
1

Tapestry: Decentralized
Routing and Location

System Seminar S ‘01
Ben Y. Zhao

CS Division, U. C. Berkeley

Ben Zhao - Tapestry @ U. W. 590 S'01 2

Challenges in the Wide-area

­ Trends:
– Exponential growth in CPU, b/w, storage
– Network expanding in reach and b/w

­ Can applications leverage new resources?
– Scalability : increasing users, requests, traffic
– Resilience: more components à inversely low MTBF
– Management : intermittent resource availability à

complex management schemes

­ Proposal: an infrastructure that solves these
issues and passes benefits onto applications

Ben Zhao - Tapestry @ U. W. 590 S'01 3

Cluster-based Applications

Advantages

­ Ease of fault-monitoring
­ Communication on LANs

– Low latency
– High bandwidth
– Abstract away comm.

­ Shared state

­ Simple load balancing

Limitations

­ Centralization as liability
– Centralized network link
– Centralized power source
– Geographic locality

­ Scalability limitations
– Outgoing bandwidth
– Power consumption
– Physical resources (space,

cooling)

­ Non-trivial deployment

Ben Zhao - Tapestry @ U. W. 590 S'01 4

Global Computation Model

­ A wish list for global scale application services
­ Global self-adaptive system

– Utilize all available resources

– Decentralize all functionality
no bottlenecks, no single points of vulnerability

– Exploit locality whenever possible
localize impact of failures

– Peer-based monitoring of failures and resources

Ben Zhao - Tapestry @ U. W. 590 S'01 5

Driving Applications

­ Leverage proliferation of cheap & plentiful
resources: CPU’s, storage, network bandwidth

­ Global applications share distributed resources
– Shared computation:

­SETI, Entropia

– Shared storage
­OceanStore, Napster, Scale-8

– Shared bandwidth
­Application-level multicast, content distribution

Ben Zhao - Tapestry @ U. W. 590 S'01 6

Key: Location and Routing

­ Hard problem:
– Locating and messaging to resources and data

­ Approach: wide-area overlay infrastructure:
– Easier to deploy than lower-level solutions
– Scalable: million nodes, billion objects

– Available: detect and survive routine faults
– Dynamic: self -configuring, adaptive to network

– Exploits locality: localize effects of operations/failures
– Load balancing

2

Ben Zhao - Tapestry @ U. W. 590 S'01 7

Talk Outline

­ Problems facing wide-area applications

­ Previous work: Location services & PRR97

­ Tapestry: mechanisms and protocols

­ Preliminary Evaluation

­ Sample application: Bayeux

­ Related and future work

Ben Zhao - Tapestry @ U. W. 590 S'01 8

Previous Work: Location

­ Goals:
– Given ID or description, locate nearest object

­ Location services (scalability via hierarchy)
– DNS
– Globe
– Berkeley SDS

­ Issues
– Consistency for dynamic data
– Scalability at root
– Centralized approach: bottleneck and vulnerability

Ben Zhao - Tapestry @ U. W. 590 S'01 9

Decentralizing Hierarchies

­ Centralized hierarchies
– Each higher level node responsible for locating objects

in a greater domain

­ Decentralize: Create a tree for object O (really!)
– Object O has its

own root and
subtree

– Server on each level
keeps pointer to
nearest object in
domain

– Queries search up in
hierarchy

Root ID = O

Directory servers tracking 2 replicas

Ben Zhao - Tapestry @ U. W. 590 S'01 10

What is Tapestry?

­ A prototype of a decentralized, scalable, fault-tolerant,
adaptive location and routing infrastructure

­ Network layer of OceanStore
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)

­ Suffix -based hypercube routing
– Core system inspired by Plaxton, Rajamaran, Richa (SPAA97)

­ Core API:
– publishObject(ObjectID, [serverID])
– sendmsgToObject(ObjectID)
– sendmsgToNode(NodeID)

Ben Zhao - Tapestry @ U. W. 590 S'01 11

PRR (SPAA 97)

­ Namespace (nodes and objects)
– large enough to avoid collisions (~2160?)

(size N in Log2(N) bits)

­ Insert Object:
– Hash Object into namespace to get ObjectID
– For (i=0, i<Log2(N), i+j) { //Define hierarchy

­ j is base of digit size used, (j = 4 à hex digits)
­ Insert entry into nearest node that matches on

last i bits
­When no matches found, then pick node matching

(i – n) bits with highest ID value, terminate

Ben Zhao - Tapestry @ U. W. 590 S'01 12

PRR97 Object Lookup

­ Lookup object
– Traverse same relative nodes as insert, except searching for

entry at each node
– For (i=0, i<Log2(N), i+n) {

­ Search for entry in nearest node matching on
last i bits

­ Each object maps to hierarchy defined by single root
– f (ObjectID) = RootID

­ Publish / search both route incrementally to root
­ Root node = f (O), is responsible for “knowing” object’s

location

3

Ben Zhao - Tapestry @ U. W. 590 S'01 13

4

2

3

3

3

2

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3

2

4

Basic PRR Mesh
Incremental suffix-based routing

NodeID
0x43FE

NodeID
0x13FENodeID

0xABFE

NodeID
0x1290

NodeID
0x239E

NodeID
0x73FE

NodeID
0x423E

NodeID
0x79FE

NodeID
0x23FE

NodeID
0x73FF

NodeID
0x555E

NodeID
0x035E

NodeID
0x44FE

NodeID
0x9990

NodeID
0xF990

NodeID
0x993E

NodeID
0x04FE

NodeID
0x43FE

Ben Zhao - Tapestry @ U. W. 590 S'01 14

PRR97 Routing to Nodes
Example: Octal digits, 2 18 namespace, 005712 à 627510

005712

340880 943210

387510

834510

727510

627510

Neighbor Map
For “5712” (Octal)

Routing Levels
1234

xxx0

5712

xxx0

xxx3

xxx4

xxx5

xxx6

xxx7

xx02

5712

xx22

xx32

xx42

xx52

xx62

xx72

x012

x112

x212

x312

x412

x512

x612

5712

0712

1712

2712

3712

4712

5712

6712

7712

005712 0 1 2 3 4 5 6 7

340880 0 1 2 3 4 5 6 7

943210 0 1 2 3 4 5 6 7

834510 0 1 2 3 4 5 6 7

387510 0 1 2 3 4 5 6 7

727510 0 1 2 3 4 5 6 7

627510 0 1 2 3 4 5 6 7

Ben Zhao - Tapestry @ U. W. 590 S'01 15

Use of Plaxton Mesh
Randomization and Locality

Ben Zhao - Tapestry @ U. W. 590 S'01 16

PRR97 Limitations

­ Setting up the routing tables
– Uses global knowledge
– Supports only static networks

­ Finding way up to root
– Sparse networks: find node with highest ID value
– What happens as network changes

­Need deterministic way to find the same node
over time

­ Result: good analytical properties, but fragile in
practice, and limited to small, static networks

Ben Zhao - Tapestry @ U. W. 590 S'01 17

Talk Outline

­ Problems facing wide-area applications

­ Previous work: Location services & PRR97

­ Tapestry: mechanisms and protocols

­ Preliminary Evaluation

­ Sample application: Bayeux

­ Related and future work

Ben Zhao - Tapestry @ U. W. 590 S'01 18

Tapestry Contributions

PRR97
­ Benefits inherited by

Tapestry:
– Scalable: state: bLogb(N),

hops: Logb(N)
b=digit base, N=
|namespace|

– Exploits locality
– Proportional route distance

­ Limitations
– Global knowledge

algorithms
– Root node vulnerability
– Lack of adaptability

Tapestry
­ A real System!

– Distributed algorithms
­ Dynamic root mapping
­ Dynamic node

insertion
– Redundancy in location

and routing
– Fault-tolerance protocols
– Self-configuring / adaptive
– Support for mobile objects

­ Application Infrastructure

4

Ben Zhao - Tapestry @ U. W. 590 S'01 19

Fault-tolerant Location

­ Minimized soft-state vs. explicit fault-recovery

­ Multiple roots
– Objects hashed w/ small salts à multiple names/roots
– Queries and publishing utilize all roots in parallel
– P(finding Reference w/ partition) = 1 – (1/2)n

where n = # of roots

­ Soft-state periodic republish
– 50 million files/node, daily republish,

b = 16, N = 2160 , 40B/msg,
worst case update traffic: 156 kb/s,

– expected traffic w/ 240 real nodes: 39 kb/s

Ben Zhao - Tapestry @ U. W. 590 S'01 20

Fault-tolerant Routing

­ Detection:
– Periodic probe packets between neighbors
– Selective NACKs

­ Handling:
– Each entry in routing map has 2 alternate nodes
– Second chance algorithm for intermittent failures
– Long term failures à alternates found via routing tables

­ Protocols:
– Reactive Adaptive Routing
– Proactive Duplicate Packet Routing

Ben Zhao - Tapestry @ U. W. 590 S'01 21

Dynamic Insertion

Operations necessary for N to become fully integrated:
­ Step 1: Build up N’s routing maps

– Send messages to each hop along path from gateway to
current node N’ that best approximates N

– The ith hop along the path sends its ith level route table to N
– N optimizes those tables where necessary

­ Step 2: Move appropriate data from N’ to N
­ Step 3: Use back pointers from N’ to find nodes which

have null entries for N’s ID, tell them to add new entry
to N

­ Step 4: Notify local neighbors to modify paths to route
through N where appropriate

Ben Zhao - Tapestry @ U. W. 590 S'01 22

Dynamic Insertion Example

NodeID
0x243FE

NodeID
0x913FENodeID

0x0ABFE

NodeID
0x71290

NodeID
0x5239E

NodeID
0x973FE

NEW
0x143FE

NodeID
0x779FE

NodeID
0xA23FE

Gateway
0xD73FF

NodeID
0xB555E

NodeID
0xC035E

NodeID
0x244FE

NodeID
0x09990

NodeID
0x4F990

NodeID
0x6993E

NodeID
0x704FE

4

2

3

3

3

2

1

2

4

1

2

3

3

1

3
4

1

1

4 3

2

4

NodeID
0x243FE

Ben Zhao - Tapestry @ U. W. 590 S'01 23

Summary

­ Decentralized location and routing infrastructure
– Core design from PRR97
– Distributed algorithms for object-root mapping, node insertion
– Fault-handling with redundancy, soft-state beacons, self-repair

­ Analytical properties
– Per node routing table size: bLogb(N)

­ N = size of namespace, n = # of physical nodes
– Find object in Logb(n) overlay hops

­ Key system properties
– Decentralized and scalable via random naming, yet has locality
– Adaptive approach to failures and environmental changes

Ben Zhao - Tapestry @ U. W. 590 S'01 24

Talk Outline

­ Problems facing wide-area applications

­ Previous work: Location services & PRR97

­ Tapestry: mechanisms and protocols

­ Preliminary Evaluation

­ Sample application: Bayeux

­ Related and future work

5

Ben Zhao - Tapestry @ U. W. 590 S'01 25

Evaluation Issues

­ Routing distance overhead (RDP)
­ Routing redundancy à fault-tolerance

– Availability of objects and references

– Message delivery under link/router failures
– Overhead of fault-handling

­ Optimality of dynamic insertion
­ Locality vs. storage overhead
­ Performance stability via redundancy

Ben Zhao - Tapestry @ U. W. 590 S'01 26

Results: Location Locality

Measuring effectiveness of locality pointers (TIERS 5000)

RDP vs Object Distance (TI5000)

0

2

4

6

8

10

12

14

16

18

20

3 4 5 6 7 8 9 1 0 11 12 1 3 14 15 1 6 1 7 18 1 9 2 0 21 22 2 3 24 25

Object Distance

R
D

P

Locality Pointers No Pointers

Ben Zhao - Tapestry @ U. W. 590 S'01 27

Results: Stability via Redundancy

Parallel queries on multiple roots. Aggregate bandwidth measuresb/w
used for soft-state republish 1/day and b/w used by requests at rate of 1/s.

Retrieving Objects with Multiple Roots

0

10
20
30
40
50
60
70

80
90

1 2 3 4 5

of Roots Utilized

L
at

en
cy

 (
H

o
p

 U
n

it
s)

0

10

20

30

40

50

60

70

A
g

g
re

g
at

e
B

an
d

w
id

th

(k
b

/s
)

Average Latency Aggregate Bandwidth per Object

Ben Zhao - Tapestry @ U. W. 590 S'01 28

Talk Outline

­ Problems facing wide-area applications

­ Previous work: Location services & PRR97

­ Tapestry: mechanisms and protocols

­ Preliminary Evaluation

­ Sample application: Bayeux

­ Related and future work

Ben Zhao - Tapestry @ U. W. 590 S'01 29

Example Application: Bayeux

­ Application-level multicast
­ Leverages Tapestry

– Scalability

– Fault tolerant data
delivery

­ Novel optimizations
– Self -forming member

group partitions
– Group ID clustering

for better b/w utilization Root

**10
**00

***0

*010
*110*100

*000

0010 1110

Ben Zhao - Tapestry @ U. W. 590 S'01 30

Related Work

­ Content Addressable Networks
– Ratnasamy et al.,

(ACIRI / UCB)

­ Chord
– Stoica, Morris, Karger, Kaashoek,

Balakrishnan (MIT / UCB)

­ Pastry
– Druschel and Rowstron

(Rice / Microsoft Research)

6

Ben Zhao - Tapestry @ U. W. 590 S'01 31

Future Work

­ Explore effects of parameters on system performance
via simulations

­ Explore stability via statistics
­ Show effectiveness of application infrastructure

Build novel applications, scale existing apps to wide-area
– Silverback / OceanStore: global archival systems
– Fault-tolerant Adaptive Routing
– Network Embedded Directory Services

­ Deployment
– Large scale time-delayed event-driven simulation
– Real wide-area network of universities / research centers

Ben Zhao - Tapestry @ U. W. 590 S'01 32

For More Information

Tapestry:
http://www.cs.berkeley.edu/~ravenben/tapestry

OceanStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@cs.berkeley.edu

Ben Zhao - Tapestry @ U. W. 590 S'01 33

Backup Nodes Follow…

Ben Zhao - Tapestry @ U. W. 590 S'01 34

Dynamic Root Mapping

­ Problem: choosing a root node for every object
– Deterministic over network changes
– Globally consistent

­ Assumptions
– All nodes with same matching suffix contains same

null/non-null pattern in next level of routing map
– Requires: consistent knowledge of nodes across

network

Ben Zhao - Tapestry @ U. W. 590 S'01 35

PRR Solution

­ Given desired ID N,
– Find set S of nodes in existing network nodes n

matching most # of suffix digits with N
– Choose Si = node in S with highest valued ID

­ Issues:
– Mapping must be generated statically using global

knowledge
– Must be kept as hard state in order to operate in

changing environment
– Mapping is not well distributed, many nodes in n get

no mappings

Ben Zhao - Tapestry @ U. W. 590 S'01 36

Tapestry Solution

­ Globally consistent distributed algorithm:
– Attempt to route to desired ID Ni

– Whenever null entry encountered, choose next
“higher” non-null pointer entry

– If current node S is only non-null pointer in rest of
route map, terminate route, f (N) = S

­ Assumes:
– Routing maps across network are up to date

– Null/non-null properties identical at all nodes sharing
same suffix

7

Ben Zhao - Tapestry @ U. W. 590 S'01 37

Analysis

Globally consistent deterministic mapping
­ Null entry à no node in network with suffix
­ ∴consistent map à identical null entries across same route

maps of nodes w/ same suffix
Additional hops compared to PRR solution:

­ Reduce to coupon collector problem
Assuming random distribution

­ With n ∗ ln(n) + cn entries, P(all coupons) = 1-e-c

­ For n=b, c=b-ln(b) ,
P(b2 nodes left) = 1-b/eb = 1.8∗ 10-6

­ # of additional hops ≅ Logb(b2) = 2
Distributed algorithm with minimal additional hops

Ben Zhao - Tapestry @ U. W. 590 S'01 38

Dynamic Mapping Border Cases

­ Two cases
– A. If a node disappeared, and some node did not

detect it.
­Routing proceeds on invalid link, fails

­No backup router, so proceed to surrogate routing
– B. If a node entered, has not been detected, then go

to surrogate node instead of existing node
­New node checks with surrogate after all such

nodes have been notified

­Route info at surrogate is moved to new node

Ben Zhao - Tapestry @ U. W. 590 S'01 39

Content-Addressable Networks

­ Distributed hashtable addressed
in d dimension coordinate space

­ Routing table size: O(d)
­ Hops: expected O(dN1/d)

– N = size of namespace in d
dimensions

­ Efficiency via redundancy
– Multiple dimensions
– Multiple realities
– Reverse push of “breadcrumb”

caches
– Assume immutable objects

Ben Zhao - Tapestry @ U. W. 590 S'01 40

Chord

­ Associate each node and
object a unique ID in uni-
dimensional space

­ Object O stored by node
with highest ID < O

­ Finger table
– Pointer for next node 2i away

in namespace
– Table size: Log2(n)
– n = total # of nodes

­ Find object: Log2(n) hops
­ Optimization via heuristics

0

4

2

17

6

5 3

Node 0

Ben Zhao - Tapestry @ U. W. 590 S'01 41

Pastry

­ Incremental routing like Plaxton / Tapestry
­ Object replicated at x nodes closest to object’s

ID
­ Routing table size: b(LogbN)+O(b)
­ Find objects in O(LogbN) hops
­ Issues:

– Does not exploit locality
– Infrastructure controls replication and

placement
– Consistency / security

Ben Zhao - Tapestry @ U. W. 590 S'01 42

Key Properties

­ Logical hops through overlay per route
­ Routing state per overlay node
­ Overlay routing distance vs. underlying network

– Relative Delay Penalty (RDP)

­ Messages for insertion
­ Load balancing

8

Ben Zhao - Tapestry @ U. W. 590 S'01 43

Comparing Key Metrics

­ Properties
– Parameter

– Logical Path Length

– Neighbor-state

– Routing Overhead (RDP)

– Messages to insert

– Mutability
– Load-balancing

Tapestry Chord CAN Pastry

LogbN Log2N O(d*N1/d)

O(d)

Base b

bLogbN

O(1) èO(1) O(1) ? O(1)?

App-dep. App-dep Immut. ???

Good

LogbN

Log2N

None Dimen d Base b

bLogbN+O(b)

O(Log2
2N) O(d*N1/d)

Good Good Good

O(Logb
2N) O(LogbN)

Designed as P2P Indices

