
1

Qualifying Examination

A Decentralized Location and Routing
Infrastructure for Fault-tolerant

Wide-area Applications

John Kubiatowicz (Chair) Satish Rao
Anthony Joseph John Chuang

Outline

• Motivation
• Tapestry Overview
• Examining Alternatives
• Preliminary Evaluation
• Research Plan

New Challenges in Wide-Area
• Trends:

– Moore’s Law growth in CPU, b/w, storage
– Network expanding in reach and bandwidth
– Applications poised to leverage network growth

• Scalability: # of users, requests, traffic
• Expect failures everywhere

– 106’s of components ! MTBF decreases geometrically
• Self-management

– Intermittent resources ! single centralized
management policy not enough

• Proposal: solve these issues at infrastructure level
so applications can inherit properties transparently

Clustering for Scale

• Pros:
– Easy monitor of faults
– LAN communication

• Low latency
• High bandwidth

– Shared state
– Simple load-balancing

• Cons:
– Centralized failure:

• Single outgoing link
• Single power source
• Geographic locality

– Limited scalability
• Outgoing bandwidth
• Power
• Space / ventilation

Global Computation Model

• Leverage proliferation of cheap computing
resources: cpu’s, storage, b/w

• Global self-adaptive system
– Utilize resources wherever possible
– Localize effects of single failures
– No single point of vulnerability

• Robust, adaptive, persistent

Global Applications?

• Fully distributed share of resources
– Storage: OceanStore, Freenet
– Computation: SETI, Entropia
– Network bandwidth: multicast, content distribution

• Deployment: application-level protocol
• Redundancy at every level

– Storage
– Network bandwidth
– Computation

2

Key: Routing and Location

• Network scale ! stress on location / routing layer
• Wide-area decentralized location and routing on an

overlay
• Properties abstracted in such a layer

– Scalability: million nodes, billion objects
– Availability: survive routine faults
– Dynamic Operation: self-configuring, adaptive
– Locality: minimize system-wide operations
– Load balanced operation

Research Issues

• Tradeoffs in performance vs. overhead costs
– Overlay routing efficiency vs. routing pointer storage
– Location locality vs. location pointer storage
– Fault-tolerance and availability vs. storage, bandwidth

used
• Performance stability via redundancy
• Not:

– Application consistency issues
– Application level load partitioning

Outline

• Motivation
• Tapestry Overview
• Examining Alternatives
• Preliminary Evaluation
• Research Plan

What is Tapestry
• A prototype of a dynamic, scalable, fault-tolerant

location and routing infrastructure
• Suffix-based hypercube routing

– Core system inspired by PRR97
• Publish by reference
• Core API:

– publishObject(ObjectID, [serverID])
– msgToObject(ObjectID)
– msgToNode(NodeID)

Plaxton, Rajamaran, Richa ‘97

• Overlay network with randomly distributed IDs
– Server (where objects are stored)
– Client (which want to search/contact objects)
– Router (which forwards messages from other nodes)

• Combined location and routing
– Servers “publish / advertise” objects they maintain
– Messages route to nearest server given object ID

• Assume global network knowledge

Basic Routing

005712 0 1 2 3 4 5 6 7

340880 0 1 2 3 4 5 6 7

943210 0 1 2 3 4 5 6 7

834510 0 1 2 3 4 5 6 7

387510 0 1 2 3 4 5 6 7

727510 0 1 2 3 4 5 6 7

627510 0 1 2 3 4 5 6 7

Example: Octal digits, 218 namespace, 005712 ! 627510

005712

340880 943210

387510

834510

727510

627510

3

Publish / Location

• Each object has associated
root node, e.g. identity f()

• Root keeps a pointer to
object’s location

• Object O stored at server S
– S routes to Root(O)
– Each hop keeps <O,S>

in index database

• Client routes to Root(O),
route to S when <O,S> found

R

C
S

What’s New
PRR97

• Benefits:
– Simple fault-handling
– Scalable: state: bLogb(N),

hops: Logb(N)
b=digit base, N= |namespace|

– Exploits locality
– Proportional route distance

• Limitations
– Global knowledge algorithms
– Root node vulnerability
– Lack of adaptability

Tapestry
• Inherited:

– Scalability
– Exploits locality
– Proportional route distance

• New:
– Distributed algorithms
– Redundancy for fault-tolerance
– Redundancy for performance
– Self-configuring / adaptive

Fault-resilience
• Minimized soft-state vs. explicit fault-recovery
• Routing

– Redundant backup routing pointers
– Soft-state neighbor probe packets

• Location
– Soft-state periodic republish

• 50 million files/node, daily republish, b = 16, N = 2160 ,
40B/msg, worst case update traffic ! 156 kb/s,

• expected traffic for network w/ 240 nodes ! 39 kb/s
– Hash objectIDs for multiple roots

• P(findingReference w/ partition) = 1 – (1/2)n

where n = # of roots

Dynamic “Surrogate” Routing

• Real networks much smaller than namespace
– sparseness in the network

• Routing to non-existent node
(or, defining f: (N)!(n), where
N = namespace, n = set of nodes in network)

• Example:
Routing to root node of object O
Need mapping from N! n

PRR97 Approach to f(Ni)

• Given desired ID Ni,
– Find set S of nodes in existing network nodes n

matching most # of suffix digits with Ni
– Choose Si = node in S with highest valued ID

• Issues:
– Mapping must be generated statically using global

knowledge
– Must be kept as hard state in order to operate in

changing environment
– Mapping is not well distributed, many nodes in n get no

mappings

Tapestry Approach to f(Ni)

• Globally consistent distributed algorithm:
– Attempt to route to desired ID Ni
– Whenever null entry encountered, choose next “higher”

non-null pointer entry
– If current node S is only non-null pointer in rest of route

map, terminate route, f(Ni) = S
• Assumes:

– Routing maps across network are up to date
– Null/non-null properties identical at all nodes sharing

same suffix

4

Analysis of Tapestry Algorithm

Globally consistent deterministic mapping
• Null entry ! no node in network with suffix
• ∴ consistent map ! identical null entries across same

route maps of nodes w/ same suffix
Additional hops compared to PRR solution:

• Reduce to coupon collector problem
Assuming random distribution

• With n ∗ ln(n) + cn entries, P(all coupons)= 1-e-c

• For n=b, c=b-ln(b), P(b2 nodes left) = 1-b/eb = 1.8∗ 10-6

• # of additional hops ≅ Logb(b2) = 2
Distributed algorithm with minimal additional hops

Properties of Overlay

• Logical hops through overlay per route
• Routing state per overlay node
• Overlay routing distance vs. underlying

network
– Relative Delay Penalty (RDP)

• Messages for insertion
• Load balancing

Alternatives: P2P Indices

• Current Solutions:
– DNS server redirection, DNS peering

• Content Addressable Networks
– Ratnasamy et al.,

ACIRI / UCB
• Chord

– Stoica, Morris, Karger, Kaashoek, Balakrishnan
MIT

• Pastry
– Druschel and Rowstron

Microsoft Research

Comparing the Alternatives
• Properties

– Parameter
– Logical Path Length
– Neighbor-state
– Routing Overhead

(RDP)
– Messages to insert
– Consistency
– Load-balancing

TAP. Chord CAN Pastry

Logb(N) Log2(N) O(d*N1/d)

O(d)

Base b

bLogb(N)

O(1) "O(1) O(1) ? O(1)?

App-dep. Eventual Epoch ???

Good

Logb(N)

Log2(N)

None Dimen d Base b

bLogb(N)+O(b)

O(Log2
2(N)) O(d*N1/d)

Good Good Good

O(Logb
2(N)) O(Logb(N))

Designed for P2P Systems

Outline

• Motivation
• Tapestry Overview
• Examining Alternatives
• Preliminary Evaluation
• Research Plan

Evaluation Metrics

• Routing distance overhead (RDP)
• Routing redundancy ! fault-tolerance

– Availability of objects and references
– Message delivery under link/router failures
– Overhead of fault-handling

• Locality vs. storage overhead
• Optimality of dynamic insertion
• Performance stability via redundancy

5

Results: Location Locality

• Measuring effectiveness of locality pointers
(TIERS 5000)

RDP vs Object Distance (TI5000)

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Object Distance

RD
P

Locality Pointers No Pointers

Results: Stability via Redundancy

• Impact of parallel queries on multiple roots on response time and its
variability. Aggregate bandwidth measures b/w used for softstate
republish 1/day and b/w used by requests at rate of 1/s.

Retrieving Objects with Multiple Roots

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5
of Roots Utilized

La
te

nc
y

(H
op

 U
ni

ts
)

0

10

20

30

40

50

60

70

A
gg

re
ga

te
 B

an
dw

id
th

(k

b/
s)

Average Latency Aggregate Bandwidth per Object

• Application-level multicast
– Leverages Tapestry

• for scale
• fault-tolerance

– Optimizations
• Self-configuring

into sub-trees
• Group ID clusters

for lower b/w

Example Application: Bayeux

Root

--10

-010

--00

---0

-110-100
-000

0010 1110

Research Scope

• Effectiveness as application infrastructure
– Build new novel apps
– Port existing apps to scale to wide-area

• Use simulations to better understand parameters
effects on overall performance

• Explore further stability via statistics
• Understand / map out research space
• Outside scope:

– DoS resiliency
– Streaming media, P2P, content-distribution apps

Timeline 0-5 months

• Simulation/analysis of parameters impact
on performance

• Quantify approaches to exploit routing
redundancy, analyze via simulation

• Finish deployment of real dynamic Tapestry
• Consider alternate mechanisms

– Learn from consistent hashing

Timeline 5-10 months

• Extend deployment to wide-area networks
– Nortel, EMC, academic institutions
– Evaluate real world performance

• Design and implement network-embedded
SDS (w/ T. Hodes)

• Optimizing routing by fault prediction
– Integrate link-characterization work (Konrad)

• Start writing dissertation

6

Timeline 10-13 months

• Finish writing dissertation
• Travel / Interviews
• Graduate

