
1

Tapestry
Architecture and status

UCB ROC / Sahara Retreat
January 2002

Ben Y. Zhao
ravenben@eecs.berkeley.edu

ROC/Sahara Retreats, 1/2002 2

Why Tapestry
Today’s Internet
! Route failures not uncommon

! BGP too slow to recover, redundant routes unexploited
! IPv4 constrains deployment of new protocols

! IP multicast, security protocols (DDoS traceback), …
! Wide-area applications straining existing systems

! Scalable management of large scale resources
Our goals
! Wide-area scalable network overlay

! Highly fault-tolerant routing / location
! Introspective / self-tuning platform
! Support application-specific protocols
! Efficient (b/w, latency) data delivery

! Pass on wide-area solutions to application layer

ROC/Sahara Retreats, 1/2002 3

What is Tapestry?
A prototype of a decentralized, fault-tolerant, adaptive
overlay infrastructure
(Zhao, Kubiatowicz, Joseph et al. 2000)

Network substrate of OceanStore
! Routing: Suffix-based hypercube

Similar to Plaxton, Rajamaran, Richa (SPAA97)
! Decentralized location:

Virtual hierarchy per object with cached location references

Dynamic algorithms using local information
Core API:
! publishObject(ObjectID)
! routeMsgToObject(ObjectID)
! routeMsgToNode(NodeID)

ROC/Sahara Retreats, 1/2002 4

Routing and Location

Namespace (nodes and objects)
! 160 bits length " 280 names before name collision
! Each object has its own hierarchy rooted at Root

f (ObjectID) = RootID, via a dynamic mapping function

Suffix routing from A to B
! At hth hop, arrive at nearest node hop(h) such that:

hop(h) shares suffix with B of length h digits
! Example: 5324 routes to 0629 via

5324 " 2349 " 1429 " 7629 " 0629

Object location:
! Root responsible for storing object’s location
! Publish / search both route incrementally to root

2

ROC/Sahara Retreats, 1/2002 5

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3
2

4

Tapestry Mesh
Incremental suffix-based routing

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

ROC/Sahara Retreats, 1/2002 6

Object Location
Randomization and Locality

ROC/Sahara Retreats, 1/2002 7

Fault-tolerant Routing
Strategy:
! Detect failures via soft-state probe packets
! Route around problematic hop via backup pointers

Handling:
! 3 forward pointers per outgoing route

(2 backups)
! 2nd chance algorithm for intermittent failures
! Upgrade backup pointers and replace

Protocols:
! First Reachable Link Selection (FRLS)
! Proactive Duplicate Packet Routing

ROC/Sahara Retreats, 1/2002 8

Talk Outline

Tapestry overview

Architecture

Evaluation

Brocade

Conclude

3

ROC/Sahara Retreats, 1/2002 9

Architecture Background

OceanStore implementation
! Java with asynchronous I/O
! Event-based, stage driven architecture

(Sandstorm – M. Welsh)

Operating System
Java Virtual Machine

Sandstorm (async I/O, event arch.)
Tapestry

OceanStore
Applications

ROC/Sahara Retreats, 1/2002 10

Key Stages
StaticTClient / Federation
! Uses config files to bootstrap initial Tapestry

DynamicTClient
! Integrates new nodes into static Tapestry

Router
! Primary handler of routing and location

Patchwork
! Introspective monitoring and fault-detection

Sandstorm (async I/O, event arch.)

OceanStore

Applications

Router
Static TClient
Dynamic TClient

Patch
work

ROC/Sahara Retreats, 1/2002 11

Static TClient
Federation used as rendezvous point
Pair-wise pings to generate route tables
Federation used as global barrier to begin

FS

S

S

S 1. Si says hello to F
2. F informs group of Si

3. Nodes do pair-wise pings
4. Nodes signal readiness
5. Barrier reached at F,

signals start

ROC/Sahara Retreats, 1/2002 12

Dynamic TClient
Node Integration
1. Hill-climb to find nearest Gateway
2. Route to surrogate / copy routes
3. Move relevant objects to new root
4. Directed multicast notifies nearby nodes

G S

Routes Request

Routes Response

Moving Object Pointers

Directed Multicast
?

F

4

ROC/Sahara Retreats, 1/2002 13

Routing / Location

Router class
Maintains:
! RoutingTable:

[][] of RouteEntries
! ObjectPointers:

Hash(Guid)"PublishInfo
Hash(Guid)"LastHop

Handles:
! Object publication / unpublication / mobile objects
! Route / location message handling

ROC/Sahara Retreats, 1/2002 14

Patchwork

Fault-handling / introspective stage
! Granulated periodic beacons measure loss and

network latency to entries in routing table
! Promote/demote routes in single RouteEntry

Routernetwork

XA

B

C

A B CB C A

ROC/Sahara Retreats, 1/2002 15

Deployment Status
Object Location

$ Publish / unpublish / route to object
$ Mobile objects (backtracking unpublish)
% Active deletes, confirmation of non-existence

General Routing
$ Route to node, redundant routes
$ Soft-state fault-detection, limited optimization
% Advanced policies for fault recovery

Dynamic Integration
$ Integration w/ limited optimizations
% Best effort fault-resilient integration mechanisms

% Background threads for optimization / refresh

ROC/Sahara Retreats, 1/2002 16

Talk Outline

Tapestry overview

Architecture

Evaluation

Brocade

Conclude

5

ROC/Sahara Retreats, 1/2002 17

Generalized Results

Cached object pointers
! Efficient lookup for nearby objects
! Reasonable storage overhead

Multiple object roots
! Improves availability under attack
! Improves performance and perf. stability

Reliable packet delivery
! Redundant pointers approximate optimal

reachability
! FRLS, a simple fault-tolerant UDP protocol

ROC/Sahara Retreats, 1/2002 18

First Reachable Link Selection

Use periodic UDP packets
to gauge link condition
Packets routed to shortest
“good” link
Assumes IP cannot correct
routing table in time for
packet delivery

A
B
C
D
E

IP Tapestry

No path exists to dest.

ROC/Sahara Retreats, 1/2002 19

Some Numbers

Measurements
! PIII 800, L2.2.18, IBM JDK 1.3
! Simulating 6 nodes

(4 staticTC, 1 federation, 1 dynamicTC)
! Publishing / locating ~10 objects
! PublishMsg, RouteMsg: ~ 0-2 ms
! Integration: ~2600ms (w/ pings)

Integration messages:
! Assuming latency data available
! 2 x n (routing and objects)

16M (directed multicast notification) (M ≈ 3)

ROC/Sahara Retreats, 1/2002 20

Talk Outline

Tapestry overview

Architecture

Evaluation

Brocade

Conclude

6

ROC/Sahara Retreats, 1/2002 21

Landmark Routing on P2P

Brocade
! Exploit non-uniformity
! Minimize wide-area routing hops / bandwidth

Secondary overlay on top of Tapestry
! Select super-nodes by admin. domain

! Divide network into cover sets

! Super-nodes form secondary Tapestry
! Advertise cover set as local objects

! Routing (A"B) uses brocade to route directly into
B’s local network

ROC/Sahara Retreats, 1/2002 22

Brocade Mechanisms

Selective utilization
! Nodes cache local cover set
! Only utilize brocade if dest. not in cache
Forwarding messages to supernodes

1. Super-node does IP-snooping
2. Direct: cover set caches supernode
Inter-domain routing: A"B

1. A"SN(A) via IP
2. SN(A) finds SN(B) via Tapestry location
3. SN(B)"B via Tapestry/Chord/Pastry/CAN

ROC/Sahara Retreats, 1/2002 23

Brocade Routing RDP
Brocade Latency RDP 3:1

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2 4 6 8 10 12 14 16 18 20 22 24 26

Interdomain-adjusted Latency on Optimal Route

R
el

at
iv

e
D

el
ay

 P
en

al
ty

Original Tapestry IP Snooping Brocade Directed Brocade

Local cover set cache on; interdomain:intradomain = 3:1
Packet simulator, Transit-stub 4096 T nodes, 16 SuperN

ROC/Sahara Retreats, 1/2002 24

Brocade Bandwidth Usage
Brocade Aggregate Bandwidth Usage

0

10

20

30

40

50

60

2 4 6 8 10 12 14
Physical Hops in Optimal Route

A
pp

ro
x.

 B
W

 p
er

 M
es

sa
ge

Original Tapestry IP Snooping Brocade Directed Brocade

Local cover set cache on
B/W unit: (sizeof (Msg) * Hops)

7

ROC/Sahara Retreats, 1/2002 25

Ongoing / Future Work

Fill in full functionality
! Fault-handling policies, introspection, self-repair

More realistic experiments
! Artificial topologies on SOSS simulator
! Larger scale dynamic integration experiments

Code development
! External deployment / Code release

! Sprint programmable routers
! Academic networks

! Introspective measurement platform
! Implementing applications (Bayeux, Brocade …)

ROC/Sahara Retreats, 1/2002 26

For More Information

Tapestry and related projects (and these slides):
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@eecs.berkeley.edu

