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Next-generation Network Applications

Scalability in applications
Process/threads on single node server
Cluster (LAN): fast, reliable, unlimited comm.
Next step: scaling to the wide-area

Complexities of global deployment
Network unreliability

BGP slow convergence, redundancy unexploited

Lack of administrative control over components
Constrains protocol deployment: multicast, congestion ctrl.

Management of large scale resources / components
Locate, utilize resources despite failures
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Enabling Technology: DOLR
(Decentralized Object Location and Routing)

GUID1

DOLR

GUID1GUID2
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A Solution
Decentralized Object Location and Routing 
(DOLR)

wide-area overlay application infrastructure
Self-organizing, scalable 
Fault-tolerant routing and object location
Efficient (b/w, latency) data delivery

Extensible, supports application-specific protocols
Recent work

Tapestry, Chord, CAN, Pastry
Kademlia, Viceroy, …
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What is Tapestry?

DOLR driving OceanStore global storage
(Zhao, Kubiatowicz, Joseph et al. 2000)
Network structure

Nodes assigned bit sequence nodeIds
namespace: 0-2160,  based on some radix (e.g. 16)
keys from same namespace
Keys dynamically map to 1 unique live node: root

Base API
Publish / Unpublish (Object ID)
RouteToNode (NodeId)
RouteToObject (Object ID)
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Tapestry Mesh
Incremental prefix-based routing
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Routing Mesh

Routing via local routing tables
Based on incremental prefix matching
Example: 5324 routes to 0629 via
5324 0231 0667 0625 0629
At nth hop, local node matches destination at least n
digits (if any such node exists)
ith entry in nth level routing table points to nearest 
node matching:  prefix(local_ID, n)+i

Properties
At most log(N) # of overlay hops between nodes
Routing table size: b ∗ log(N)
Actual entries have c-1 backups,
total size:  c ∗ b ∗ log(N)
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Object Location
Randomization and Locality
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Object Location

Distribute replicates of object references 
Only references, not the data itself (level of 
indirection)
Place more of them closer to object itself

Publication
Place object location pointers into network
Store hops between object and “root” node

Location
Route message towards root from client
Redirect to object when location pointer found
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Node Insertion

Inserting new node N
Notify need-to-know nodes of N, 
N fills null entries in their routing tables
Move locally rooted object references to N
Construct locally optimal routing table for N
Notify nearby nodes to N for optimization

Two phase node insertion
Acknowledged multicast
Nearest neighbor approximation
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Acknowledged Multicast
Reach need-to-know nodes of N (e.g. 3111)

Add to routing table
Move root object references

G
N

3211

3229 3013

3222 3205
3023 3022

3021
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Nearest Neighbor
N iterates:  list = need-to-know nodes, L = prefix (N, S)

Measure distances of List, use to fill routing table, level L
Trim to k closest nodes, list = backpointers from k set, L--
Repeat until L == 0

N

Need-to-know
nodes
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Talk Outline

Algorithms

Architecture
Architectural components

Extensibility API

Evaluation

Ongoing Projects

Conclusion

HP Labs, 11/26/02                   © ravenben@eecs.berkeley.edu 14

Single Tapestry Node

Transport Protocols

Network Link Management

Application Interface / Upcall API

Decentralized
File Systems

Application-Level
Multicast

Approximate
Text Matching

Router
Routing Table

&
Object Pointer DB

Dynamic Node
Management
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Single Node Implementation

Application Programming Interface

Applications

Dynamic Tapestry Core Router Patchwork

Network StageDistance Map

SEDA Event-driven Framework
Java Virtual Machine

Enter/leave
Tapestry

State Maint.
Node Ins/del

Routing Link
Maintenance

Node Ins/del

Messages

UDP Pings
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Message Routing

Router: fast routing to nodes / objects

Receive new
location msg

Forward to
nextHop(h+1,G)

Forward to
nextHop(0,obj)

Signal App
Upcall Handler

Upcall?
yes

nono

yes

Have
Obj Ptrs

Receive new
route msg

Signal App
Upcall Handler

Upcall? no

yes

Forward to
nextHop(h+1,G)
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Extensibility API

deliver (G, Aid, Msg)
Invoked at message destination
Asynchronous, returns immediately

forward (G, Aid, Msg)
Invoked at intermediate hop in route
No action taken by default, application calls route()

route (G, Aid, Msg, NextHopNodeSet)
Called by application to request message be 
routed to set of NextHopNodes

HP Labs, 11/26/02                   © ravenben@eecs.berkeley.edu 18

Local Operations

Accessibility to Tapestry maintained state

nextHopSet = Llookup(G, Num)
Accesses routing table
Returns up to num candidates for next hop 
towards G

objReferenceSet = Lsearch(G, num)
Searches object references for G
Returns up to num references for object, sorted by 
increasing network distance 
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Deployment Status
C simulator

Packet level simulation
Scales up to 10,000 nodes

Java implementation
50000 semicolons of Java, 270 class files
Deployed on local area cluster (40 nodes)
Deployed on Planet Lab global network 
(~100 distributed nodes)
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Talk Outline

Algorithms

Architecture

Evaluation
Micro-benchmarks

Stable network performance

Single and parallel node insertion

Ongoing Projects

Conclusion
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Micro-benchmark Methodology

Experiment run in LAN, GBit Ethernet
Sender sends 60001 messages at full speed
Measure inter-arrival time for last 50000 msgs

10000 msgs: remove cold-start effects
50000 msgs: remove network jitter effects

Sender
Control

Receiver
Control

Tapestry TapestryLAN
Link
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Micro-benchmark Results

Message Processing Latency
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Constant processing overhead ~ 50µs
Latency dominated by byte copying
For 5K messages, throughput = ~10,000 msgs/sec 
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Large Scale Methodology
Planet Lab global network

98 machines at 42 institutions, in North America, 
Europe, Australia (~ 60 machines utilized)
1.26Ghz PIII (1GB RAM), 1.8Ghz PIV (2GB RAM)
North American machines (2/3) on Internet2

Tapestry Java deployment
6-7 nodes on each physical machine
IBM Java JDK 1.30
Node virtualization inside JVM and SEDA
Scheduling between virtual nodes increases 
latency
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Node to Node Routing

Ratio of end-to-end routing latency to shortest ping distance 
between nodes
All node pairs measured, placed into buckets
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Object Location

Ratio of end-to-end latency for object location, to shortest ping 
distance between client and object location
Each node publishes 10,000 objects, lookup on all objects

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

Client to Obj RTT Ping time (1ms buckets)

R
D

P 
(m

in
, m

ed
ia

n,
 9

0%
)

90th percentile=158

HP Labs, 11/26/02                   © ravenben@eecs.berkeley.edu 26

Latency to Insert Node

Latency to dynamically insert a node into an existing Tapestry, 
as function of size of existing Tapestry
Humps due to expected filling of each routing level
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Bandwidth to Insert Node

Cost in bandwidth of dynamically inserting a node into the 
Tapestry, amortized for each node in network
Per node bandwidth decreases with size of network
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Parallel Insertion Latency

Latency to dynamically insert nodes in unison into an existing 
Tapestry of 200
Shown as function of insertion group size / network size
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Results Summary
Lessons Learned

Node virtualization: resource contention
Accurate network distances hard to measure

Efficiency verified
Msg processing = 50µs, Tput ~ 10,000msg/s
Route to node/object small factor over optimal

Algorithmic scalability
Single node latency/bw scale sublinear to network 
size
Parallel insertion scales linearly with group size
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Talk Outline

Algorithms

Architecture

Evaluation

Ongoing Projects
P2P landmark routing: Brocade

Applications:  Shuttle, Interweave, ATA

Conclusion
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State of the Art Routing
High dimensionality and 
coordinate-based P2P 
routing

Tapestry, Pastry, Chord, 
CAN, etc…
Sub-linear storage and # of 
overlay hops per route
Properties dependent on 
random name distribution
Optimized for uniform mesh 
style networks
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Reality

AS-2

P2P Overlay 
Network

AS-1

AS-3

S R

Transit-stub topology, disparate resources 
per node
Result: Inefficient inter-domain routing (b/w, 
latency)
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Landmark Routing on P2P
Brocade

Exploit non-uniformity
Minimize wide-area routing hops / bandwidth

Secondary overlay on top of Tapestry
Select super-nodes by admin. domain

Divide network into cover sets

Super-nodes form secondary Tapestry 
Advertise cover set as local objects

brocade routes directly into destination’s local 
network, then resumes p2p routing
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AS-2

P2P 
Network

AS-1

AS-3

Brocade Layer

S D

Original Route
Brocade Route

Brocade Routing
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Applications under Development
OceanStore: global resilient file store
Shuttle

Decentralized P2P chat service
Leverages Tapestry for fault-tolerant routing

Interweave
Keyword searchable file sharing utility
Fully decentralized, exploits network locality

Approximate Text Addressing
Uses text fingerprinting to map similar documents 
to single IDs
Killer app: decentralized spam mail filter
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For More Information

Tapestry and related projects (and these slides):
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@eecs.berkeley.edu


