Cashmere: Resilient Anonymous Routing

Li Zhuang Feng Zhou Ben Y. Zhao Antony Rowstron

- U. C. Berkeley
 - U. C. Berkeley
 - U. C. Santa Barbara
 - Microsoft Research, UK

- Bob and the server want to prevent outsiders from knowing they are communicating
- Unlinkability
- Bob wants to prevent the server from knowing his identity
 - Source anonymity

Previous work: Chaum-Mix

- Standard model for anonymous routing:
 - Forward message through a static path of nodes $(P_1, ..., P_L)$
 - Encrypt message M using public node keys in reverse order

Previous work: Chaum-Mix

Drawback: path is fragile and hard to maintain

- When any node/link fails, must rebuild entire path (expensive)
- Source can not receive error messages, must use E2E timeouts
- **Drawback**: computationally expensive
 - Each message is encrypted with layers of asymmetric encryption

Other related work

- Chaum-Mix based
 - Onion routing [Syverson et. al 1997]
 - Pair-wise symmetric keys between nodes
 - Tarzan [Freedman et. al 2002]
 - Symmetric session keys and relay through nodes
 - Many other systems, e.g. Tor, etc.
- Probabilistic random walk
 - Crowds [Reiter et. al 1998]
 - No destination anonymity
 - Lower source anonymity [Diaz et. al 2002]
- Dining cryptographer network based
 - E.g. Herbivore [Sirer et. al 2004], P5 [Sherwood et. al 2001]

Cashmere overview

- Anonymous routing layer
 - Resilient to node churn, temporary node/link failures
 - Reduces path rebuild frequency
 - Result: much more stable paths
- Use structured overlays for group maintenance and interrelay routing
- Comparable anonymity to Chaum-Mix
- Reduced vulnerability to predecessor attack [Wright et. al 2003 & 2004]

Outline

- Background & previous work •
- C.
 Evalua.
 Summary Cashmere design

Design: use relay groups

- Instead of single nodes, use groups to relay traffic
- Relay functions if at least one member is reachable
 - Leverage structured overlays (prefix based)
 - Relay group membership maintenance
 - Inter-relay routing

Relay group membership

- Each node assigned a nodeID
 - Assigned by a CA
 - Selected uniformly at random
- A relay group is a set of nodes sharing a common prefix
 - groupID \equiv the shared prefix
- For example (Network size: N)
 - Relay group "OXXXX"
 - Group size $\approx N/2$

Relay group membership

- Each node assigned a nodeID
 Selected uniformly at random
- A relay group is a set of nodes sharing a common prefix
 - groupID \equiv the shared prefix
- For example (Network size: N)
 - Relay group "00XXX"
 - Group size $\approx N/4$
- Nodes estimate N locally
 - Routing table depth
 - Source decides relay group size per session

Inter-relay routing

- Select a set of relay groups
 - Destination is member of a relay group
- Route message along the sequence of prefixes
 - 001XX→100XX→101XX→010XX
- First relay member to receive the message is "root"
 - Broadcast to group members
 - Route to next relay group
- B receives broadcast message

Summary

Route: $A \rightarrow B$

- Benefits from structured overlay
 - Relay group maintenance
 - Inter-relay routing
 - Group broadcast
 - Locality-aware overlay routing
- No extra routing state per node

Prefix keys for relay groups

- Based on prefix, each relay group has key pair K_{pub}, K_{priv}
 - Each member uses K_{priv} for group decryption
- Each node keeps key pairs for prefixes it shares
 - E.g. 12345 keys: 1XXXX, 12XXX, 123XX, 1234X, 12345
 - Retrieve from offline CA during ID assignment
- Store list of public keys for random prefixes
 - Obtained from trusted offline CA

Decoupling path and payload

- Chaum-Mix
 - Path embedded in encrypted layers around each payload
 - L relays \rightarrow L asymmetric operations at source and relay

Decoupling path and payload

Cashmere

- Decouple path and payload components
- Path component: layered using asymmetric encryption
 - P_x : prefix identifier for next hop
- Payload component: symmetric encrypted layers w/ random keys
 - R_x : random key
 - Symmetric encryption ensures message modified per hop
 - Path fixed per session (cacheable), payload changes per message
- Further extension: establish symmetric session key
 - All payload encrypted using symmetric key
 - See paper for further details

Message replies in Cashmere

- Destination replies without sacrificing source anonymity
 - Source generates random return path
 - Return path independent from forwarding path
 - Embed return path in original payload
 - Destination can send arbitrary reply message
- Decoupling path and payload enables this
 - Further details in paper

•

Outline

- Background & previous work •
- در.
 Evalua،
 Summary Cashmere design

Experiment setup

- Simulation
 - Analysis performed on random generated paths
 - Network size: 2¹⁴ (16K)
 - Prefix length:12 bits
 - All attackers collude with zero latency
 - Evaluation on PlanetLab
 - Implemented on FreePastry, (with RSA and Blowfish)
 - 128 Cashmere nodes
 - 32 machines geographically distributed over USA
 - 4 virtual nodes per machine
 - Four relay groups of size 4

Unlinkability

Anonymity using entropy metric [Diaz et. al 2002]

Resilience: expected path lifetime

Churn

- Exponentially distributed session times
 - median session time = 60 mins
- Rate of node joins and failures is identical
- Expected Cashmere path lifetime
 - Over one order of magnitude longer than node-based path

Path resilience based on Kazaa dataset

- Real distribution of Kazaa download time from [Gummadi et al. 2003]
- Reduce number of path rebuilds also reduce vulnerability to predecessor attack [Wright et. al 2003 & 2004]

NSDI, May 2005

Conclusion and future work

- Flexible and resilient anonymous routing
 - Relay messages through groups of nodes
 - Leverages structured overlay networks
 - Performance overhead is reasonable under churn
 - Ongoing work
 - Scalable public key distribution
 - Leverage Identity-based encryption [Boneh et. al 2003]
 - Extending anonymous routing to multicast

http://www.cs.ucsb.edu/~ravenben/cashmere

Thank you!