
1

Implementation and Deployment of a
Large-scale Network Infrastructure

Ben Y. Zhao
L. Huang, S. Rhea, J. Stribling,
A. D. Joseph, J. D. Kubiatowicz
EECS, UC Berkeley
HP Labs, November 2002

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 2

Next-generation Network Applications

Scalability in applications
Process/threads on single node server
Cluster (LAN): fast, reliable, unlimited comm.
Next step: scaling to the wide-area

Complexities of global deployment
Network unreliability

BGP slow convergence, redundancy unexploited

Lack of administrative control over components
Constrains protocol deployment: multicast, congestion ctrl.

Management of large scale resources / components
Locate, utilize resources despite failures

2

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 3

Enabling Technology: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 4

A Solution
Decentralized Object Location and Routing
(DOLR)

wide-area overlay application infrastructure
Self-organizing, scalable
Fault-tolerant routing and object location
Efficient (b/w, latency) data delivery

Extensible, supports application-specific protocols
Recent work

Tapestry, Chord, CAN, Pastry
Kademlia, Viceroy, …

3

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 5

What is Tapestry?

DOLR driving OceanStore global storage
(Zhao, Kubiatowicz, Joseph et al. 2000)
Network structure

Nodes assigned bit sequence nodeIds
namespace: 0-2160, based on some radix (e.g. 16)
keys from same namespace
Keys dynamically map to 1 unique live node: root

Base API
Publish / Unpublish (Object ID)
RouteToNode (NodeId)
RouteToObject (Object ID)

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 6

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

Tapestry Mesh
Incremental prefix-based routing

NodeID
0x43FE

NodeID
0xEF31NodeID

0xEFBA

NodeID
0x0921

NodeID
0xE932

NodeID
0xEF37

NodeID
0xE324

NodeID
0xEF97

NodeID
0xEF32

NodeID
0xFF37

NodeID
0xE555

NodeID
0xE530

NodeID
0xEF44

NodeID
0x0999

NodeID
0x099F

NodeID
0xE399

NodeID
0xEF40

NodeID
0xEF34

4

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 7

Routing Mesh

Routing via local routing tables
Based on incremental prefix matching
Example: 5324 routes to 0629 via
5324 0231 0667 0625 0629
At nth hop, local node matches destination at least n
digits (if any such node exists)
ith entry in nth level routing table points to nearest
node matching: prefix(local_ID, n)+i

Properties
At most log(N) # of overlay hops between nodes
Routing table size: b ∗ log(N)
Actual entries have c-1 backups,
total size: c ∗ b ∗ log(N)

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 8

Object Location
Randomization and Locality

5

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 9

Object Location

Distribute replicates of object references
Only references, not the data itself (level of
indirection)
Place more of them closer to object itself

Publication
Place object location pointers into network
Store hops between object and “root” node

Location
Route message towards root from client
Redirect to object when location pointer found

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 10

Node Insertion

Inserting new node N
Notify need-to-know nodes of N,
N fills null entries in their routing tables
Move locally rooted object references to N
Construct locally optimal routing table for N
Notify nearby nodes to N for optimization

Two phase node insertion
Acknowledged multicast
Nearest neighbor approximation

6

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 11

Acknowledged Multicast
Reach need-to-know nodes of N (e.g. 3111)

Add to routing table
Move root object references

G
N

3211

3229 3013

3222 3205
3023 3022

3021

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 12

Nearest Neighbor
N iterates: list = need-to-know nodes, L = prefix (N, S)

Measure distances of List, use to fill routing table, level L
Trim to k closest nodes, list = backpointers from k set, L--
Repeat until L == 0

N

Need-to-know
nodes

7

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 13

Talk Outline

Algorithms

Architecture
Architectural components

Extensibility API

Evaluation

Ongoing Projects

Conclusion

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 14

Single Tapestry Node

Transport Protocols

Network Link Management

Application Interface / Upcall API

Decentralized
File Systems

Application-Level
Multicast

Approximate
Text Matching

Router
Routing Table

&
Object Pointer DB

Dynamic Node
Management

8

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 15

Single Node Implementation

Application Programming Interface

Applications

Dynamic Tapestry Core Router Patchwork

Network StageDistance Map

SEDA Event-driven Framework
Java Virtual Machine

Enter/leave
Tapestry

State Maint.
Node Ins/del

Routing Link
Maintenance

Node Ins/del

Messages

UDP Pings

ro
ut

e
to

no
de

 /
ob

j
A

PI
 c

al
ls

U
pc

al
ls

fau
lt d

ete
ct

he
art

be
at

msgs

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 16

Message Routing

Router: fast routing to nodes / objects

Receive new
location msg

Forward to
nextHop(h+1,G)

Forward to
nextHop(0,obj)

Signal App
Upcall Handler

Upcall?
yes

nono

yes

Have
Obj Ptrs

Receive new
route msg

Signal App
Upcall Handler

Upcall? no

yes

Forward to
nextHop(h+1,G)

9

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 17

Extensibility API

deliver (G, Aid, Msg)
Invoked at message destination
Asynchronous, returns immediately

forward (G, Aid, Msg)
Invoked at intermediate hop in route
No action taken by default, application calls route()

route (G, Aid, Msg, NextHopNodeSet)
Called by application to request message be
routed to set of NextHopNodes

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 18

Local Operations

Accessibility to Tapestry maintained state

nextHopSet = Llookup(G, Num)
Accesses routing table
Returns up to num candidates for next hop
towards G

objReferenceSet = Lsearch(G, num)
Searches object references for G
Returns up to num references for object, sorted by
increasing network distance

10

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 19

Deployment Status
C simulator

Packet level simulation
Scales up to 10,000 nodes

Java implementation
50000 semicolons of Java, 270 class files
Deployed on local area cluster (40 nodes)
Deployed on Planet Lab global network
(~100 distributed nodes)

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 20

Talk Outline

Algorithms

Architecture

Evaluation
Micro-benchmarks

Stable network performance

Single and parallel node insertion

Ongoing Projects

Conclusion

11

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 21

Micro-benchmark Methodology

Experiment run in LAN, GBit Ethernet
Sender sends 60001 messages at full speed
Measure inter-arrival time for last 50000 msgs

10000 msgs: remove cold-start effects
50000 msgs: remove network jitter effects

Sender
Control

Receiver
Control

Tapestry TapestryLAN
Link

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 22

Micro-benchmark Results

Message Processing Latency

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000 10000
Message Size (KB)

Ti
m

e
/ m

sg
 (m

s)

Sustainable Throughput

0

5

10

15

20

25

30

0.01 0.1 1 10 100 1000 10000

Message Size (KB)

 T
Pu

t (
M

B
/s)

Constant processing overhead ~ 50µs
Latency dominated by byte copying
For 5K messages, throughput = ~10,000 msgs/sec

12

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 23

Large Scale Methodology
Planet Lab global network

98 machines at 42 institutions, in North America,
Europe, Australia (~ 60 machines utilized)
1.26Ghz PIII (1GB RAM), 1.8Ghz PIV (2GB RAM)
North American machines (2/3) on Internet2

Tapestry Java deployment
6-7 nodes on each physical machine
IBM Java JDK 1.30
Node virtualization inside JVM and SEDA
Scheduling between virtual nodes increases
latency

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 24

Node to Node Routing

Ratio of end-to-end routing latency to shortest ping distance
between nodes
All node pairs measured, placed into buckets

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

Internode RTT Ping time (5ms buckets)

RD
P

(m
in

, m
ed

, 9
0%

) Median=31.5, 90th percentile=135

13

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 25

Object Location

Ratio of end-to-end latency for object location, to shortest ping
distance between client and object location
Each node publishes 10,000 objects, lookup on all objects

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Client to Obj RTT Ping time (1ms buckets)

R
D

P
(m

in
, m

ed
ia

n,
 9

0%
)

90th percentile=158

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 26

Latency to Insert Node

Latency to dynamically insert a node into an existing Tapestry,
as function of size of existing Tapestry
Humps due to expected filling of each routing level

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500

Size of Existing Network (nodes)

In
te

gr
at

io
n

La
te

nc
y

(m
s)

14

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 27

Bandwidth to Insert Node

Cost in bandwidth of dynamically inserting a node into the
Tapestry, amortized for each node in network
Per node bandwidth decreases with size of network

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

Size of Existing Network (nodes)

C
on

tr
ol

 T
ra

ffi
c

B
W

 (K
B

)

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 28

Parallel Insertion Latency

Latency to dynamically insert nodes in unison into an existing
Tapestry of 200
Shown as function of insertion group size / network size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.05 0.1 0.15 0.2 0.25 0.3

Ratio of Insertion Group Size to Network Size

La
te

nc
y

to
 C

on
ve

rg
en

ce
 (m

s)

90th percentile=55042

15

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 29

Results Summary
Lessons Learned

Node virtualization: resource contention
Accurate network distances hard to measure

Efficiency verified
Msg processing = 50µs, Tput ~ 10,000msg/s
Route to node/object small factor over optimal

Algorithmic scalability
Single node latency/bw scale sublinear to network
size
Parallel insertion scales linearly with group size

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 30

Talk Outline

Algorithms

Architecture

Evaluation

Ongoing Projects
P2P landmark routing: Brocade

Applications: Shuttle, Interweave, ATA

Conclusion

16

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 31

State of the Art Routing
High dimensionality and
coordinate-based P2P
routing

Tapestry, Pastry, Chord,
CAN, etc…
Sub-linear storage and # of
overlay hops per route
Properties dependent on
random name distribution
Optimized for uniform mesh
style networks

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 32

Reality

AS-2

P2P Overlay
Network

AS-1

AS-3

S R

Transit-stub topology, disparate resources
per node
Result: Inefficient inter-domain routing (b/w,
latency)

17

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 33

Landmark Routing on P2P
Brocade

Exploit non-uniformity
Minimize wide-area routing hops / bandwidth

Secondary overlay on top of Tapestry
Select super-nodes by admin. domain

Divide network into cover sets

Super-nodes form secondary Tapestry
Advertise cover set as local objects

brocade routes directly into destination’s local
network, then resumes p2p routing

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 34

AS-2

P2P
Network

AS-1

AS-3

Brocade Layer

S D

Original Route
Brocade Route

Brocade Routing

18

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 35

Applications under Development
OceanStore: global resilient file store
Shuttle

Decentralized P2P chat service
Leverages Tapestry for fault-tolerant routing

Interweave
Keyword searchable file sharing utility
Fully decentralized, exploits network locality

Approximate Text Addressing
Uses text fingerprinting to map similar documents
to single IDs
Killer app: decentralized spam mail filter

HP Labs, 11/26/02 © ravenben@eecs.berkeley.edu 36

For More Information

Tapestry and related projects (and these slides):
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@eecs.berkeley.edu

