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Challenges Facing Network Applications

Network connectivity is not reliable
Disconnections frequent in the wide-area Internet
IP-level repair is slow 

Wide-area: BGP ≈ 3 mins
Local-area: IS-IS ≈ 5 seconds

Next generation network applications
Mostly wide-area
Streaming media, VoIP, B2B transactions
Low tolerance of delay, jitter and faults
Our work: transparent resilient routing infrastructure that 
adapts to faults in not seconds, but milliseconds
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Talk Overview

Motivation
Why structured routing
Structured Peer to Peer overlays
Mechanisms and policy
Evaluation
Summary
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Routing in “Mesh-like” Networks
Previous work has shown reasons for long 
convergence [Labovitz00, Labovitz01]

MinRouteAdver timer
Necessary to aggregate updates from all neighbors

Commonly set to 30 seconds
Contributes to lower bound of BGP convergence time

Internet becoming more mesh-like [Kaat99,labovitz99]
Worsens BGP convergence behavior

Question
Can convergence be faster in context of structured routing?
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Resilient Overlay Networks (MIT)
Fully connected mesh
Allows each node full 
knowledge of network

Fast, independent calculation 
of routes
Nodes can construct any 
path, maximum flexibility

Cost of flexibility
Protocol needs to choose the 
“right” route/nodes
Per node O(n) state

Monitors n - 1 paths
O(n2) total path monitoring is 
expensive
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Leveraging Structured Peer-to-Peer Overlays

Key based routing (IPTPS 03)
Large sparse ID space N 
(160 bits: 0 – 2160)
Nodes in overlay network 
have nodeIDs ∈ N
Given some key k ∈ N, 
overlay deterministically 
maps k to its root node (live 
node in the network)
route message to root (k)
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root(k)

k

source

Distributed Hashtables (DHT) is interface on KBR
Key is leveraging underlying routing mesh
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Proximity Neighbor Selection
PNS = network aware overlay construction

Within routing constraints, choose neighbors closest in 
network distance (latency)
Generally reduces # of IP hops

Important for routing
Reduce latency
Reduce susceptibility to faults

Less IP links = smaller chance of link/router failure
Reduce overall network bandwidth utilization

We use Tapestry to demonstrate our design
P2P protocol with PNS overlay construction
Topology-unaware P2P protocols will likely perform worse
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System Architecture

Locate nearby overlay proxy
Establish overlay path to destination host
Overlay traffic routes traffic resiliently

Internet
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B

Traffic Tunneling
Legacy
Node A

Legacy
Node B

Proxy
Proxy

register
register

Structured Peer to 
Peer Overlay

put (hash(B), P’(B))

P’(B)

get (hash(B)) P’(B)

A, B are IP addresses

put (hash(A), P’(A))

P’(A) = A P’(B) = B

Store mapping from end host IP to its proxy’s overlay ID
Similar to approach in Internet Indirection Infrastructure (I3)
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Tradeoffs of Tunneling via P2P
Less neighbor paths to monitor per node: O(log(n))

Large reduction in probing bandwidth: O(n) O(log(n))
Increase probing frequency
Faster fault detection with low bandwidth consumption

Actively maintain path redundancy
Manageable for “small” # of paths
Redirect traffic immediately when a failure is detected
Eliminate on-the-fly calculation of new routes
Restore redundancy when a path fails

End result
Fast fault detection + precomputed paths = increased 
responsiveness to faults

Cons
Overlay imposes routing stretch (more IP hops), generally < 2
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Some Details
Efficient fault detection

Use soft-state to periodically probe log(n) neighbor paths
“Small” number of routes reduced bandwidth
Exponentially weighted moving average
in link quality estimation

Avoid route flapping due to short term loss artifacts
Loss rate Ln = (1 - α) ⋅ Ln-1 + α ⋅  p
p = instantaneous loss rate, α = hysteresis factor

Maintaining backup paths
Each hop has flexible routing constraint

Create and store backup routes at node insertion
Restore redundancy via “intelligent” gossip after failures
Simple policies to choose among redundant paths
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First Reachable Link Selection (FRLS)
Use estimated loss results to 
choose shortest “usable” path
Sort next hop paths by latency
Use shortest path with
minimal quality > T
Correlated failures

Reduce with intelligent topology 
construction
Key is to leverage redundancy 
available
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Evaluation
Metrics for evaluation

How much routing resiliency can we exploit?
How fast can we adapt to faults?
What is the overhead of routing around a failure?

Proportional increase in end to end latency
Proportional increase in end to end bandwidth used

Experimental platforms
Event-based simulations on transit stub topologies

Data collected over different 5000-node topologies
PlanetLab measurements

Microbenchmarks on responsiveness
Bandwidth measurements from 200+ node overlays
Multiple virtual nodes run per physical machine
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Exploiting Route Redundancy (Sim)

Simulation of Tapestry, 2 backup paths per routing entry
Transit-stub topology shown, results from TIER and AS graphs similar
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Responsiveness to Faults (PlanetLab)

Response time increases linearly with probe period
Minimum link quality threshold T = 70%, 20 runs per data point
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Link Probing Bandwidth (Planetlab)
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Medium sized routing overlays incur low probing bandwidth
Bandwidth increases logarithmically with overlay size
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Related Work
Redirection overlays

Detour (IEEE Micro 99)
Resilient Overlay Networks (SOSP 01)
Internet Indirection Infrastructure (SIGCOMM 02)
Secure Overlay Services (SIGCOMM 02)

Topology estimation techniques
Adaptive probing (IPTPS 03)
Peer-based shared estimation (Zhuang 03)
Internet tomography (Chen 03)
Routing underlay (SIGCOMM 03)

Structured peer-to-peer overlays
Tapestry, Pastry, Chord, CAN, Kademlia, Skipnet, Viceroy, 
Symphony, Koorde, Bamboo, X-Ring…
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Conclusion
Benefits of structure outweigh costs

Structured routing lowers path maintenance costs
Allows “caching” of backup paths for quick failover

Can no longer construct arbitrary paths
Structured routing with low redundancy gets very close to ideal in 
connectivity
Incur low routing stretch

Fast enough for highly interactive applications
300ms beacon period response time < 700ms
On overlay networks of 300 nodes, b/w cost is 7KB/s

Future work
Deploying a public routing and proxy service on PlanetLab
Examine impact of

Network aware topology construction
Loss sensitive probing techniques
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Questions…
Related websites:

Tapestry
http://www.cs.berkeley.edu/~ravenben/tapestry

Pastry
http://research.microsoft.com/~antr/pastry

Chord
http://lcs.mit.edu/chord
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