
Fairness Attacks in the Explicit Control Protocol
Christo Wilson, Chris Coakley and Ben Y. Zhao

Computer Science Department, U. C. Santa Barbara
{bowlin, ccoakley, ravenben}@cs.ucsb.edu

Abstract— Protocols such as the Explicit Control Protocol
(XCP) use explicit router feedback to guide endpoint transmission
rates for near-optimal capacity utilization and fairness. However,
non-cooperative end hosts can manipulate and ignore feedback
to either obtain unfair advantages over cooperative hosts, or
perform denial-of-service attacks on intervening network links.
In this paper we explore the methodology behind, and construct
working examples of different attack vectors on XCP, including
both cheating senders and receivers. Through detailed simu-
lations in ns, we show that misbehaving users can dominate
bandwidth allocation on shared links, and our strategies allow
them to successfully allocate bandwidth by either sharing or
selfishly competing for the bottleneck bandwidth capacity.

I. INTRODUCTION

A number of recent projects proposed effective transmis-
sion control protocols to manage wide-area network conges-
tion. Both simulations and measurements have confirmed the
effectiveness of protocols that leverage explicit congestion
feedback from routers, including ECN and Explicit Control
Protocol (XCP) [1]. For example, XCP decouples fairness and
efficiency control, resulting in asymptotic optimal bandwidth
utilization and responsive adaptation to network congestion.

XCP packets include a congestion control header that in-
cludes the sender’s current throughput, round trip time (RTT)
estimate, and a reverse feedback value from the network
intended for the packet’s recipient. While in transit, XCP-
enabled routers can modify the throughput value in the
congestion header to reflect their desire for the sender to
increase or decrease its congestion window size due to locally
observed network conditions. On receipt of a packet, the
destination host uses the reverse feedback value to update its
own congestion window, then copies the modified throughout
value into the reverse feedback field of the next packet to be
sent. Feedback for each host is built up as they send packets,
and the recipient forwards network feedback back to the sender
during acknowledgment through the reverse feedback header
field. This feedback system enables routers to control exactly
how much data flows through them while storing no per-flow
state. Routers can prevent congestion by instructing hosts to
reduce their windows and can keep utilization high in the
event of unused bandwidth by instructing hosts to increase
their windows. Fairness is imposed by the same mechanism;
any host which reports an anomalous throughput value will be
told to equalize their window size with all other hosts that are
sharing the same link.

While XCP works exceptionally well when all peers follow
the recommendations of network feedback [1], it creates an

environment that can easily be exploited by a small number
of misbehaving hosts. Endpoint peers can ignore or over-
write router feedback values for two possible goals. In the
common scenario, one or both endpoints can manipulate
network feedback to boost their own share of the network
bandwidth. In addition, a connection receiver can mislead
data senders to generate a denial-of-service attack on other
hosts or routers on the end-to-end path. Given the ubiquitous
high-bandwidth demands of peer-to-peer content distribution
programs, together with the prevalence of Internet DoS attacks,
we believe any XCP deployment will be quickly exploited,
resulting in unfair bandwidth allocation and difficult to detect
DoS attacks.

In this paper, we seek a better understanding of different
classes of attacks against the XCP protocol. We explore the
methodology behind, and construct working examples of dif-
ferent attack vectors on XCP, including both cheating senders
and receivers. We explore aggressive bandwidth stealing at-
tacks that allow cheating attackers to quickly usurp available
bandwidth from well-behaved XCP peers, and how cheaters
can “cooperate” or compete amongst themselves for bandwidth
while minimizing network congestion from their aggressive
tactics. Through simulations using ns-2, we show that a single
misbehaving user can dominate bandwidth allocation in a large
group of flows. Additionally, our strategies allow attackers to
successfully allocate bandwidth by either sharing or selfishly
competing for the bottleneck bandwidth capacity.

The remainder of the paper is structured as follows. We
describe related work in Section II, followed by Section III,
where we describe our strategies for exploiting XCP through
non-cooperation. In Section IV, we evaluate our strategies
through both simulation. Finally, we discuss implications of
our results and conclude in Section V.

II. RELATED WORK

The designers of XCP were aware of the possibility of
malicious XCP hosts. Section 7 of the XCP draft [2] proposes
using monitoring techniques in edge routers to police the
network and provide security. Routers locate unresponsive
nodes by monitoring their compliance with specific feedback
messages. Hosts which fail to respond could then be throttled
or denied access as seen fit. Since this technique also relies on
throughput and round trip time estimates reported by clients
to gauge responsiveness to feedback, it is also vulnerable to
misinformation from clients.

There are a number of TCP-based attacks that are related to
our work, the most pertinent of which are receiver-side, ACK-
spoofing vulnerabilities, first uncovered in [3]. By sending
flurries of spurious ACK packets, or optimistically ACKing
unreceived data, a TCP receiver can cause the sender to
inflate their congestion window prematurely, thus speeding
up the transfer of data [3]. This attack works because the
receiver is the purveyor of the feedback (the ACK packets)
which dictate the growth of the sender’s congestion window.
Protection from misbehaving receivers can be implemented
through a cumulative nonce, where the receiver must prove
in-order reception of previous packets by providing the sender
with a cumulative XOR value of random numbers embedded
inside data segments (nonces). [4] explores the potential
consequences of widespread TCP receiver misbehavior.

Endpoint misbehavior attacks are also relevant to other
congestion control protocols. The attack vectors we discuss
are relevant to all protocols that rely on user cooperation, in-
cluding traditional Explicit Congestion Notification (ECN) [5],
[6] and XCP variants such as VCP [7]. Others have begun
to address similar issues in related protocols by proposing
tampering resistant variants such as Robust TCP-Friendly
Congestion Control (RTFRC) [8].

A considerable amount of work has focused on different
aspects of the XCP protocol. Low et al. present a fluid dynamic
model of representing abstract XCP traffic patterns [9], while
others have analyzed XCP’s properties in the presence of
capacity estimation errors [10]. Zhang and Henderson created
a test implementation of XCP on top of the Linux kernel
and performed test bed analysis of the protocol to verify
the simulation results [11]. While initial tests confirmed the
results from simulation, the authors also point out XCP’s
unpredictable characteristics over lossy media and in the
presence of non-XCP enabled router queues. The authors
show that XCP routers are extremely sensitive to the end-host
feedback, and recognize the potential for DoS attacks from
malicious XCP hosts.

Although our study does not include measurements on
the impact of XCP-based DoS attacks, prior studies have
mentioned the potential impact of these attacks [11]. Existing
work describe egregious examples of denial of service attacks
in general [12], while others present a taxonomy of denial of
service attacks and countermeasures [13].

III. DESIGN OF ATTACKING HOSTS

A number of protocols rely on router feedback to guide con-
gestion control, including Explicit Control Protocol (XCP) [1],
Variable-structure congestion Control Protocol (VCP) [7], and
Explicit Congestion Notification proposals [6]. While these
protocols avoid reliance on dropped packets as congestion
feedback, they all rely on the compliance of endhosts to adjust
their send rates to alleviate congestion. Unfortunately, in the
presence of malicious users, the fast convergence of XCP
works to the disadvantage of normal users by quickly dropping
their send rates.

In this section, we describe design considerations for attack
strategies on XCP, and use them to construct both sender and
receiver-based attacks. We describe the attacks in detail, and
further evaluate them via ns-2 in Section IV.

A. Bandwidth Contention Amongst Cheaters

The singular goal of a cheating XCP host is to secure as
much bandwidth for itself as is possible. There are two reasons
to do this:

• To speed up data transfers
• To cause a denial of service attack
In order to assume control of bandwidth the malicious

host must increase the size of its congestion window so that
it is sending as much data as possible. This can also be
done by proxy, i.e. by deceiving a sender into performing
the same increase of their congestion window at the receiver
side attacker’s behest. An example of this type of attack is
Optimistic ACKing [3].

A single, cheating XCP host is able to flood as much
data onto the network as there is bandwidth at the most
constrained link on its end-to-end path. This is possible due to
XCP’s feedback mechanisms: as the cheater assumes control
of more and more bandwidth all other well behaved flows
will be instructed to back-off their send rates lest they cause
congestion. Thus, XCP enabled networks present an ideal
place to cheat since well behaved hosts are guaranteed to
relinquish bandwidth gracefully.

The difficulty in creating a robust cheater lays in the
problem it itself creates: how do cheaters compete amongst
themselves for limited resources? If one cheating host already
has control of the bandwidth on a given network, the arrival
of another cheater attempting to increase its window size will
surely result in congestion, since both nodes are aggressively
competing for bandwidth. The end result is packet drops,
which are undesirable for legitimate hosts and cheaters alike.

One approach is for attackers to accurately gauge in-
stantaneous end-to-end bandwidth conditions by leveraging
dedicated capacity estimation tools such as CapProbe [14]
or utilize a passive, in-band capacity estimation protocol like
the Probe Control Protocol [15]. Being able to form capacity
estimates allows an attacker to assume control of bandwidth
without inciting congestion. Unfortunately, a known limitation
of capacity estimation methods is that they are unable to
provide accurate appraisals on links that are heavily loaded
by unresponsive flows, which are the exact conditions that
occur when another attacker is present on the network path.

A second approach is to simply copy TCP’s congestion
control algorithm. Although this algorithm does incur some
overhead in the form of dropped packets, it is obviously still
quite effective at allowing a host to ramp up window size in
a controlled manner. If all attackers on a given network link
implement this algorithm then the system approximates the
conditions on a normal, TCP dominated network link: each at-
tacker repeatedly competes for bandwidth and backs off when
congestion is detected. Our simulation results demonstrate that

XCP Enabled Internet

Cheating
Sender

Normal
Receiver

Ignore
Feedback

Reduce
Rate

Feedback =
Throughput

1 23

Fig. 1. A malicious sender-based attack.

attackers using this algorithm are effective at starving the
bandwidth of any normal XCP flows sharing the bottleneck
link.

There is still a lingering problem with emulating TCP con-
gestion control in the context of malicious XCP clients. Using
this method assumes that all attackers are still responsive to
congestion, even if they are unresponsive to XCP feedback.
However, making any assumptions about the complacent be-
havior of an attacker is a fallacy. If any attacker on a link is
totally unresponsive then no amount of probing by any means
will be able to secure additional bandwidth for an emergent
cheater. Conversely, additional probing simply causes packet
drops and lower overall throughput for the congestion con-
trolled attacker. Other than resorting to a network flooding
war of attrition against the unresponsive flow in an attempt to
force a response from it, a congestion controlled attacker can
not win against a fully unresponsive one.

This realization leads to the development of a third attacking
model: the malicious host probes for bandwidth once, then
assumes control of whatever it can find and ignores network
conditions until it is done transferring data. This final approach
allocates bandwidth on a first-come-first-serve basis, where
the attacker who is first to probe across a bottleneck link is
sure to take control of the majority of the bandwidth present;
all subsequent attackers will be forced to split the remaining
bandwidth. The one instance where this method of attack is
sub-optimal is when an attacking flow in control of a large
portion of the available bandwidth stops sending. When this
happens, if there are other attackers present on the link, it is
in their best interest to take control of the resources which
were just freed, but since they are not actively probing they
may not be capable of doing this. This issue can be resolved
through passive monitoring: attackers which notice a sudden
decrease in RTT values or surge in positive XCP feedback can
surmise that new resources have become available and re-enter
the initial bandwidth probing phase.

B. Sender-side Attacks: the Abusing Host

With the aforementioned principals in mind we construct an
abusing XCP client which (mostly) ignores XCP feedback and
attempts to cheat by sending as much data as possible. The un-
derlying methodology for our implementation is the standard
TCP congestion control scheme. The attacker always applies
positive XCP feedback if it is received, which effectively

allows the attacker to skip the TCP slow-start phase. Once
the XCP feedback reaches zero or is negative it is ignored
and the standard TCP additive increase algorithm is used to
continue growing the attackers congestion window size. The
additive congestion window growth equation is:

new cwnd = old cwnd + 1/old cwnd

This continues until a packet is retransmitted, indicating that
there has been a loss due to congestion. At this point the
congestion window size is reset to 1, which is standard TCP
procedure when a retransmission timer expires. The congestion
window size remains as 1 for one RTT, which has the effect
of allowing any overflowing network queues to recover. After
this time period the congestion window size is set to 50%
of its value prior to backoff, in accordance to standard TCP
multiplicative decrease procedures. It is worth noting that a
short timer which is triggered on packet retransmission is used
to prevent several sequential retransmissions from triggering
multiple 50% backoffs.

In our testing we evaluate two different types of abusing
hosts: one that continuously probes and one that locks its
congestion window size after the initial probing. In the former
build, the attacker resumes using the additive increase equation
to probe for bandwidth after the congestion window has been
reset to 50% due to a packet loss. In the latter build, the
attacker does not resume additive increase; instead it simply
locks the size of its congestion window at 50% and ignores
all feedback. While a locked attacker is in this state, it
passively monitors the average RTT of its packets in order
to guage whether additional network resources are available.
If a locked attacker observes a reduction in RTT by at least
25% over a period of less than a second it will unlock its
congestion window and resume probing using the additive
increase equation.

This method of passively monitoring for additional band-
width works since we assume that each attacker is utilizing a
network link who’s bandwidth is constrained by one of two
things:

• Maximum network bottleneck bandwidth
• The presence of other attackers

In the first case, constraint by physical network characteris-
tics means that the attacker is the first and only cheater present.
In both cases all available bandwidth will be used, either by the
attacker in question or by a combination of attackers. Although
an individual attacker can not determine which of the these
two conditions it is currently operating under we know that all
bandwidth will be used, therefore a dramatic reduction in RTT
can only be indicative of the freeing of network resources. In
this case it is essential to begin probing again so the resources
can be appropriated.

C. Receiver-side Attacks: the Lying Host

The previous section describes the construction of an abu-
sive XCP client which ignores feedback in order to send data

XCP Enabled Internet

Normal
Sender

Cheating
Receiver

Increase
Send Rate

Reduce
Rate

Feedback =
Grow Window

1 23

Fig. 2. A malicious receiver-based attack.

at arbitrary rates. In the converse situation, it is possible to
construct a lying XCP host which manipulates XCP feedback
in such a way as to cause data to be sent to itself at arbitrary
rates. Implementing this attack is fundamentally different than
its sender-side counterpart since the attacker does not have
direct control over the sending flows congestion window
size. Instead, the liar must deceive the benign sender by
reporting altered reverse feedback values to it. Since all XCP
feedback that is destined for the sender must first arrive at
and be forwarded by the receiver, this process is relatively
straightforward.

The calculation performed by XCP to determine the new
congestion window size based on incoming feedback is as
follows:

new cwnd = old cwnd + feedback × rtt/packet size

The cheating receiver can predict what the sender’s con-
gestion window size will be after receiving any given piece
of feedback by using this same equation, substituting in its
previous congestion window estimate as old cwnd and its own
round trip time estimate as rtt. On the creation of a new
flow old cwnd is assumed to be 1 initially. Using this method
the receiver can calculate whether the feedback it is going
to forward will cause the sender to increase their congestion
window size, in which case the value is sent unaltered,
or whether the sender’s window growth has halted. In the
latter case, the same principal used by the abusing attacker
implementation is used: substitute the reverse feedback for a
new value will which cause the sender to additively increase
the size of their congestion window. On incoming packet
drops the lying receiver halves their estimate of the sender’s
congestion window to remain consistent with what the sender
will do locally. Internally, the attacker also keeps track of the
desired congestion window size for the sender, which also gets
halved in the event of a packet drop. A short timer is used to
ensure that sequential drops do not trigger multiple reductions.

Just as with the abusive attacker, we created versions of the
lying attacker which continuously cause the sender to probe
for additional bandwidth, and a version where the congestion
window size is locked after the first packet drop.

Bottleneck

S1

S2

Sm

R , R , ... , R1 2 n.....................

Fig. 3. Network topology used during ns-2 simulations. Multiple
senders direct traffic across a bottleneck link to traffic sinks on the
opposite side.

IV. SIMULATION RESULTS

A. Simulation Environment

For our tests, we modified ns-2.30 [16] to enable explicit
control of the congestion window, delta throughput, rtt, and
reverse feedback values. We added callback methods so that
end hosts could set these values both internally and in the
appropriate packet locations before and after the XCP code
processed them. This was done for both traffic generators
and sinks. These changes allowed all attack techniques to
be implemented in the same TCL scripts that controlled the
simulation. Our TCL scripts implementing the attackers and
running the tests, as well as patches to ns-2 to enable the
necessary additional functionality are available for download 1.

Each simulation was performed with a 20Mb network
bottleneck, 10ms latency, 1K packet size, using the droptail
queuing method. The network topology was derived from [1]
and is shown in figure 3.

The version of XCP implemented in ns-2 is Dina Katabi’s
own reference implementation. As written, the XCP layer
sits directly above TCP and defers all congestion control
to it. [2] leaves the question of how to integrate XCP into
the network protocol stack ambiguous; the existing Linux
implementation [11] operates as a parallel architecture to TCP
and does not rely on its congestion control mechanisms at
all. Although our attackers works in concept regardless of
underlying structure, the implementation is tied to the specific
context of the ns-2 implementation and would need to be
modified in order to function correctly should the layer beneath
XCP be changed.

B. Abusing Host Simulation

We evaluate the abusive attacker with congestion window
locking behavior in several different contexts. The first is when
there is only a single attacker with no other flows present,
and the second is when there are a varying number of non-
cheaters. Figures 4 and 5 demonstrate the effectiveness of this

1Code available at http://current.cs.ucsb.edu/downloads.
html

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

Cheater 1

Fig. 4. A solo abusive attacker. The single drop in bandwidth usage is
due to the attackers one attempt at probing for additional bandwidth,
which triggers packet losses due to the bandwidth ceiling at the
bottleneck link.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

A B

Cheater 1
Flow 1
Flow 2
Flow 3

Total

Fig. 5. A solo abusive attacker with 49 total normal hosts. Initially
there are at 5 flows present: at 30 seconds (label A) 10 additional
flows join, and at 60 seconds (label B) 35 more flows join. Each
graphed Flow is from a different wave.

attack. Note that in Figure 4 the attacker fails to achieve the
consistently perfect utilization of the network that a normal
single XCP flow would achieve only during the initial probe
period. After that the congestion window size is locked, which
halts probing behavior, and positive XCP feedback informs
the attacker of the optimal congestion window size to assume.
Figure 5 demonstrates the effectiveness of a cheater with 4, 14,
and 49 normal XCP hosts on the network, with the changes
in density occurring every 30 seconds. At no point does the
cheating host fall below the bandwidth that would be assigned
fairly. Network utilization is consistently high, while packet
drops for the attacker are almost non-existent at 2 for the
duration of the simulation.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

Flow 1
Cheater 1
Cheater 2
Cheater 3
Cheater 4
Cheater 5
Cheater 6
Cheater 7
Cheater 8
Cheater 9

Total

Fig. 6. Nine abusive attacker with locking behavior and one normal
flow. The normal flow is not allotted any bandwidth and is therefore
the bottommost line on the graph.

Figures 6 and 7 demonstrate the effectiveness of the sender-
side abusive attack in the presence of other cheaters for
both our continuously probing and window locking imple-
mentations. Although overall network utilization remains high
and the one normal XCP flow present in the simulation is
successfully stifled in both simulations, the constantly prob-
ing attackers do not show any stability. The chaotic, TCP
like, nature of this system leads to considerable congestion
variance and packet drops, as can be seen in Figure 8. In
contrast the abusers with locking behavior act as expected:
one attacker manages to grab one quarter of the available
bandwidth by being the first to move (by milliseconds), and the
other attackers are left to apportion the remaining bandwidth
amongst themselves. Ten normal XCP flows sharing a 20mbit
bottleneck would all settle at using 2mbits apiece, which
is approximately what the majority of the attackers in this
simulation settle at, demonstrating that abusive behavior is at
least as effective as normal XCP behavior even in the presence
of other attackers.

Comparing these two sets of simulation results reinforces
our initial assumption that attackers with locking behavior
would demonstrate superior performance when compared to
constantly probing abusers. The latter implementation incurs
severe packet drops, which is antithetical to the benefits of
using XCP in the first place. In contrast, the window locking
abusive attackers never drop more than two packets per flow.

One anomaly worth discussing is the fact that network
utilization climbs above 100%. This is due to the fact that
utilization is measured as total outgoing bandwidth. At points
above 100%, the router queues are being filled up. This event
is always followed by one or more packet drops, which is
followed by one or more flows backing off.

Figure 9 demonstrates the effect of staggering the entrance
of abusive attackers with window locking behavior into the

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

Flow 1
Cheater 1
Cheater 2
Cheater 3
Cheater 4
Cheater 5
Cheater 6
Cheater 7
Cheater 8
Cheater 9

Total

Fig. 7. Nine abusive attackers without locking behavior and one
normal flow. Constant probing for bandwidth by each attacker results
in chaotic backoff behavior, although overall utilization remains high.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60

P
ac

ke
t D

ro
p

P
er

ce
nt

ag
e

Time (Seconds)

Flow 1
Cheater 1
Cheater 2
Cheater 3
Cheater 4
Cheater 5
Cheater 6
Cheater 7
Cheater 8
Cheater 9

Fig. 8. Average packet drops for nine abusive attackers without
locking behavior and one normal flow.

simulation, as well as the consequences of an attacking flow
halting. As expected, the attackers divide up the available
bandwidth on a first-come-first-served basis, while managing
to almost totally quash the one normal flow present. At 120
seconds Cheater 1, the most successful attacker, stops sending,
freeing up a substantial amount of bandwidth. Immediately, the
other cheaters observe a drop in average RTT and recommence
probing. No singular attacker manages to obtain control over
the open bandwidth, although the three remaining attackers
also do not divide it up evenly. Even when probing recom-
mences at 120 seconds, no flow present in the simulation
ever drops more than 2 packets during each period of additive
increase.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140 160

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

A
B

C
D

Flow 1
Cheater 1
Cheater 2
Cheater 3
Cheater 4

Total

Fig. 9. Four abusive attackers and one normal flow. Initially only
one attacker is present; another joins every 30 seconds (labels A,
B, and C). The most successful abusive flow (Cheater 1) stops
sending at 120 seconds (label D), causing the other abusers to
restart probing behavior and seize additional resources which were
previously unavailable.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

B
an

dw
id

th
 (

M
bp

s)

Time (Seconds)

A B

Cheater 1
Flow 1
Flow 2
Flow 3

Total

Fig. 10. One lying attacker with 49 total normal hosts. Initially there
are at 5 flows present: at 30 seconds (label A) 10 additional flows
join, and at 60 seconds (label B) 35 more flows join. Each graphed
Flow is from a different wave.

C. Lying Host Simulation

Figure 10 demonstrates the effectiveness of the lying attack
for receivers. Similar to figure 5, the network starts out with
1 cheater and 4 normal hosts. Normal hosts are added to the
network in groups: 10 at 30 seconds and 35 at 60 seconds. The
attacker maintains a hold on nearly all of the bandwidth no
matter how many other flows are present. Packet drops for the
length of the simulation are essentially nonexistent. Although
not reproduced here, graphs of the lying attackers predicted
congestion window size plotted alongside the manipulated
senders actual window size reveal an almost perfect 1:1

mapping, meaning that the attackers strategy and predictive
abilities are sound.

V. DISCUSSION AND CONCLUSIONS

A. Attacker Evaluation

The simulation results of our attackers exemplify their suc-
cess at accomplishing the stated goal of their design: to control
as much available bandwidth as possible and stifle legitimate
XCP flows. Normal, responsive XCP traffic’s compliance with
feedback makes it an ideal target for exploitation since flows
will gracefully scale back when faced with an unresponsive
attacker. This enables malicious hosts to dominate network
resources no matter how many other flows are present while
incurring almost no penalties in the form of dropped packets
or untenable latencies.

Since attacking the XCP protocol yields such high returns,
there is significant incentive for the behavior to take place.
Given that attackers can completely sap available network
resources this inevitably leads to a situation where the only
effective way to aquire bandwidth at all is to attack as well.
This creates a negative feedback cycle which reinforces bad
behavior as the only tenable form of action. Whether attackers
work in concert together or not, i.e. their varying responses
to congestion feedback, they still exhibit low overhead, high
overall utilization, and total effectiveness at starving normal
XCP flows. Our results show that even in the presence of
window locking, fully unresponsive attacking flows, the other
attackers still manage to gain more bandwidth than any normal
flows which are present. Strikingly, as noted above, in this
situation the majority of attackers end up securing about as
much bandwidth as they would have in the case that there were
no attackers at all and each host responded to XCP feedback
appropriately. This simply reinforces the point that ironically,
in the presence of even one attacker, the only way to achieve
a “fair” portion of network throughput is to attack as well.

What is particularly alarming about our results is the ef-
fectiveness of the lying attacker. Just as with TCP optimistic
ACK attacks, a lying XCP attacker can force a fully standards
compliant XCP host to behave in arbitrarily non-compliant
ways. This type of attack bolsters the ability of malicious users
to leech off of content providers, appropriating all available
bandwidth for their own selective data transmissions. It is also
plausible to imagine a lying XCP receiver being used to initiate
a reflector style denial of service attack, much like the smurf
attack [17], by forcing several servers with large bandwidth
capacity to direct excessively large amounts of data traffic
at a specific source. Coupled with IP address spoofing this
attack could be directed at any end-host, but even without it
an attacker could cause a localized service outage for a website
or other data provider by causing their servers to flood their
own outgoing links to the Internet.

B. Mitigation Strategies

There are multiple potential strategies to detect attacking
XCP hosts. One approach is to place monitors at every

end point of the network [2], [1], [18]. [2] recommends a
probabilistic approach to monitoring in an attempt to provide
a scalable solution, though no analysis is provided. While
we agree with the recommendation for monitors, we discuss
the monitoring requirements for detecting both abuser- and
lying-attackers and requirements for both local and remote
detection. The rationale for remote detection is simple: we
assume that it is possible for an attacker to use a compromised
or unmonitored access point to the network.

Remote and local detection of an abusive attacker has the
same requirements. The receiver, presumably a non-cheater,
copies delta throughput into reverse feedback. The reverse
feedback value is untouched by the network. The monitor
(again, remote or local), must track the bandwidth of the flow
and ensure that the reverse feedback values are being heeded.
The remote monitor has a more difficult job, as an estimated
half of an RTT will pass before a value is acted on. It is
insufficient to merely record the reverse feedback being sent
to a host for comparison against the cwnd value it will report in
the XCP header of its next packet, since it would be trivial for
an abusive attacker to augment their abilities to lie about their
actual values as well. The only solution is rate monitoring,
which unfortunately necessitates stateful overhead in all XCP
enabled leaf routers.

Local detection of a lying attacker is easy. Since there are
no XCP routers in between the monitor and the attacker, the
incoming delta throughput must match the outgoing reverse
feedback. If not, the monitored host is an attacker. Local
monitoring is not a sufficient countermeasure against lying
attackers: the bandwidth and denial-of-service effects impact
the sender, who also typically incurs any bandwidth costs.
Because the impacts are on the side of the sender, best
practices dictate that monitoring and detection occur remotely
(near the non-cheating sender). Unfortunately, detection is
difficult for a number of reasons:

1) XCP routers alter the delta throughput value after it has
passed the remote monitor in route to the receiver.

2) Packet drops, which only occur significantly on XCP
in the presence of attackers, only indicate the presence
of an attacker along the flow’s path, not that a given
receiver is an attacker.

3) Asymmetric traffic (small ACK packets vs. large data
packets) makes modeling the remote attacker difficult,
even with symmetric paths. For this reason it is not
sufficient for the monitor near the sender to assume
that received delta throughput values should closely
approximate received reverse feedback values.

The only apparent solution to sender side liar detection is for
the sender’s most immediate leaf router to artificially limit the
senders congestion window size and consequently their send
rate by putting a known, low value into the delta throughput
of that senders outgoing packets. Once any router on an
XCP flow’s end-to-end path has entered a value into delta
throughput that value can only be lowered, since the bottleneck

router with the most congestion or lowest overall bandwidth
must be able to throttle incoming traffic. By assuming the
role of the bottleneck temporarily, the sender’s leaf router can
monitor to see if any reverse feedback values are returned
with higher than expected values; any receiver who is observed
reporting these erroneous values can be considered an attacker.
The side effects of this solution are that in order to make
these assessments a sender’s bandwidth must be artificially
capped at various intervals, reducing overall performance for
legitimate traffic. It remains to be seen whether this method
can successfully be applied in a probabilistic manner to
minimize router overhead and collateral detrimental effects.

C. Conclusions

We confirm via detailed simulations that it is possible to cre-
ate highly successful, malicious, cheating XCP clients2. The
existence of receiver side cheating means that even conforming
XCP implementations are vulnerable to exploitation. The feed-
back mechanisms that make XCP a strong protocol become
its greatest weakness when confronted with unresponsive flows
backed by fabricated feedback, allowing attackers to acquire
almost total control of available bandwidth resources. Given
the potential gains available to unscrupulous users on an XCP
enabled network, the incentive to cheat is very high.

Although attacking effectively and probing for bandwidth
does induce some packet loss overhead, the numbers of drops
still remain far less than that for typical TCP flows, meaning
that the actual negative ramifications of this overhead are
negligible. Even when multiple attackers are present on the
same network links, overall utilization remains almost as high
as if the flows were cooperating normally, adding further
incentive for this practice.

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their helpful
feedback. We also gratefully acknowledge support by DARPA
under the Control Plane Program BAA04-11, and the NSF
under CAREER Award #0546216.

REFERENCES

[1] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth-Delay Product Networks,” in Proc. of SIGCOMM, August
2002.

[2] A. Falk, Y. Pryadkin, and D. Katabi, “Specification for the Explicit
Control Protocol (XCP),” draft, November 2006, http://www.isi.edu/
isi-xcp/docs/draft-falk-xcp-spec-02.txt.

[3] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “Tcp conges-
tion control with a misbehaving receiver,” ACM SIGCOMM Computer
Communications Review, vol. 29, no. 5, pp. 71–78, October 1999.

[4] R. Sherwood, B. Bhattacharjee, and R. Braud, “Misbehaving tcp re-
ceivers can cause internet-wide congestion collapse,” in Proc. of CCS,
Alexandria, VA, November 2005.

[5] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks,” IEEE/ACM Transactions
on Networking, vol. 8, no. 2, pp. 158–181, May 1990.

2We are currently evaluating the effectiveness of attacks on the Linux XCP
implementation [11] using the Emulab network testbed [19].

[6] K. K. Ramakrishnan, S. Floyd, and D. Black, The Addition of Explicit
Congestion Notification (ECN) to IP, Sept. 2001, rFC 3168, Proposed
Standard.

[7] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more bit
is enough,” in Proc. of SIGCOMM, Philadelphia, PA, August 2005.

[8] M. Georg and S. Gorinsky, “Protecting tfrc from a selfish receiver,” in
Proc. of ICAS-ICNS, Oct. 2005.

[9] S. Low, L. Andrew, and B. Wydrowski, “Understanding XCP: Equilib-
rium and fairness,” in Proc. of INFOCOM, Barcelona, Spain, March
2005.

[10] Y. Zhang and M. Ahmed, “A control theoretic analysis of xcp,” in Proc.
of IEEE Global Internet Symposium, Miami, FL, March 2005.

[11] Y. Zhang and T. Henderson, “An implementation and experimental study
of the explicit control protocol (xcp).” in Proc. of INFOCOM, Miami,
FL, March 2005.

[12] L. Garber, “Denial-of-service attacks rip the internet,” IEEE Computer,
vol. 33, no. 4, pp. 12–17, April 2000.

[13] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense
mechanisms,” ACM Computer Communication Review, vol. 34, no. 2,
pp. 39–53, April 2004.

[14] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and M. Y. Sanadidi, “Capprobe:
A simple technique to measure path capacity,” in Proc. of SIGCOMM,
Portland, OR, September 2004.

[15] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “Pcp:
Efficient endpoint congestion control,” in Proc. of NSDI, May 2006.

[16] “The network simulator ns-2.” http://www.isi.edu/nsnam/ns.
[17] “Cert advisory ca-1998-01 smurf ip denial-of-service attacks,” http://

www.cert.org/advisories/CA-1998-01.html, 1998.
[18] D. Katabi, “Xcp’s performance in the presence of malicious flows,”

in Proc. of Workshop on Protocols for Fast Long Distance Networks,
February 2004.

[19] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Proc. of OSDI,
December 2002.

