Approximate Object Location and Spam Filtering on Peer-to-Peer Systems

> Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, Anthony D. Joseph and John D. Kubiatowicz

University of California, Berkeley

The Problem of Spam

- Spam
 - Unsolicited, automated emails
 - Radicati Group: \$20B cost in 2003, \$198B in 2007
- Proposed solutions
 - Economic model for spam prevention
 - Attach cost to mass email distribution
 - Weakness: needs wide-spread deployment, prevent but not filter
 - Bayesian network / machine learning (independent)
 - "Train" mailer with spam, rely on recognizing words / patterns
 - Weakness: key words can be masked (images, invis. characters)
 - Collaborative filtering
 - Store / query for spam signatures on central repository
 - Other users query signatures to filter out incoming spam
 - Weakness: central repository limited in bandwidth, computation

Our Contribution

- Can signatures effectively detect modified spam?
 - Goals:
 - Minimize false positives (marking good email as spam)
 - Recognize modified/customized spam as same as original
 - Present signature scheme based on approx. fingerprints
 - Evaluate against random text and real email messages
- Can we build a scalable, resilient signature repository
 - Leverage structured peer-to-peer networks
 - Constrain query latency and limit bandwidth usage
- Orthogonal issues we do not address:
 - Preprocessing emails to extract content
 - Interpreting collective votes via reputation systems

Outline

- Introduction
- An Approximate Signature Scheme
 - Evaluation using random text and real emails
- Approximate object location
 - Similarity search on P2P systems
 - Constraining latency and bandwidth usage
- Conclusion

Collaborative Spam Filtering

An Approximate Signature Scheme

- Calculate checksums of all substrings of length L
- Select deterministic set of N checksums
- □ A matches B **iff** $|sig(A) \cap sig(B)| > Threshold$
- Computation tput: 13MByte/s on P-III 1Ghz

Accuracy of Signature Vectors

Matching Accuracy vs Changes

- □ 10000 random text documents, size = 5KB, calculate 10 signatures
- Compare signatures of before and after modifications
- Analytical results match experimental results

Eliminating False positives

False Positive Rate

Compare pair-wise signatures between 10000 random docs

None matched 3 of 10 signatures (100,000,000 pairs)

Evaluation on Real Messages

- 29631 Spam Emails from <u>www.spamarchive.org</u>
 - Processed visually by project members
 - □ 14925 (unique), 86% of spam = 5K
- Robustness to modification test
 - Most popular 39 msgs have 3440 modified copies
 - Examine recognition between copies and originals

THRES	Detected	Failed	%
3/10	3356	84	97.56
4/10	3172	268	92.21
5/10	2967	473	86.25

False Positive Test

- Non-spam emails
 - 9589 messages: 50% newsgroup posts + 50% personal emails
 - Compare against 14925 unique spam messages

THRES	# of pairs	Probability
1/10	270	1.89e-6
2/10	4	2.79e-8
3/10	0	0

- Sweet spot, using threshold of 3/10 signatures
 - Recognition rate > 97.5%
 - False positive rate < 1 in 140 million pairs</p>

A Distributed Signature Repository?

• How do we limit bandwidth consumption and latency?

Structured Peer-to-Peer Overlays

- Storage / query via structured P2P overlay networks
 - □ Large sparse ID space N (160 bits: 0 2¹⁶⁰)
 - □ Nodes in overlay network have nodelDs \in *N*
 - □ Given $k \in N$, overlay deterministically maps k to its **root** node (a live node in the network)
 - E.g. Chord, Pastry, Tapestry, Kademlia, Skipnet, etc...
- Decentralized Object Location and Routing (DOLR)
 - □ Objects identified by Globally Unique IDs (GUIDs) $\in N$
 - Decentralized directory service for endpoints/objects Route messages to *nearest* available endpoint
 - Object location with locality: routing stretch (overlay location / shortest distance) \cong O(1)

More Than Just Unique Identifiers

- Objects named by Globally Unique ID (GUID)
 - Application maps secondary characteristics to ID: versioning, modified replicas, app-specific info

Simplify the search problem
out of m search fields, or "features," find objects matching at least n exactly

ADOLR layer

- Introduce naming mapping from feature vector to GUIDs
- Rely on overlay infrastructure for storage
- Abstraction of feature vectors as approximate names for object(s)

Marking a New Spam Message

- Signatures stored as inverted index (feature object) inside overlay
- User on C gets spam E₂, calculates signatures S: {S₁, S₂, S₃}
- For each feature in **S**, if feature object exists, add E₂
- If no feature object exists, create one locally and publish

Filtering New Emails for Spam

- User at node D receives new email E₂' with signatures {S₁, S₂, S₄}
- Queries overlay for signatures, retrieve matching GUIDs for each
- Threshold = 2/3, contact GUIDs that occur in 2 of 3 result sets
- Contact E₂ via overlay for any additional info (votes etc)

Constraining Bandwidth and Latency

- Need to constrain bandwidth and latency
 - Limit signature query to h overlay hops
 - Return null set if h hops reached without result
- Simulation on transit-stub topologies
 - □ 5K nodes, 4K overlay nodes, diameter = 400ms
 - Each spam message only reaches small group
 - For each message:

% of users seen and marked = *mark rate*

 Measure tradeoff between latency and success rate of locating known spam, for different mark rates

Simulation Result

Feature-based Queries

- Approximate Text Addressing
 - □ Text objects: features \rightarrow hashed signatures
 - Applications: plagiarism detection, replica management
- Other feature-based searching
 - Music similarity search
 - Extract musical characteristics
 - Signatures: {hash(field1=value1), hash(field2=value2)...}
 - E.g. Fourier transform values, # of wavetable entries
 - Image similarity search
 - Locate files with similar geometric properties, etc.

Finally...

- Status
 - ADOLR infrastructure implemented on Tapestry

 SpamWatch: P2P spam filter implemented, including Microsoft Outlook plug-in Available for download:

http://www.cs.berkeley.edu/~zf/spamwatch

Tapestry

http://www.cs.berkeley.edu/~ravenben/tapestry

Thank you...Questions?