
A Common API for
Structured Peer-to-
Peer Overlays
Frank Dabek, Ben Y. Zhao,
Peter Druschel, Ion Stoica

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Structured Peer-to-Peer Overlay
They are:

Scalable, self-organizing overlay networks
Provide routing to location-independent names
Examples: CAN, Chord, Pastry, Tapestry, …

Basic operation:
Large sparse namespace N
(integers: 0–2128 or 0–2160)
Nodes in overlay network have nodeIds ∈ N
Given k ∈ N, a deterministic function maps k
to its root node (a live node in the network)
route(msg, k) delivers msg to root(k)

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Current Progress
Lots of applications built on top

File systems, archival backup
Application level multicast
Routing for anonymity, attack resilience

But do we really understand them?
What is the core functionality that applications leverage from
them?
What are the strengths and weaknesses of each protocol? How
can they be exploited by applications?
How can we build new protocols customized to our future
needs?

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Our Goals
Protocol comparison

Compare and contrast protocol semantics
Identify basic commonalities
Isolate and understand differences

Towards a common API
Easily supportable by old and new protocols
Enables application portability between protocols
Enables common benchmarks
Provides a framework for reusable components

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Talk Outline

Motivation

DHTs and DOLRs

A Flexible Routing API

Usage Examples

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Decomposing Functional Layers
Distributed Hash Tables (DHT)

put(key, data), value = get(key)
Hashtable layered across network
Handles replication; distributes replicas randomly
Routes queries towards replicas by name

Decentralized Object Location and Routing (DOLR)
publish(objectId), route(msg, nodeId),
routeObj(msg, objectId, n)
Application controls replication and placement
Cache location pointers to replicas; queries quickly intersect
pointers and redirect to nearby replica(s)

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

DHT Illustrated

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

DOLR Illustrated

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Architecture

Routing Mesh Tier 0

Tier 1

Tier 2CFS PAST SplitStream i3 OceanStore

Replication

Bayeux

MulticastCAN,
Chord+DHash

DHT Tapestry
Pastry+Scribe

DOLR

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Talk Outline

Motivation

DHTs and DOLRs

A Flexible Routing API

Usage Examples

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Flexible API for Routing
Goal

Consistent API for leveraging routing mesh
Flexible enough to build higher abstractions

Openness promotes new abstractions
Allow competitive selection to determine right abstractions

Three main components
Invoking routing functionality
Accessing namespace mapping properties
Open, flexible upcall interface

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

API (routing)
Data types

Key, nodeId = 160 bit integer
Node = Address (IP + port #), nodeId
Msg: application-specific msg of arbitrary size

Invoking routing functionality
Route(key, msg, [node])

route message to node currently responsible for key
Non-blocking, best effort – message may be lost or duplicated.
node: transport address of the node last associated with key
(proposed first hop, optional)

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

API (namespace properties)
nextHopSet = local_lookup(key, num, safe)

Returns a set of at most num nodes from the local routing table that are
possible next hops towards the key.
Safe: whether choice of nodes is randomly chosen

nodehandle[] = neighborSet(max_rank)
Returns unordered set of nodes as neighbors of the current node.
Neighbor of rank i is responsible for keys on this node should all
neighbors of rank < i fail

nodehandle[] = replicaSet(key, num)
Returns ordered set of up to num nodes on which replicas of the object
with key key can be stored.
Result is subset of neighborSet plus local node

boolean = range(node, rank, lkey, rkey)
Returns whether current node would be responsible for the range
specified by lkey and rkey, should the previous rank-1 nodes fail.

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Deliver(key, msg)
Delivers an incoming message to the application. One
application per node. Demultiplexing done by including demux
key in msg.

Forward(&key, &msg, &nextHopNode)
Synchronous upcall invoked at each node along route
On return, will forward msg to nextHopNode
App may modify key, msg, nextHopNode, or terminate by setting
nextHopNode to NULL.

Update(node, boolean joined)
Upcall invoked to inform app of a change in the local node’s
neighborSet, either a new node joining or an old node leaving.

API (upcalls)

msg msg
deliver forward

msg
Routing Layer Routing Layer

Application Application

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Talk Outline

Motivation

DHTs and DOLRs

A Flexible Routing API

Usage Examples

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

DHT Implementation
Interface

put (key, value)
value = get (key)

Implementation (source S, root R)
Put: route(key, [PUT,value,S], NULL)
Reply: route(NULL, [PUT-ACK,key], S)
Get: route(key, [GET,S], NULL)
Reply: route(NULL, [value,R], S)

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

DOLR Implementation
Interface

RouteNode(msg, nodeId)
Publish(objectId)
RouteObj(msg, objectId, n)

Implementation (server S, client C, object O)
RouteNode: route(nodeId, msg, NULL)
Publish: route(objectId, [“publish”,O,S], NULL)
Upcall: addLocal([O,S])
RouteObj: route(nodeId, [n,msg], NULL)
Upcall:
serverSet[] = getLocal(O);
if (|serverSet|<n), route(nodeId, [n-|serverSet|,msg], NULL)
for first n entries in serverSet,

route(serverSet[i], msg, NULL)

OceanStore / Sahara Retreat ravenben@eecs.berkeley.edu January 14, 2003

Conclusion
Very much ongoing work

Feedback valuable and appreciated
Yet to come

Implementations will move to support routing API
Working towards higher level abstractions
Distributed Hash Table API
DOLR publish/route API

For more information, see IPTPS 2003

Thank you…

