

Ben Y. Zhao
John Kubiatowicz
Anthony D. Joseph
U. C. Berkeley

Why Tapestry?

- Distributed systems scaling to WAN
 - Larger scale → frequent component faults
 - More data + centralization → performance bottleneck
 - Dynamic environment → manageability complexity
 - More principals → attacks on system (e.g. DoS) more likely

◆ Tapestry:

- Decentralized approach to location and routing focusing on fault-resilience and adaptability
- Builds on previous work: Plaxton trees

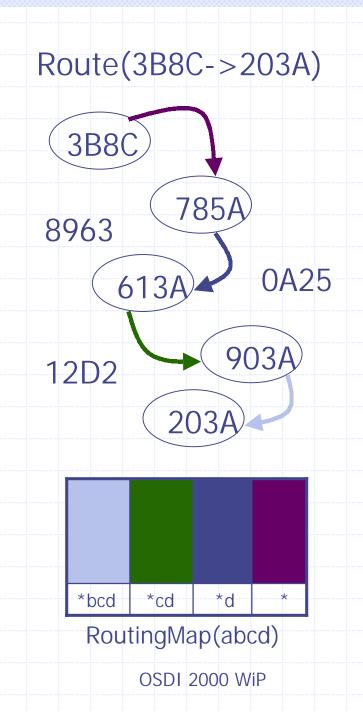
October 24, 2000

OSDI 2000 WiP

Plaxton Trees

Wide-area naming

 Nodes/Objs named by hashed bit-sequence IDs


Incremental routing

- Route to root via local neighbor maps
- Incremental progress towards destination

Properties

- Exploits search locality
- Route around failures
- Decentralized scaling
- Log_bN hops to destination

October 24, 2000

Tapestry Improvements

- Root nodes => single point of failure
 - Soln: Root redundancy via hash salts
- ◆ Topology changes => high cost
 - Soln: Local heartbeats, alternate pointers, second chance invalidation
- Dynamic system => error persistence
 - Soln: Proactive node-integration, fault-detection,
 Self-optimization via query state
- Vulnerable to DoS attack
 - Soln: Approx. nodes for load diversion, online data verification, compromised node isolation

October 24, 2000

OSDI 2000 WiP

Project Status

- Providing location/routing support for the Oceanstore global storage project
 - http://oceanstore.cs.berkeley.edu
- Java-based prototype
- C-based simulation / measurements
- For more details, see Poster Session
- Contact
 - ravenben@cs.berkeley.edu

October 24, 2000

OSDI 2000 WiP