
Exploiting Route Redundancy via
Structured Peer to Peer Overlays

Ben Y. Zhao, Ling Huang, Jeremy Stribling,
Anthony D. Joseph, and John D. Kubiatowicz

University of California, Berkeley
ICNP 2003

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Challenges Facing Network Applications

Network connectivity is not reliable
Disconnections frequent in the wide-area Internet
IP-level repair is slow

Wide-area: BGP ≈ 3 mins
Local-area: IS-IS ≈ 5 seconds

Next generation network applications
Mostly wide-area
Streaming media, VoIP, B2B transactions
Low tolerance of delay, jitter and faults
Our work: transparent resilient routing infrastructure that
adapts to faults in not seconds, but milliseconds

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Talk Overview

Motivation
Why structured routing
Structured Peer to Peer overlays
Mechanisms and policy
Evaluation
Summary

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Routing in “Mesh-like” Networks
Previous work has shown reasons for long
convergence [Labovitz00, Labovitz01]

MinRouteAdver timer
Necessary to aggregate updates from all neighbors

Commonly set to 30 seconds
Contributes to lower bound of BGP convergence time

Internet becoming more mesh-like [Kaat99,labovitz99]
Worsens BGP convergence behavior

Question
Can convergence be faster in context of structured routing?

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Resilient Overlay Networks (MIT)
Fully connected mesh
Allows each node full
knowledge of network

Fast, independent calculation
of routes
Nodes can construct any
path, maximum flexibility

Cost of flexibility
Protocol needs to choose the
“right” route/nodes
Per node O(n) state

Monitors n - 1 paths
O(n2) total path monitoring is
expensive

S

D

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Leveraging Structured Peer-to-Peer Overlays

Key based routing (IPTPS 03)
Large sparse ID space N
(160 bits: 0 – 2160)
Nodes in overlay network
have nodeIDs ∈ N
Given some key k ∈ N,
overlay deterministically
maps k to its root node (live
node in the network)
route message to root (k)

0

root(k)

k

source

Distributed Hashtables (DHT) is interface on KBR
Key is leveraging underlying routing mesh

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Proximity Neighbor Selection
PNS = network aware overlay construction

Within routing constraints, choose neighbors closest in
network distance (latency)
Generally reduces # of IP hops

Important for routing
Reduce latency
Reduce susceptibility to faults

Less IP links = smaller chance of link/router failure
Reduce overall network bandwidth utilization

We use Tapestry to demonstrate our design
P2P protocol with PNS overlay construction
Topology-unaware P2P protocols will likely perform worse

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

v

v

v
v

v v

v

v

v

v

v

v

v

O V E R L A Y

System Architecture

Locate nearby overlay proxy
Establish overlay path to destination host
Overlay traffic routes traffic resiliently

Internet

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

B

Traffic Tunneling
Legacy
Node A

Legacy
Node B

Proxy
Proxy

register
register

Structured Peer to
Peer Overlay

put (hash(B), P’(B))

P’(B)

get (hash(B)) P’(B)

A, B are IP addresses

put (hash(A), P’(A))

P’(A) = A P’(B) = B

Store mapping from end host IP to its proxy’s overlay ID
Similar to approach in Internet Indirection Infrastructure (I3)

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Tradeoffs of Tunneling via P2P
Less neighbor paths to monitor per node: O(log(n))

Large reduction in probing bandwidth: O(n) O(log(n))
Increase probing frequency
Faster fault detection with low bandwidth consumption

Actively maintain path redundancy
Manageable for “small” # of paths
Redirect traffic immediately when a failure is detected
Eliminate on-the-fly calculation of new routes
Restore redundancy when a path fails

End result
Fast fault detection + precomputed paths = increased
responsiveness to faults

Cons
Overlay imposes routing stretch (more IP hops), generally < 2

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Some Details
Efficient fault detection

Use soft-state to periodically probe log(n) neighbor paths
“Small” number of routes reduced bandwidth
Exponentially weighted moving average
in link quality estimation

Avoid route flapping due to short term loss artifacts
Loss rate Ln = (1 - α) ⋅ Ln-1 + α ⋅ p
p = instantaneous loss rate, α = hysteresis factor

Maintaining backup paths
Each hop has flexible routing constraint

Create and store backup routes at node insertion
Restore redundancy via “intelligent” gossip after failures
Simple policies to choose among redundant paths

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

First Reachable Link Selection (FRLS)
Use estimated loss results to
choose shortest “usable” path
Sort next hop paths by latency
Use shortest path with
minimal quality > T
Correlated failures

Reduce with intelligent topology
construction
Key is to leverage redundancy
available

2046

1111

2281 2530

2299 2274 2286

2225

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Evaluation
Metrics for evaluation

How much routing resiliency can we exploit?
How fast can we adapt to faults?
What is the overhead of routing around a failure?

Proportional increase in end to end latency
Proportional increase in end to end bandwidth used

Experimental platforms
Event-based simulations on transit stub topologies

Data collected over different 5000-node topologies
PlanetLab measurements

Microbenchmarks on responsiveness
Bandwidth measurements from 200+ node overlays
Multiple virtual nodes run per physical machine

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Exploiting Route Redundancy (Sim)

Simulation of Tapestry, 2 backup paths per routing entry
Transit-stub topology shown, results from TIER and AS graphs similar

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.05 0.1 0.15 0.2
Proportion of IP Links Broken

%
 o

f A
ll

Pa
irs

 R
ea

ch
ab

le

Instantaneous IP Tapestry / FRLS

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Responsiveness to Faults (PlanetLab)

Response time increases linearly with probe period
Minimum link quality threshold T = 70%, 20 runs per data point

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200

Link Probe Period (ms)

Ti
m

e
to

 S
w

itc
h

R
ou

te
s

(m
s)

alpha=0.2
alpha=0.4

300

660

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Link Probing Bandwidth (Planetlab)

0

1

2

3

4

5

6

7

1 10 100 1000

Size of Overlay

B
an

dw
id

th
 P

er
 N

od
e

(K
B

/s
)

PR=300ms
PR=600ms

Medium sized routing overlays incur low probing bandwidth
Bandwidth increases logarithmically with overlay size

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Related Work
Redirection overlays

Detour (IEEE Micro 99)
Resilient Overlay Networks (SOSP 01)
Internet Indirection Infrastructure (SIGCOMM 02)
Secure Overlay Services (SIGCOMM 02)

Topology estimation techniques
Adaptive probing (IPTPS 03)
Peer-based shared estimation (Zhuang 03)
Internet tomography (Chen 03)
Routing underlay (SIGCOMM 03)

Structured peer-to-peer overlays
Tapestry, Pastry, Chord, CAN, Kademlia, Skipnet, Viceroy,
Symphony, Koorde, Bamboo, X-Ring…

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Conclusion
Benefits of structure outweigh costs

Structured routing lowers path maintenance costs
Allows “caching” of backup paths for quick failover

Can no longer construct arbitrary paths
Structured routing with low redundancy gets very close to ideal in
connectivity
Incur low routing stretch

Fast enough for highly interactive applications
300ms beacon period response time < 700ms
On overlay networks of 300 nodes, b/w cost is 7KB/s

Future work
Deploying a public routing and proxy service on PlanetLab
Examine impact of

Network aware topology construction
Loss sensitive probing techniques

November 7, 2003 ravenben@eecs.berkeley.eduICNP 2003

Questions…
Related websites:

Tapestry
http://www.cs.berkeley.edu/~ravenben/tapestry

Pastry
http://research.microsoft.com/~antr/pastry

Chord
http://lcs.mit.edu/chord
Acknowledgements

Thanks to Dennis Geels and Sean Rhea for their
work on the BMark benchmark suite

