Tapestry: Decentralized
Routing and Location

SPAM Summer 2001
Ben Y. Zhao
CS Division, U. C. Berkeley

Challenges in the Wide-area

* Trends:
— Exponential growth in CPU, b/w, storage
— Network expanding in reach and b/w

* Can applications leverage new resources?
— Scalability: increasing users, requests, traffic
— Resilience: more components - inversely low MTBF
— Management: intermittent resource availability >

complex management schemes

* Proposal: an infrastructure that solves these

issues and passes benefits onto applications

Ben Zhao - Tapestry @ Yale, Spam 6/01

Driving Applications

* Leverage proliferation of cheap & plentiful
resources: CPU'’s, storage, network bandwidth
* Global applications share distributed resources
— Shared computation:
* SETI, Entropia
— Shared storage
* OceanStore, Napster, Scale-8
— Shared bandwidth
* Application-level multicast, content distribution

Ben Zhao - Tapestry @ Yale, Spam 6/01

Key: Location and Routing

* Hard problem:
— Locating and messaging to resources and data
» Approach: wide-area overlay infrastructure:
— Easier to deploy than lower-level solutions
— Scalable: million nodes, billion objects
— Available: detect and survive routine faults
— Dynamic: self-configuring, adaptive to network
— Exploits locality: localize effects of operations/failures
— Load balancing

Ben Zhao - Tapestry @ Yale, Spam 6/01

Talk Qutline

*

Tapestry Overview

* Mechanisms and protocols

*

Preliminary Evaluation

Related and future work

*

Ben Zhao - Tapestry @ Yale, Spam 6/01

Previous Work: Location

* Goals:
— Given ID or description, locate nearest object
» Location services (scalability via hierarchy)
— DNS
— Globe
— Berkeley SDS
* Issues
— Consistency for dynamic data
— Scalability at root
— Centralized approach: bottleneck and vulnerability

Ben Zhao - Tapestry @ Yale, Spam 6/01

Decentralizing Hierarchies

* Centralized hierarchies

— Each higher level node responsible for locating objects

in a greater domain
* Decentralize: Create a tree for object O (really!)

— Object O has its
own root and
subtree

— Server on each level
keeps pointer to
nearest object in
domain

— Queries search up in
hierarchy

Directory serverstracking 2 replicas

Ben Zhao - Tapestry @ Yale, Spam 6/01

What is Tapestry?

» A prototype of a decentralized, scalable, fault-tolerant,
adaptive location and routing infrastructure
(Zhao, Kubiatowicz, Joseph et al. U.C. Berkeley)
» Network layer of OceanStore global storage system
Suffix-based hypercube routing
— Core system inspired by Plaxton, Rajamaran, Richa (SPAA97)
* Core API:
— publishObject(ObjectID, [serverID])
— sendmsgToObject(ObjectID)
— sendmsgToNode(NodelD)

Ben Zhao - Tapestry @ Yae, Spam 6/01

Incremental Suffix Routing

»* Namespace (nodes and objects)
— large enough to avoid collisions (~2160?)
(size N in Log,(N) bits)
* Insert Object:
— Hash Object into namespace to get ObjectID
— For (i=0, i<Log,(N), i+j) { //Define hierarchy
*] is base of digit size used, (j = 4 > hex digits)
* Insert entry into nearest node that matches on
last i bits

* When no matches found, then pick node matching
(i —n) bits with highest ID value, terminate

Ben Zhao - Tapestry @ Yale, Spam 6/01 9

Routing to Object

» Lookup object

— Traverse same relative nodes as insert, except searching for

entry at each node
— For (i=0, i<Log,(N), i+n)

Search for entry in nearest node matching on last i bits
» Each object maps to hierarchy defined by single root

- f(ObjectiD) = RootID

» Publish / search both route incrementally to root

»* Root node = f (O), is responsible for “knowing” object’s

location

Ben Zhao - Tapestry @ Yale, Spam 6/01

10

Tapestry Mesh

Incremental suffix-based routing

Routing to Nodes

Example: Octal digits, 218 namespace, 005712 - 627510

[005712 [0[1]2]3[4][5]6]7]

[340880 [0]1]2[3[4[5[6]7]

Neighbor Map

For “5712” (Octal)

0712

x012

xx02

Xxx0

1712

x112

5712

Xxx0

(943210 [0]1]2[3[4[5]6]7]
4

2712

x212

Xx22

5712

3712

x312

Xx32

XXx3

[834510 [0][1[2][3]4]5[6[7]
4

[387510 [0]1[2]3[4[5]6]7]

4
[727510 [0]1[2]3[4[5]6[7]

[627510 [0]1[2]3[4[5]6[7]
Ben Zhao - Tapestry @ Yale, Spam 6/01

4712

x412

xx42

Xxx4

5712

x512

xx52

XXX5

6712

x612

Xx62

XXX6

IR

7712

5712

XX72

XXX7

4

3

Routing Levels

2

1

v

Object Location
Randomization and Locality

Talk Outline

* Mechanisms and protocols
* Preliminary Evaluation

Related and future work

*

Ben Zhao - Tapestry @ Yale, Spam 6/01

14

Previous Work: PRR97

PRR97

* Key features:
— Scalable: state: bLog,(N),
hops: Log,(N)
b=digit base, N=
|namespace|
— Exploits locality
— Proportional route distance
* Limitations
— Global knowledge
algorithms
— Root node vulnerability
— Lack of adaptability

Ben Zhao - Tapestry @ Yale, Spam 6/01

Tapestry
* Areal System!
— Distributed algorithms
* Dynamic root mapping

* Dynamic node
insertion

Redundancy in location
and routing

Fault-tolerance protocols

Self-configuring / adaptive
Support for mobile objects
* Application Infrastructure

Fault-tolerant Location

* Minimized soft-state vs. explicit fault-recovery
* Multiple roots
— Objects hashed w/ small salts - multiple names/roots
— Queries and publishing utilize all roots in parallel
— P(finding Reference w/ partition) = 1 — (1/2)"
where n = # of roots
* Soft-state periodic republish

— 50 million files/node, daily republish,
b =16, N = 2160 40B/msg,
worst case update traffic: 156 kb/s,
— expected traffic w/ 24° real nodes: 39 kb/s

Ben Zhao - Tapestry @ Yale, Spam 6/01

16

Fault-tolerant Routing

* Detection:
— Periodic probe packets between neighbors

» Handling:
— Each entry in routing map has 2 alternate nodes
— Second chance algorithm for intermittent failures

— Long term failures - alternates found via routing
tables

* Protocols:
— First Reachable Link Selection
— Proactive Duplicate Packet Routing

Ben Zhao - Tapestry @ Yale, Spam 6/01

17

Summary

» Decentralized location and routing infrastructure
— Core design inspired by PRR97
— Distributed algorithms for object-root mapping, node insertion
— Fault-handling with redundancy, soft-state beacons, self-repair
* Analytical properties
— Per node routing table size: bLog,(N)
= N = size of namespace, n = # of physical nodes
— Find object in Log,(n) overlay hops
* Key system properties
— Decentralized and scalable via random naming, yet has locality
— Adaptive approach to failures and environmental changes

Ben Zhao - Tapestry @ Yale, Spam 6/01 18

Talk Outline

*
*
* Preliminary Evaluation

* Related and future work

Ben Zhao - Tapestry @ Yale, Spam 6/01

19

Evaluation Issues

* Locality vs. storage overhead

* Performance stability via redundancy
» Fault-resilient delivery via (FRLS)

» Routing distance overhead (RDP)

» Routing redundancy -> fault-tolerance
— Availability of objects and references
— Message delivery under link/router failures
— Overhead of fault-handling

» Optimality of dynamic insertion

Ben Zhao - Tapestry @ Yale, Spam 6/01 20

Simulation Environment

Implemented Tapestry routing as packet-level
simulator

Delay is measured in terms of network hops
Do not model the effects of cross traffic or
gueuing delays

* Four topologies: AS, MBone, GT-ITM, TIERS

*

*

*

Ben Zhao - Tapestry @ Yale, Spam 6/01 21

Results: Location Locality

RDP vs Object Distance (TI5000)

—&— Locality Pointers — % - No Pointers,

X

~
T~
5 %\
SN
i

~
J 1T
0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Object Distance

Measuring effectiveness of locality pointers (TIERS 5000)

RDP

Pk
TR
T\'{ \g\H‘i\iﬂEHﬁ—*—*%H

Ben Zhao - Tapestry @ Yale, Spam 6/01 22

Results: Stability via Redundancy

Retrieving Objects with Multiple Roots

‘+Average Latency —e— Aggregate Bandwidth per Object ‘

90 70
80 = <=
= 60 S
% 0 - 5 50%
-~
2% Pl 2
g 50 = ©Eg
< - - 3
340 - 0 L2
S
] 22 o~ - 20 &
2 >
¥ ‘-\.\ - N >
~ 10 : . — 10 <
0 ¢ - t - t - ¢ : 0
1 2 3 4 5

#of Roots Utilized

Parallel queries on multiple roots. Aggregate bandwidth measures b/w
used for soft-state republish 1/day and b/w used by requests at rate of 1/s.

Ben Zhao - Tapestry @ Yale, Spam 6/01 23

First Reachable Link Selection

<BASE 4, NAMESPAGE SIZE 4096, GROUP SIZE 256, TIERS 5000> * Use periodic UDP packets
to gauge link condition

» Packets routed to shortest
“good” link

* Assumes IP cannot correct
routing table in time for
packet delivery

P Tapestry
A e o
B / >
C x v
02 03
Fraction of failed finks D > >
E | No path exists to dest.

Ben Zhao - Tapestry @ Yae, Spam 6/01 24

Talk Outline

»*
»*

» Related and future work

Ben Zhao - Tapestry @ Yale, Spam 6/01

25

Example Application: Bayeux

» Application-level multicast
» Leverages Tapestry

— Scalability
— Fault tolerant data

delivery

» Novel optimizations

— Self-forming member
group partitions

0010 1110
*010
@ { *110
*000 > \ /A
\ * % 10

**00

_/***0

— Group ID clustering /4

for better b/w utilization Root

Ben Zhao - Tapestry @ Yale, Spam 6/01 26

Related Work

* Content Addressable Networks

— Ratnasamy et al.,
(ACIRI / UCB)

» Chord

— Stoica, Morris, Karger, Kaashoek,
Balakrishnan (MIT / UCB)

= Pastry

— Druschel and Rowstron
(Rice / Microsoft Research)

Ben Zhao - Tapestry @ Yale, Spam 6/01

27

Ongoing Work

» Explore effects of parameters on system performance
via simulations

* Show effectiveness of application infrastructure
Build novel applications, scale existing apps to wide-area
— Fault-tolerant Adaptive Routing
— Examining resilience of decentralized infrastructures to DDoS
— Silverback / OceanStore: global archival systems
— Network Embedded Directory Services

* Deployment

— Large scale time-delayed event-driven simulation
— Real wide-area network of universities / research centers

Ben Zhao - Tapestry @ Yale, Spam 6/01 28

For More Information

Tapestry:
http://www.cs.berkeley.edu/~ravenben/tapestry

OceansStore:
http://oceanstore.cs.berkeley.edu

Related papers:
http://oceanstore.cs.berkeley.edu/publications
http://www.cs.berkeley.edu/~ravenben/publications

ravenben@cs.berkeley.edu

Ben Zhao - Tapestry @ Yale, Spam 6/01 29

Backup Nodes Follow...

Ben Zhao - Tapestry @ Yale, Spam 6/01 30

Dynamic Insertion

Operations necessary for N to become fully integrated:
* Step 1: Build up N's routing maps
— Send messages to each hop along path from gateway to
current node N’ that best approximates N
— The i hop along the path sends its i level route table to N
— N optimizes those tables where necessary
* Step 2: Send notify message via acked multicast to
nodes with null entries for N’s 1D, setup forwarding ptrs
* Step 3: Each notified node issues republish message
for relevant objects
* Step 4: Remove forward ptrs after one republish period
* Step 5: Notify local neighbors to modify paths to route

through N where appropriate
Ben Zhao - Tapestry @ Yale, Spam 6/01 31

Dynamic Insertion Example

Dynamic Root Mapping

* Problem: choosing a root node for every object
— Deterministic over network changes
— Globally consistent

» Assumptions
— All nodes with same matching suffix contains same
null/non-null pattern in next level of routing map
— Requires: consistent knowledge of nodes across
network

Ben Zhao - Tapestry @ Yale, Spam 6/01 33

PRR Solution

* Given desired ID N,

— Find set S of nodes in existing network nodes n
matching most # of suffix digits with N

— Choose S; = node in S with highest valued ID
* Issues:

— Mapping must be generated statically using global
knowledge

— Must be kept as hard state in order to operate in
changing environment

— Mapping is not well distributed, many nodes in n get
no mappings

Ben Zhao - Tapestry @ Yale, Spam 6/01 34

Tapestry Solution

* Globally consistent distributed algorithm:
— Attempt to route to desired ID N;

— Whenever null entry encountered, choose next
“higher” non-null pointer entry

— If current node S is only non-null pointer in rest of
route map, terminate route, f(N) = S
* Assumes:
— Routing maps across network are up to date

— Null/non-null properties identical at all nodes sharing
same suffix

Ben Zhao - Tapestry @ Yale, Spam 6/01 35

Analysis

Globally consistent deterministic mapping
* Null entry > no node in network with suffix

» Oconsistent map -> identical null entries across same route
maps of nodes w/ same suffix

Additional hops compared to PRR solution:
» Reduce to coupon collector problem
Assuming random distribution
» With n ZIn(n) + cn entries, P(all coupons) = 1-e-
= For n=b, c=b-In(b),
P(b? nodes left) = 1-b/eb = 1.8/710¢
« # of additional hops CLog,(b?) =2
Distributed algorithm with minimal additional hops

Ben Zhao - Tapestry @ Yale, Spam 6/01 36

Dynamic Mapping Border Cases

* Two cases

— A. If a node disappeared, and some node did not
detect it.

» Routing proceeds on invalid link, fails
* No backup router, so proceed to surrogate routing

— B. If a node entered, has not been detected, then go
to surrogate node instead of existing node

* New node checks with surrogate after all such
nodes have been notified

* Route info at surrogate is moved to new node

Ben Zhao - Tapestry @ Yale, Spam 6/01 37

Content-Addressable Networks

* Distributed hashtable addressed

in d dimension coordinate space
* Routing table size: O(d)

Sae

* Hops: expected O(dNVd)

— N = size of namespace in d °
dimensions o] °

» Efficiency via redundancy
Multiple dimensions

Multiple realities

Reverse push of “breadcrumb” o
caches

Assume immutable objects

Ben Zhao - Tapestry @ Yale, Spam 6/01

38

Chord

* Associate each node and

object a unique ID in uni-

dirjnensionalqspace Node 0
* Object O stored by node

with highest ID < O
* Finger table

— Pointer for next node 2' away

In namespace

— Table size: Log,(n)

— n = total # of nodes
* Find object: Log,(n) hops
Optimization via heuristics 2

»*

Ben Zhao - Tapestry @ Yale, Spam 6/01 39

Pastry

* Incremental routing like Plaxton / Tapestry
* Object replicated at x nodes closest to object’s
ID

* Routing table size: b(Log,N)+O(b)
* Find objects in O(Logy,N) hops
* Issues:

— Does not exploit locality

— Infrastructure controls replication and
placement

— Consistency / security

Ben Zhao - Tapestry @ Yale, Spam 6/01

40

10

*

»*

»*

Key Properties

Logical hops through overlay per route
Routing state per overlay node

Overlay routing distance vs. underlying network
— Relative Delay Penalty (RDP)

Messages for insertion
Load balancing

Ben Zhao - Tapestry @ Yale, Spam 6/01 41

Comparing Key Metrics

* Properties Tapestry Chord CAN Pastry
— Parameter Base b None | Dimend Base b
— Logical Path Length Log,N Log,N |O(d*N2/d) LogyN
— Neighbor-state bLogy,N Log,N o(d) bLog,N+0(b)
— Routing Overhead (RDP) ©(1) 20(@1) | oM~ 0(1)?
— Messages to insert O(Logy?N) [0(Log,?N)| O(d*N>d) O(Log,N)
— Mutability App-dep. | App-dep | Immut. ?7?
— Load-balancing Good Good Good Good

Ben Zhao - Tapestry @ Yale, Spam 6/01

Designed as P2P Indices

42

11

