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Why Tapestry
Today’s Internet
! Route failures not uncommon

! BGP too slow to recover, redundant routes unexploited
! IPv4 constrains deployment of new protocols

! IP multicast, security protocols (DDoS traceback), …
! Wide-area applications straining existing systems

! Scalable management of large scale resources
Our goals
! Wide-area scalable network overlay

! Highly fault-tolerant routing / location
! Introspective / self-tuning platform
! Support application-specific protocols
! Efficient (b/w, latency) data delivery

! Pass on wide-area solutions to application layer
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What is Tapestry?
A prototype of a decentralized, fault-tolerant, adaptive
overlay infrastructure
(Zhao, Kubiatowicz, Joseph et al. 2000)

Network substrate of OceanStore
! Routing: Suffix-based hypercube

Similar to Plaxton, Rajamaran, Richa (SPAA97)
! Decentralized location:

Virtual hierarchy per object with cached location references

Dynamic algorithms using local information
Core API:
! publishObject(ObjectID)
! routeMsgToObject(ObjectID)
! routeMsgToNode(NodeID)

ROC/Sahara Retreats, 1/2002 4

Routing and Location

Namespace (nodes and objects)
! 160 bits length " 280 names before name collision
! Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function

Suffix routing from A to B
! At hth hop, arrive at nearest node hop(h) such that:

hop(h) shares suffix with B of length h digits
! Example: 5324 routes to 0629 via

5324 " 2349 " 1429 " 7629 " 0629

Object location:
! Root responsible for storing object’s location
! Publish / search both route incrementally to root
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Tapestry Mesh
Incremental suffix-based routing
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Object Location
Randomization and Locality
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Fault-tolerant Routing
Strategy:
! Detect failures via soft-state probe packets
! Route around problematic hop via backup pointers

Handling:
! 3 forward pointers per outgoing route 

(2 backups)
! 2nd chance algorithm for intermittent failures
! Upgrade backup pointers and replace

Protocols:
! First Reachable Link Selection (FRLS)
! Proactive Duplicate Packet Routing
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Talk Outline

Tapestry overview

Architecture

Evaluation
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Conclude
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Architecture Background

OceanStore implementation
! Java with asynchronous I/O
! Event-based, stage driven architecture

(Sandstorm – M. Welsh)

Operating System
Java Virtual Machine

Sandstorm (async I/O, event arch.)
Tapestry

OceanStore
Applications

ROC/Sahara Retreats, 1/2002 10

Key Stages
StaticTClient / Federation
! Uses config files to bootstrap initial Tapestry

DynamicTClient
! Integrates new nodes into static Tapestry

Router
! Primary handler of routing and location

Patchwork
! Introspective monitoring and fault-detection

Sandstorm (async I/O, event arch.)

OceanStore

Applications

Router
Static TClient
Dynamic TClient

Patch
work

ROC/Sahara Retreats, 1/2002 11

Static TClient
Federation used as rendezvous point
Pair-wise pings to generate route tables
Federation used as global barrier to begin

FS

S

S

S 1.  Si says hello to F
2.  F informs group of Si

3.  Nodes do pair-wise pings
4.  Nodes signal readiness
5.  Barrier reached at F, 

signals start
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Dynamic TClient
Node Integration
1. Hill-climb to find nearest Gateway
2. Route to surrogate / copy routes
3. Move relevant objects to new root
4. Directed multicast notifies nearby nodes

G S

Routes Request

Routes Response

Moving Object Pointers

Directed Multicast
?

F
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Routing / Location

Router class
Maintains:
! RoutingTable: 

[ ][ ] of RouteEntries
! ObjectPointers: 

Hash(Guid)"PublishInfo
Hash(Guid)"LastHop

Handles:
! Object publication / unpublication / mobile objects
! Route / location message handling
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Patchwork

Fault-handling / introspective stage
! Granulated periodic beacons measure loss and 

network latency to entries in routing table
! Promote/demote routes in single RouteEntry

Routernetwork

XA

B

C

A B CB C A
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Deployment Status
# Object Location

$ Publish / unpublish / route to object
$ Mobile objects (backtracking unpublish)
% Active deletes, confirmation of non-existence

# General Routing
$ Route to node, redundant routes
$ Soft-state fault-detection, limited optimization
% Advanced policies for fault recovery

# Dynamic Integration
$ Integration w/ limited optimizations
% Best effort fault-resilient integration mechanisms

% Background threads for optimization / refresh
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Generalized Results

Cached object pointers
! Efficient lookup for nearby objects
! Reasonable storage overhead

Multiple object roots
! Improves availability under attack
! Improves performance and perf. stability

Reliable packet delivery
! Redundant pointers approximate optimal

reachability
! FRLS, a simple fault-tolerant UDP protocol
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First Reachable Link Selection

Use periodic UDP packets 
to gauge link condition
Packets routed to shortest 
“good” link
Assumes IP cannot correct 
routing table in time for 
packet delivery

A
B
C
D
E

IP Tapestry

No path exists to dest.
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Some Numbers

Measurements
! PIII 800, L2.2.18, IBM JDK 1.3
! Simulating 6 nodes 

(4 staticTC, 1 federation, 1 dynamicTC)
! Publishing / locating ~10 objects
! PublishMsg, RouteMsg: ~ 0-2 ms
! Integration: ~2600ms (w/ pings)

Integration messages:
! Assuming latency data available
! 2 x n (routing and objects)

16M (directed multicast notification) (M ≈ 3)
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Landmark Routing on P2P

Brocade
! Exploit non-uniformity
! Minimize wide-area routing hops / bandwidth

Secondary overlay on top of Tapestry
! Select super-nodes by admin. domain

! Divide network into cover sets

! Super-nodes form secondary Tapestry 
! Advertise cover set as local objects

! Routing (A"B) uses brocade to route directly into 
B’s local network
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Brocade Mechanisms

Selective utilization
! Nodes cache local cover set
! Only utilize brocade if dest. not in cache
Forwarding messages to supernodes

1. Super-node does IP-snooping
2. Direct: cover set caches supernode
Inter-domain routing: A"B

1. A"SN(A) via IP
2. SN(A) finds SN(B) via Tapestry location
3. SN(B)"B via Tapestry/Chord/Pastry/CAN
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Brocade Routing RDP
Brocade Latency RDP 3:1
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Brocade Bandwidth Usage
Brocade Aggregate Bandwidth Usage
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Ongoing / Future Work

Fill in full functionality
! Fault-handling policies, introspection, self-repair

More realistic experiments
! Artificial topologies on SOSS simulator
! Larger scale dynamic integration experiments

Code development
! External deployment / Code release

! Sprint programmable routers
! Academic networks

! Introspective measurement platform
! Implementing applications (Bayeux, Brocade … )
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For More Information

Tapestry and related projects (and these slides):
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@eecs.berkeley.edu


