/or edges in the graph to destroy watermarks.
With multiple watermarked graphs, colluding attackers can per-
form more sophisticated attacks by cross-comparing these graphs
to detect or remove watermarks.

Single Attacker Model. The naive edge attack is easiest to
launch, and tries to disrupt the watermark by randomly adding or
removing edges on the watermarked graph. For the attacker, there
is a clear tradeoff between the severity of the attack (number of
edges or nodes modified), and the structural change or distortion
applied to the graph structure.

At first glance, this attack seems weak and unlikely to be a real
threat. The probability of the attacker modifying one edge or node
in the embedded watermark graph Wi is extremely low, given the
relatively small size of Wi compared to the graph. As shown later,
however, this attack can be quite disruptive in practice. By modi-
fying a node ni or an edge connected to ni, the attack impacts all
of ni’s neighboring nodes, since their NSD labels will be modi-
fied. These NSD label changes, while small, are enough to make
locating nodes in the watermark graph very difficult. This effect
is exacerbated in social graphs that exhibit a small world structure,
since any change to a supernode’s degree will impact a dispropor-
tionately large portion of nodes in the graph.

Some versions of this attack would either release a partial sub-
graph of the watermarked graph, or merge multiple watermarked
graphs. In both cases, this destroys the embedded watermarks,
but also significantly distorts the graphs and reduces their usabil-
ity. We do not consider these disruptive attacks in our study, and
target them for future work.

Collusion Attacks. By obtaining multiple watermarked graphs,
an attacker can compare these graphs to eliminate watermarks.
Since we anonymize each watermarked graph by randomly reas-
signing node IDs (see Section 4.1), attackers cannot directly match
individual nodes across graphs. To compare multiple graphs, we
apply the deanonymization methods proposed in [27, 28]. Specifi-

cally, we first match 1000 highest degree nodes between two graphs
based on their degree and neighborhood connectivity [28], and then
start from these nodes to find new mappings with the network struc-
ture and the previously mapped nodes [27].

Using deanonymization techniques, attackers can then build a
“clean” graph, where an edge exists if it exists in the majority of
the watermarked graphs. Since embedded watermark graphs are
likely embedded at different locations on each graph, a majority
vote approach effectively removes the contributions from water-
mark subgraphs, leading to a graph that closely approximates the
original G.

6.2 Improving Robustness against Attacks
The attacks discussed above can disrupt the watermark extrac-

tion process in two ways. First, adding or deleting nodes/edges
in G′ changes node degrees, and therefore nodes’ NSD labels,
thereby disrupting the identification of candidate nodes during the
second step of the extraction process; second, adding or delet-
ing nodes/edges inside the embedded watermark graph SWi can
change the structure of the watermark graph, making it difficult to
identify during the third step of the extraction process. To defend
against these attacks, we propose five improvements over the basic
extraction design to produce an improved watermark generation al-
gorithm.
Improvements #1, #2: Addressing changes to node neighbor-

hoods. Extracting a watermark involves searching through
nodes in G′ by their NSD labels. By adding or deleting
nodes/edges, attackers can effectively change NSD labels across
the graph. To address this, we propose two changes to the basic ex-
traction design. First, we bucketize node degrees (with bucket size
B) to reduce the sensitivity of a node’s NSD label to its neighbors’
node degrees. For example, with B = 5, a node with degree 9 will
stay in the same bucket even if one of its edges has been removed
(reducing its node degree to 8). Second, when selecting a water-
mark node’s candidate node list, we replace the exact NSD label
matching with the approximate NSD label matching. A match is
found if the overlap between two bucketized NSD labels exceeds a
threshold θ. For example, with θ = 50%, a node with bucketized
NSD label “1-2-3-4” would match a node with label “1-2-3” since
the overlap is 75% > θ.

These changes clearly allow us to identify more candidates for
each watermark node, thus improving robustness against small lo-
cal modifications. On the other hand, more candidates lead to
more computation during the subgraph matching step (step 3 in
Section 4.2). Such expansion, however, does not affect watermark
uniqueness and detectability, since they are unrelated to the size of
candidate pools.

Improvement #3, #4: Addressing changes to subgraph struc-

ture. Random changes made to G′ may directly impact a node
or edge in the embedded watermark. To address this, we propose
two techniques. First, we add redundancy to watermarks by em-
bedding the same watermark graph Wi into m disjoint subgraphs
S1, S2, ...Sm from the original graph G. This greatly increases the
probability of the owner locating at least one unmodified copy of
Wi during extraction, even in the presence of attacks that make
significant changes to nodes and edges in G′. Note that since we
embed watermarks on disjoint subgraphs, this does not affect wa-
termark uniqueness 1 − P (E). While embedding m watermarks
will impact false positive, which is 1− (1− P (E))m.

Second, it is still possible that all the watermark graphs are “de-
stroyed” by the attacker and there are no matches in the extraction
process. If this happens, we replace the exact subgraph matching
in the step 3 of the extraction process with the approximate sub-
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graph matching. That is, a subgraph matches the watermark graph
if the amount of edge difference between the two is less than a
threshold L. By relaxing the search criteria used in step 3 of the
extraction process, this technique allows us to identify “partially”
damaged watermarks, thus again improving robustness against at-
tacks. However, it can also increase false positives in watermark ex-
traction, reducing watermark uniqueness. We show in Section 6.3
that the impact on watermark uniqueness can be tightly bounded by
controlling L.
Improvement #5: Addressing Collusion Attacks. Recall that
for powerful attackers able to match graphs at an individual node
level, they can leverage majority votes across multiple watermarked
graphs to remove watermarks. To defend against this, our insight is
to embed watermarks that have some portion of spatial overlap in
the graph, such that those components will survive majority votes
over graphs.

We propose a hierarchical watermark embedding process to de-
fend against collusion attacks. To build watermarked graphs for
M users, we uniform-randomly divide the M users into 2 groups
(a1 and a2) and associate each group with a public-private key pair
< Ka1

pub, K
a1
priv > or < Ka2

pub,K
a2
priv >, which is generated and

held by the data owner. We repeat this to randomly divide M users
into another 2 groups (b1 and b2) associated with group key pairs
< Kb1

pub,K
b1
priv > and < Kb2

pub,K
b2
priv > separately. After this

step, each user is assigned to two groups 3. For example, a user i is
assigned to groups a1 and b2.

For user i, we then follow step 2-4 in Section 4.1 to embed the
two group watermarks and its individual watermark. Specifically,
by receiving user i’s signature Ki

priv(T ), we first generate three
seeds: Ωi by combining Ki

priv(T ) and KG, Ωa1 by combining
Ka1

priv and KG, and Ωb2 by combining Kb2
priv and KG, where KG

is graph key for graph G. With the two group seeds Ωa1 and Ωb2 ,
we generate and embed two non-overlap group watermarks. Then
we use user i’s individual seed Ωi to embed an individual water-
mark without overlapping with either of the embedded group wa-
termarks. Note that because the group and individual watermarks
are generated with different seeds, this hierarchical embedding pro-
cess does not affect watermark uniqueness.

Under this design, a collusion attack can successfully destroy
all the watermarks only if the attacker can perfectly match each
individual node, and the majority of the graphs come from different
groups. Otherwise, the majority vote on raw edges will preserve the
group watermark. We can compute the upper bound of the attack
success rate by Equation 2, i.e. the probability that the majority of
the graphs obtained by the attacker come from different groups:

λ(Ma, J) =






1− J

Ma
∑

i=⌈Ma+1
2

⌉

(Ma

i

)

· (
1

J
)i · (

J − 1

J
)Ma−i







2

(2)where Ma is the number of watermarked graphs obtained by the
attacker and J is the number of groups in each group partition. The
above design chose J = 2 because it minimizes λ(Ma, J), ∀Ma.
Furthermore, when Ma is odd, λ(Ma, 2) = 0; and when Ma is
even, λ(Ma, 2) is at most 0.25 when Ma = 2. Note that in equa-
tion (2) the operation (.)2 is due to the fact that we group the users
twice into two different group classes: a1, a2 and b1, b2. If we
only perform the group partition once (e.g. dividing the users into
a1, a2), then λ(2, 2) = 0.5. In practice we can further reduce λ
by performing multiple rounds of group division (2 in the above
design) and adding more group watermarks.

3More details about the group assignment are in [45].

Note that group watermarks contain much less information than
single user watermarks. In fact, the more robust a group water-
mark, the larger granularity (and less precision) it will provide. Our
proposed solution is to extend the system by using additional “di-
mensions,” e.g. go beyond the two dimensions of a and b men-
tioned above. Combining results from multiple dimensions will
quickly narrow down the set of potential users responsible for the
leak. However, since a colluding attack requires the involvement
of multiple leakers, even identifying a single leaker is insufficient.
Developing a scheme to reliably detect multiple (ideally all) col-
luding users is a topic for future work.
6.3 Impact on Watermark Uniqueness

To improve the robustness of our watermark system, we relax
the subgraph matching criteria from exact matching to approximate
matching with at most L edge difference. Such relaxation does
not affect watermark detectability because it does not change the
embedding process. However, it may affect watermark uniqueness,
which we will analyze next.

Consider two watermarked graphs GWi and GWj that were in-
dependently generated for user i and j following the three steps
defined in Theorem 1. Let SWi and SWj represent the embedded
watermark graph in GWi and GWj , respectively. To examine the
watermark uniqueness, we seek to compute the probability that a
subgraph in GWj differs from SWi by at most L edges.

Our analysis is similar to Theorem 1’s proof. Let EY de-
note the event where a subgraph of GWj built on k nodes Y =
{y1, y2, ..., yk} only differs from SWi by ≤ L edges. Our goal is
to calculate the probability of the event E = ∪Y EY , which is the
union on all combinations of k nodes.

We first compute the probability of individual EY . Recall that
the edges between

(

k

2

)

− (k − 1) node pairs in SWi are generated
randomly with probability 1

2
and are independent of GWj , while

the rest k − 1 edges (< xl, xl+1 >, l = 1...k − 1) are fixed.
Thus we can show that the probability that a subgraph GWj [Y ]

differs from SWi by h edges is upper bounded by 1
2

e−k+1
·
(

e

h

)

where e =
(

k

2

)

. Therefore, we can derive the probability of EY

as P (EY ) ≤ 1
2

e−k+1
·
∑L

h=0

(

e

h

)

. And consequently, we have

P (E) ≤ nk · 1
2

e−k+1
·
∑L

h=0

(

e

h

)

, where e =
(

k

2

)

, k = (2 +

δ)log2n, and n is the node count of GWj .
Next, given the probability of uniqueness 1−P (E), we compute

the upper bound on L to ensure 1 − P (E) ≥ 0.99999 for all the
graphs in Table 1 except Road graphs, Co-purchasing graphs, and
P2P network graphs. Again we set δ = 0.3. The result is listed in
Table 3, where the maximum limit of L varies between 0 and 12.
In general, the larger the graph, the higher the upper bound on L.

7. EXPERIMENTAL EVALUATION
We use real network graphs to evaluate the performance of the

graph watermarking system in three key metrics: false positives,
graph distortion and watermark robustness. Having analytically
quantified watermark uniqueness in §5 and §6, we focus on ex-
amining graph distortion and watermark robustness while ensuring
≤ 0.001% false positive rate. We also study the computational
efficiency of the proposed watermark embedding and extraction
schemes.

Experiment Setup. Given the large number of graph com-
putations per data point, we focus our experiments on two larger
network graphs in Table 1, i.e. the LA regional Facebook graph
and the Flickr graph. The two graphs have very different sizes and
graph structures. To guarantee ≤ 0.001% false positives, we use
δ = 0.3, k = 45 for the LA graph, and δ = 0.3, k = 48 for the
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Graph Oregon (1) Oregon (2) CAIDA
Email arXiv

(Enron) (Theo. Cit.)
L Bound 0 1 1 1 1

Graph
arXiv arXiv arXiv

Patent
Slashdot

(Phy. Cit.) (Phy.) (Astro) (08/11/06)
L Bound 1 1 1 2 3

Graph Twitter
Slashdot Slashdot Slashdot

Brightkite
(09/02/16) (09/02/21) (09/02/22)

L Bound 3 3 3 3 3

Graph Russia Epinions (1) Google+ Epinions (2) Standford
L Bound 4 4 4 5 5

Graph
Email

Gowalla BerkStand DBLP NorteDame
(Europe)

L Bound 5 5 6 7 7

Graph L.A. London Flickr Wiki Google
L Bound 8 8 8 8 8

Graph Skitter Youtube Pokec
arXiv

Livejournal
(Condense)

L Bound 8 9 9 11 12

Table 3: Upper bound of L for the 35 network graphs.

Graph Nodes (%) Edges (%) dK-2 Deviation
Watermarked LA 0.037% 0.033% 0.0008

Watermarked Flickr 0.014% 0.019% 0.0001

Table 4: Percentage of modified nodes/edges after embedding 5
watermarks into a graph and dK-2 Deviation.

Flickr graph. For our basic design, we generate 1 watermark per
graph. For our advanced design, we set L to 8, the degree bucket
size to 10, and the NSD similarity threshold to θ = 0.75. For
each user, we embed 5 watermarks in its graph, 3 individual water-
marks and 2 group watermarks. We chose these settings because
they work well in practice. We leave the optimization of these pa-
rameters to future work.

Next, we present experimental results on graph distortion, ro-
bustness against attacks, and computational efficiency.

7.1 Graph Distortion from Watermarks
We consider three metrics to measure graph distortion.

• Modifications to the raw graph – We count the number of nodes/
edges modified by embedding watermarks.

• dK-2 Deviation – dK-2 series, i.e. joint degree distributions, are
an important graph structural metric [35]. We quantify graph dis-
tortion using the normalized Euclidean distance between the dK-2
series of the original and of the watermarked graphs 4.

• Graph metrics w/ and w/o watermarks – We measure the widely
used graph metrics before and after the watermarking, including
degree distribution, assortativity (AS) [35], clustering coefficient
(CC) [35], average path length, and diameter. Large deviation in
any of the metrics indicates large distortion.
We have examined the distortion introduced by both the basic

and advanced designs. We only show the results of the advanced
design because it adds more watermarks and thus leads to higher
distortion. For LA and Flickr graphs, we generate 10 different wa-
termarked graphs (using 10 different seeds) and present the average
result across these graphs. Because computing shortest paths on the
large graphs is highly computational intensive, we compute the av-
erage path length and diameter among 1000 random nodes [40].

Table 4 shows the percentage of modified nodes/edges by wa-
termarking. Even after embedding 5 watermarks, the modification
for both graphs is less than 0.04%, implying little distortion on the
watermarked graphs. This is further confirmed by the average dK-2
distances. We also compare the original and watermarked graphs
4The Euclidean distance between dK-2 series is normalized by the number
of tuples in the dK-2 series.

using 5 graph metrics: AS, CC, degree distribution, average path
length, and diameter. Similarly, the metrics remain the same before
and after watermarking, and we found no difference between the
statistical distributions of each metric in the graphs.

Together, this indicates that embedding watermarks produces
negligible impact on graph structure. Thus we believe watermarked
graphs can replace the originals in graph applications and produce
(near-)identical results.

7.2 Robustness against Attacks
Next, we study the robustness of the watermarking system under

the attacks. For each of the two attacks discussed in §6.1, we vary
the attack strength, repeat each experiment 10 times, and examine
the following two metrics:

• Robustness – In the single attacker model, the robustness is the
ratio of graphs from which we can successfully extract at least
one of the 3 individual watermarks. In the collusion attack, in
addition to this ratio, we also measure the ratio of graphs where
we can extract at least one of the 5 watermarks (3 individual + 2
group watermarks).

• Cost of the attack – The normalized distortion on the attacked
graphs. It represents the dK-2 deviation between the attacked
graphs and the original graph, normalized by that between the
“clean” watermarked graphs and the original graph. If the nor-
malized distortion is > 1, the attack introduces more distortion
than embedding watermarks.

Results on the Single Attacker Model. For the single attacker
model, we quantify the attack strength by the number of modified
edges. The robustness and the cost of the attack are measured as a
function of the number of modified edges.

We first evaluate the robustness of the basic watermark. Figure 2
shows that randomly modifying a small number of edges disrupted
the extraction process. For example, in LA, our basic design can-
not recover the watermark with 100% probability when we only
modify 20 edges. In each case, at least one of the nodes in the
watermarks had a modified NSD label (one of its neighbors’ de-
gree changed), and it could not be located in the extraction process.
We show the distortion on the attacked graphs in Figure 3. As ex-
pected, the small number of modifications causes small distortions
in graph structures. Still in LA, when the robustness is 0, the dis-
tortion is around 3x more than that the watermarked graphs. Both
results show that the basic watermark scheme is easily disrupted by
small, single user attacks.

Figure 4 shows that robustness of the improved scheme de-
creases with attack strength, since more edges are modified to “de-
stroy” watermarks. Like in Flickr, the system can handle attack
strength up to 933K modified edges, which is > 400x stronger
than the maximum attack strength in the basic design. On the other
hand, Figure 5 shows that the cost of these attacks is large. For
Flickr, with more than 1.4M modified edges, an attack leads to 800x
more distortions over that caused by embedding 5 watermarks. Our
improved watermark is highly robust against single user attacks.

Results on Collusion Attacks. To implement the collusion
attack described in §6.1, we first generate 10 watermarked graphs
and randomly pick Ma graphs from them as the graphs acquired by
the attacker. We vary the number of graphs obtained by the attacker
Ma between 2 to 5. For each Ma value we repeat the experiments
10 times and report the average value. Since basic watermarks are
easily disrupted by the collusion attack, we focus on the robustness
of the improved mechanisms.

Figure 6(a)-(b) shows the robustness of the watermarked LA and
Flickr graphs against the collusion attack. Figure 6(a) shows that in
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Figure 2: The robustness of the basic design against the single at-

tacker model.
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Figure 3: The distortion caused by the single attacker model in the

basic design.
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Figure 4: The robustness in the improved design against the single

attacker model.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

200000 400000 600000 800000

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

# of modified edges

(a) Distortion, LA improve

 0

 200

 400

 600

 800

400000 800000 1200000 1600000

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

# of modified edges

(b) Distortion, Flickr improve

Figure 5: The distortion caused by the single attacker model in the

improved design.
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Figure 6: The robustness against the collusion attack.
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Figure 7: The distortion caused by the collusion attack.

Graph Embedding (s)
Basic Extraction Improved Extraction

Single(s) Parallel (s) Single (s) Parallel (s)
LA 40 270 39 310 42

Flickr 80 767 195 776 197
Livejournal 695 2568 310 2605 317

Table 5: The efficiency of the watermarking system.

LA, by applying majority votes on raw edges, the collusion attack
can effectively remove all 3 individual watermarks. However, the
attack is ineffective in removing both group watermarks: we can
extract at least one group watermark in more than 60% of the at-
tacked graphs. Here the robustness values deviate slightly from that
projected by Equation (2) because we limit the number of statistical
sampling to 10 runs. Unlike LA, Figure 6(b) plots that the collusion
attack cannot remove all the individual watermarks in Flickr when
using 2 or 3 watermarked graphs. This is because the deanonymiza-
tion method causes a large portion of nodes mismatched in Flickr
( 30% nodes). Finally, Figure 7 shows that the collusion attacks
also introduce larger distortions in graph structure.

These results show that even a powerful collusion attack is inef-
fective in removing all embedded watermarks. Moreover, the po-
tential inaccuracy of the deanonymization method makes the attack
even weaker in removing individual watermarks. Of course, the
attackers will eventually succeed in disrupting watermarks if they
are willing to modify and sacrifice the utility of the graph. While
we provide a robust defense against attackers with low level of tol-
erance for graph distortion, we hope follow-on work will develop
more robust defenses against higher distortion attacks.

7.3 Computational Efficiency
We measure the efficiency of embedding and extracting water-

marks, including the time to select candidates (step 2) and to iden-
tify watermarks (step 3). We accelerate the extraction process by

parallelizing the key steps across servers. When a watermark is
found or no more candidates are unchecked, the extraction process
stops (for that user).

We perform measurements to quantify impact of parallelizing
extraction over a cluster. All system parameters are the same as
previous tests, except that we embed 1 watermark into a graph. We
compare the improved watermark extraction method to the basic
extraction method. In addition to Flickr and LA graphs, we also
measure the efficiency on Livejournal graph [26], a larger graph
with 5.2M nodes, 49M edges. We parallelize watermark extraction
across 10 servers, each with 192GB RAM, and report the average
times from 10 different watermarked graphs.

Table 5 shows that our system is efficient in embedding and ex-
tracting watermarks. Embedding one watermark into a graph is
very fast, e.g. average embedding time for the largest graph, Live-
journal, is around 12 minutes. Even using one server to extract
watermarks, the computation time is small, e.g. 13 minutes in
Flickr using both the basic and improved schemes. Time to identify
the watermark graph on the candidate subgraphs (step 3) is much
less than the time required to find candidates (step 2), which corre-
sponds to 99% of total computation time. Since finding candidates
takes O(kn) computational complexity and k = (2 + δ) log2 n,
the complexity to extract a watermark from a real-world graph is
O(n log2 n). Here k is node number in the watermark graph and n
is nodes in the total graph.

Second, we find that distributed extraction produces good
speedup, 8 over 10 servers for Livejournal and 7 for LA (for both
extraction methods). The speedup for Flickr is only around 4 using
both methods, because one of the watermarked graphs takes much
longer time than others in finding candidates, 4x longer. Without
this outlier, the average parallel extraction time on Flickr is around
2.5 minutes for both methods, 5x faster than using single server.
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Finally, there is no significant difference between computation
time for the two extraction methods.

8. CONCLUSION
In this paper, we take a first step towards the design and imple-

mentation of a robust graph watermarking system. Graph water-
marks have the potential to significantly impact the way graphs are
shared and tracked. Our work identifies the critical requirements
of such a system, and provides an initial design that targets the
critical properties of uniqueness, robustness to attacks, and mini-
mal distortion to the graph structure. We also identify key attacks
against graph watermarks, and evaluate them against an improved
design with additional features for improved robustness under at-
tack. Finally, we show the watermarking system is efficient in both
watermark embedding and watermark extraction.
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