
XSet: A Lightweight Database for Internet Applications

Ben Y. Zhao, Anthony D. Joseph

Computer Science Division

University of California, Berkeley

fravenben, adjg@cs.berkeley.edu

Abstract

Internet-scale distributed applications (such as wide-area service and device discovery and location,

user preference management, the Domain Name Service, and personalized web portal pages) impose

interesting requirements on information storage, management, and retrieval. They maintain structured

soft-state and pose numerous queries against that state. These \Query Enabled" applications typically

require the implementation of a customized, proprietary query engine that is often not optimized for

performance and is costly in resources. Alternatives include using traditional databases, which can ham-

per
exibility, extensibility, and performance, all of which are critical requirements of Internet-scale

applications, or a directory-based protocol, such as the Lightweight Directory Access Protocol (LDAP).

Directory protocols pose composability problems and impose a rigid structure on queries. This paper

proposes a di�erent approach, XSet , based upon the use of the eXtensible Markup Language (XML) as a

data storage language, along with a high performance, main memory-based database and search engine.

Using XML allows applications to use dynamic, simple,
exible data schemes and to perform simpler,

but faster queries. XSet is a Java-based, easy to use, main memory, hierarchically structured database

with partial ACID properties. Experimental measurements show that XSet performance is excellent:

insertion time is a small constant value, and query time grows logarithmically with the dataset size.

Furthermore, XSet signi�cantly outperforms platform-speci�c LDAP servers and XML-based databases

on the LDAP directory benchmark. XSet is available for download, both as a stand-alone application

and as a component of the Ninja service infrastructure.

1 Introduction

The development of modern distributed applications has led to several interesting information storage, man-

agement, and retrieval requirements. In particular, an increasing number of applications are providing novel

functionality by incorporating a fast search and information retrieval component. This new class of \Query

Enabled" applications often maintains a mix of structured soft-state [9] and durable hard-state, and poses

numerous queries against that state. Examples of such Query Enabled applications are service- and device-

1

location and discovery protocols, such as DNS [21] and LDAP [16], and applications which make use of simple

and fast query functionality, such as personalized web portal pages, searchable XML-enabled email systems

and personal location trackers. The problems with these applications are three-fold: their extensibility is

often very limited due to prede�ned, rigid data schemas; they pay for query power and
exibility with added

schema complexity; and many of them o�er similar functionality with signi�cantly di�erent implementations,

duplicating e�ort and functionality.

In this paper, we propose a simple solution to these problems by using the eXtensible Markup Language

(XML) [8] as a data storage language along with a memory-based database and search engine we call XSet.

We then de�ne a set of data semantics for these applications that maximizes performance and concurrency.

Finally, we provide a simple benchmark for evaluating XML query engines, such as XSet.

We chose XML as a description language because it o�ers numerous bene�ts including structured exten-

sibility, strong
exible data validation through Document Type De�nitions (DTD), powerful expressiveness,

and ease of use. XML accentuates structure by making explicit the inherent structure of the data, without

imposing a rigid schema. Furthermore, XML tags allow direct reference to data �elds, extending expres-

siveness. Finally, XML is text-based, and o�ers data encapsulation in a human readable form without high

overhead. These properties and current standardization e�orts make XML a natural choice for our needs.

XML is also useful because it provides a semi-structured data model. The structure and organization of

data is often a limiting factor in how it can be used by applications. Data with a �xed, well-de�ned structure,

as in a relational database, allows static typing, consistency checking, performance optimizations and well-

de�ned queries, but can be con�ning should the data or query model evolve. Free-form data supports all

data types and query models, but nothing can be known about the data statically. XML provides many of

the bene�ts of both extremes. Not only can one reason about (and validate) the data a priori, but the data

is also
exible enough to adjust to new data and query models.

1.1 XSet Applications

In this section, we discuss several Query Enabled applications that use XSet for data management. Some of

these applications use XSet to improve performance, while others are new applications that are made possible

2

by XSet. As a whole, they demonstrate how XSet gives applications fast
exible querying capabilities with

minimal overhead.

1.1.1 Berkeley Secure Service Discovery Service

Consider an academic campus of the near future, where the majority of the population is networked, and

access the local computing resources using portable wireless devices. Users would like to utilize context-

aware applications to access a wide range of dynamic data. For instance, a visitor wants to specify and �nd

resources in their immediate surroundings, such as their meeting contacts or video projectors. Similarly,

people who enter a building become temporary services, and register their personal preferences and pro�les.

Other applications such as group pagers can then query the XSet server to locate and reach users.

Using traditional databases to solve this would require a large number of static schemas, ranging from

personal location pro�les to printer speci�cations, in addition to constant updating of these schemas as

the format of data evolves. The transactional support and consistency guarantees available would be un-

derutilized. Furthermore, these overhead costs would be duplicated per administrative domain, possibly

exacerbated by incompatible databases and schemas.

The Service Discovery Service (SDS) [10] is a wide-area soft-state-based directory service application

implemented using XSet's querying functionality. \Soft-state" is the notion that all data has a �nite lifetime,

and systems provide fault-tolerance by supporting periodic refreshment of data, rather than specialized

recovery modes. The SDS does not support transactions across queries, and leverages soft-state data to

manage update consistency. Current performance analysis shows that XSet query latency comprises a small

fraction of the SDS query cost, and given expected optimizations on security and data distribution, the SDS

will scale to extremely large datasets and query loads.

1.1.2 Personal Activity Coordinator

Another example of an XSet application is the Personal Activity Coordinator (PAC), which acts as an

intelligent cache of the current location and activities of users in the ICEBERG [27] application architecture.

Other ICEBERG applications query the PAC in order to determine the ideal contact point for incoming

3

communication. The current implementation of the PAC uses an internal XSet server to store location- and

application-speci�c information and services application queries.

1.1.3 Automatic Path Creator

One of the key components of the Ninja [25] service infrastructure is the Automatic Path Creator (APC),

which constructs a data
ow path between multiple Ninja services to compose a larger service. The APC uses

an XSet server to store information on known subpaths and known services, and queries against it as part

of a graph search algorithm to generate the logical path composition. Here, data is short-lived, and the fast

query times of XSet are crucial to constructing paths within a reasonable response time.

1.1.4 Personalized Web Portal

Another product developed using on top of the XSet database is SmartPages1, a customizable web-based

information portal. Smartpages retrieves interesting news articles, stock quotes and other dynamic content,

stores it inside an XSet database, and presents it upon request. Users specifying their interest using Smartpage

queries, and the XML content is transformed using XSL for their speci�c end-device. XSet could be used to

provide similar functionality for other types of customized web portals, such as MyYahoo, MyExcite, and

MyNetscape. These portals use user preference databases, based upon LDAP, real, or custom databases, to

generate customized content for individual users.

1.2 Existing Database Models

Given the bene�ts that XML can bring to information management applications, the issue is how to store

and query XML documents. At �rst, a database-based approach would appear to be an appropriate choice.

We will argue, however, that for metadata intensive and distributed applications we have introduced, a

streamlined minimalistic approach should improve performance.

1More information on SmartPages is available from http://www.cs.berkeley.edu/~emrek/research/smartpagedemo.html.

4

1.2.1 Relational and Object-Relational Approaches

There are currently two main thrusts of database design: relational and object-relational databases. While

relational databases have been extremely popular in existing commercial applications, object-relational

databases are becoming increasingly popular for supporting correlated data of di�erent types and sizes,

such those popularized by the World Wide Web.

There are two main reasons why neither database design is well-suited to the search functionality required

by distributed applications. As discussed previously, the hierarchically organized structure of XML data has

important advantages for Query Enabled applications. Unfortunately, relational databases are ill-equipped

to handle such a structure. Translating hierarchically structured documents into tabular relations is an

unnatural and complex mapping. Furthermore, a single query in a deeply nested tree may require repeated

table retrievals for each level of the tree. This intuition has been con�rmed by recent work [4] that showed

that while most queries can be transformed into relational queries, there were exceptions. Certain types of

XML queries cannot be mapped into SQL, while other simple queries on XML map to large numbers of SQL

queries, or single queries with numerous joins.

The second and more fundamental argument against using relational or object-relational databases, is

the strict nature of database consistency and the associated performance penalty. While object-relational

databases can eÆciently model semi-structured data, they still incur this penalty. For our class of XML-

enabled applications, consistency requirements are generally less strict and more application-speci�c than

those in a traditional database model. For example, while directory applications such as LDAP may support

transactions, they generally make little use of such functionality, and treat inserts as independent operations.

These relaxed constraints can often be achieved through simpler application-speci�c algorithms that do not

incur the performance penalties associated with strict ACID properties (See Section 4).

1.2.2 Semantics and Performance

Previous work in the database community has recognized the evolutionary model of database applications,

and their changing semantic requirements [6]. While other approaches to address these changes give lim-

ited concessions for increased concurrency, XSet instead focuses on the tradeo�s between semantics and

5

performance.

From a database perspective, XSet can be described as a memory-resident, hierarchically structured

database with support for a partial set of the ACID semantics. In particular, XSet does not support trans-

actions and it provides atomicity at the level of individual operations.

While in practice many industrial databases execute with relaxed runtime semantics, giving up serial-

izability for concurrency, there still remains a signi�cant overhead due to concurrency control and locking.

Such overhead is necessary to mask the e�ects of synchronous I/Os and long pausing transactions from the

user. XSet is a main-memory database without transactional support; and therefore it can use coarse-grain

locking per thread to minimize locking overhead with no adverse e�ects on performance.

We present detailed performance analysis of a single-node XSet implementation in Section 6 demonstrat-

ing the superior performance that results from the removal of overhead associated with transaction support.

This section highlights the performance bene�ts of relaxing traditional database semantics by showing that

the resulting query processing time is low, and scales logarithmically as the size of the dataset.

1.3 Assumptions and Goals

In designing XSet, we make three assumptions about application workloads and environments:

� we set the design goal that a single XSet server can handle a reasonably sized data collection, such as

a local area directory service.

� we avoid the problem of updating to conform to new XML standards by assuming that our data model

is constrained to a well-de�ned core set of XML functionality

� and we require that XSet servers have large amounts of memory (e.g., 1 to 2 GB, an amount that

is readily available in o�-the-shelf servers). Since XSet uses physical memory as its primary storage

mechanism, it will incur a performance penalty when the dataset size scales beyond memory capacity.

In Section 7, we propose a cluster model that should help ameliorate this problem.

Within these constraints, XSet has these following goals:

� Partial ACID Semantics (no transactions)

6

� Simplicity, Portability, Composability

� Flexible Extensible Schema Support

� Low Query Latency and High Scalability

The rest of the paper is organized as follows: we �rst discuss related work in Section 2. Then we present

XSet's architecture in Section 3, and discuss its implications on data semantics in Section 4. That is followed

by the implementation in Section 5, and XSet's performance analysis in Section 6. Finally, we discuss future

work in Section 7 and conclude in Section 8.

2 Related Work

In this section, we discuss related work on relaxed semantics in databases, the LORE [20] semi-structured

database, and proposed XML query languages. The discussion also highlights XSet's position on the tradeo�

between features and performance: XSet lies on the end of minimal complexity and increased performance,

while database systems and other XML repositories tend to choose a fuller feature set (often with the added

burden of more complexity and thus lower performance).

2.1 Relaxed Semantics in Databases

Past work in the database community has recognized the need for relaxed ACID semantics [6]. Several

approaches have been taken in the context of full ACID database systems to maximize concurrency by

taking advantage of these weaker semantic needs.

Some of these e�orts have focused on how semantic information about datatypes can be exploited to

safely trade transaction serializability or data consistency for increased concurrency. Farrag and Ozsu analyze

in [12] a proposal to utilize semantic information to allow the use of selected nonserializable schedules. They

propose the notion of \relatively consistent" (RC) schedules and concurrency mechanisms to produce RC

schedules. Similarly, Badrinath and Ramamritham de�ne a \recoverability" predicate, checked using a table

of prede�ned con
icts between well-de�ned operations [5]. Since utilizing semantic information incurs a high

overhead, Agrawal et. al propose that users intervene to make consistency assertions on abstract data types,

which are then used to de�ne new correctness criterion [2]. In [28], Wong and Agrawal de�ne the notion of

7

bounded inconsistency, where users can accept datatype-speci�c ranges of inconsistency in order to increase

commutativity of operations for increased concurrency. Additionally, there have been e�orts such as [17]

which o�er increased concurrency without breaking the bounds of traditional serializability under certain

conditions [3].

In contrast, our approach in XSet can be viewed as an extreme version of those proposed by [2, 5, 12].

Because these e�orts are generalized for di�erent datatypes, they require semantic information on new

datatypes in order to maintain levels of serializability. XSet, on the other hand, targets XML as its datatype,

and can exploit its well-known structure for further optimization. Additionally, the simplifying assumption

of independent operations removes the need for transactions along with any associated overhead.

2.2 LORE

LORE [20] is a database management system for semi-structured data developed at Stanford University.

LORE's internal Dataguides, which are evolutionary representations of DTDs, are similar to XSet's merging

tag index. While LORE and XSet are similar in basic functionality, LORE supports a much richer feature

set, including full database semantics, multiple indexing methods, cost-based query optimization, concurrent

user support, and logging and recovery. LORE supports LOREL [1], a query language for XML which follows

the general SQL syntax and adds extensive XML-speci�c functionality such as similarity searches. Compared

to XSet, LORE's much richer functionality set makes it too complex for the low latency, soft consistency

information management applications XSet targets.

2.3 Proposed XML Query Languages

Whereas XSet chooses a simple query model with a small set of core query functionality, several XML query

language development e�orts are underway to provide more robust and powerful query models. XML-QL

from AT&T research labs [11] is an e�ort to standardize an XML query mechanism for large volume data

extraction and transformation. As a query language, XML-QL tries to stay true to the SQL syntax, adding

extensions to support XML-speci�c functionality. Unlike XSet's focus on single query latency, the XML-QL

design focuses on features and very complex queries. As a result, an XML-QL implementation is geared

8

towards supporting extremely large transactions across large datasets, but its high complexity level and high

overhead would make it too complex for our needs.

XML Query Language (XQL) [22] is a similar query language e�ort from Microsoft. It abandons the

SQL syntax in favor of a natural XML approach composed of paths constructed from tag hierarchies. It

also supports a greater query functionality, and accepts the associated complexity in query construction and

processing.

We believe that XML-QL, LOREL and XQL are far more complex than is necessary for XSet's target

applications. In fact, we can characterize the XSet query model as a very limited subset of XQL, using a

intuitive syntax. As a query model, XSet queries also resemble the associative matching aspects of Linda

Tuplespaces [13]. Linda di�ers in that it is a communication mechanism with a simple query interface, limited

to
at data tuples.

The distinctions between XSet and these existing systems will become clear as we discuss the XSet

architecture (Sections 3 and 4) and present performance comparisons between LORE and XSet (Section 6).

3 Architectural Design

In this section, we discuss the design choices and their rami�cations for the XSet architecture: the query

model, the tag index, document paging, and the durability and cleaner mechanisms.

3.1 Overall Design

Figure 1 shows the internals of a single XSet Server. A single server consists of several components: a main-

memory component, which we refer to as the SetServer, a disk-based component consisting of a �le backing

store, a write-ahead log, and a fuzzy checkpointing system. The SetServer includes an XML index and a

memory-resident data store.

During registration/insertion, the SetServer receives XML documents via a JavaRMI interface, adds

the documents to the disk backing store, parses the XML, and merges the document structure into the

hierarchical tag index structure. In the backing store, each document is assigned a monotonically increasing

9

XML Documents

XML

Index
Treaps

Disk / Persistent Store

XML Backing Store

Write Ahead Log

Fuzzy Checkpoints

Recovery
Manager

XSet Client XSet ClientXSet Client XSet Client XSet Client

In-Memory
SetServer

Paging / Backup

R M I I N T E R F A C E

Figure 1: Single XSet Server

unique identi�er, which can be used in paging and logging operations. Each subtree of the document is merged

into the index. For each tag in the index, documents are stored as sets inside a treap [24] (a probabilistic

self-balancing tree structure), each set indexed by a common tag value. A single document has its reference

indexed into tag treaps, each corresponding to XML tags inside the document. To summarize, tags are the

keys used to access the index, and document references are the �nal data values.

XSet supports both \soft-state" and persistent state. Whereas \soft-state" or short-lived data can be

handled by the main memory index and store alone, long-lived data makes use of the XSet durability layer.

An up-to-date copy of the dataset resides on stable storage. Modify operations (inserts and deletes) are

logged to a �nite-sized log bu�er in memory. The bu�er is
ushed to disk when full, or when an explicit

ush operation is issued by the client. XSet also supports fuzzy checkpoints (where data is still available

during the checkpointing process), both at regular intervals, and also by explicit client request. Checkpointing

provides both log truncation and fast recovery. Fuzzy checkpointing is especially important to Query Enabled

applications, since data must be available at all times, even during the course of a checkpoint operation.

Additionally, XSet exposes functionality to the user for explicitly paging documents in and out of the memory

store, providing support for user-designed paging policies. Since many of the target applications deal with

short-lived data, XSet also includes an optional data cleaner that incrementally removes stale data at regular

intervals. In the following sections, we discuss the query model and several components in more detail.

10

No Match: <PERSON><FIRST>Ben</FIRST>
 <OFFICE WINDOW="YES">443</OFFICE>
 </PERSON>

No Match: <PERSON><FIRST>Ben</FIRST>
 <OFFICE>443</OFFICE>
 </PERSON>

 <OFFICE CLEAN="NO">443</OFFICE>

Matches: <PERSON><FIRST>Ben</FIRST>
 <LAST>Zhao</LAST>
 <OFFICE CLEAN="NO" WINDOW="YES">
 443</OFFICE>
 </PERSON>

 </PERSON>

Query: <PERSON><FIRST>Ben</FIRST>

Figure 2: Sample Queries

3.2 Query Model

XSet queries are themselves well-formed XML documents, with optional embedded query instructions for

the query processor. XSet queries exploit the
exibility of XML tag structure by using the subset tag model,

where satis�ability of the query is de�ned as whether an XML document's tag structure is a strict superset of

that of the query document. Tags that are not explicitly stated in the XSet query are assumed to be wildcards

that can match any XML tag value or subtree. In query processing, collections of document references that

match each search constraint undergo global intersection to return the result set. Some simple query examples

are shown in Figure 2.

Special query instructions passed to the XSet query processor are encoded inside the query as non-

standard XML attributes, and removed by XSet prior to processing the query. For example, a constraint

that searches for an integer value in tag DOC between 10 and 20 would look like: <DOC GT=\10" LT=\20"

KEY T=\INTEGER">RANGEQ</DOC>

3.3 Tag Index

The tag index is a simple, hierarchical indexing structure. It can be characterized as a dynamic structural

summary of the documents in the dataset.

When a document is indexed, its tag hierarchy is merged with the overall XSet tag index, and each

tag value from the document becomes the document index key for the corresponding tag treap in the main

index. Figure 3 shows an indexing example of a short document. In this case, the document reference would

be inserted into treap T2 with \Hello" as the key, and treap T3 with \World" as the key. Additionally,

references to documents also keep attributes and their values attached to the relevant tag, so that they can

be checked against queries with attribute constraints.

11

A B

T1 T2 T3 T4

W X Y Z

IndexRoot

Root1 Root2

C

T5

XML Index

B

Hello World

X Y

A

Root1
 <A>

Document 1

 <X>Hello</X>

 <Y>World</Y>

<ROOT1>

</ROOT1>

parse
insert
into

Figure 3: Simple Indexing Example

The key distinction between this index scheme and some other XML indices [20, 11] is the notion of

contextual semantics. We believe that the semantics associated with a tag value are only valid given the

exact context in which the tag appears. For example, the same tag for PHONENUMBER can have entirely

di�erent meanings if it appears inside the sequence of tags PERSON -> HOME -> ADDRESS versus BUSINESS

-> CONTACTINFO -> SHIPPING -> ADDRESS. For that reason, tags are de�ned uniquely by a combination of

context and tag name, and cannot be indexed purely on their tag names. This type of contextual semantics

is similar to path-based queries in LORE [20], except the root node end of the path is �xed.

3.4 Document Paging

Both advantageous and perhaps limiting to the XSet model is its dependence on large amounts of physical

memory. The memory overhead per document can be as large as 2 kbytes, which can be signi�cant for large

collections of small documents. One solution is to remove from memory (page out) less frequently referenced

documents, keep their indexing information in memory, and read them back from the backing store on disk

(page in) on a on-demand basis. XSet provides a
exible paging mechanism, while leaving policy decisions

to the application writer.

Document objects in XSet export a paging interface which can be invoked by the user to exploit applica-

tion speci�c paging information. When documents are paged out to disk, their indexing information remains

in memory, and the document is paged in lazily if its is found to be a part of a solution set.

Simple paging algorithms such as LRU, random, and MRU can be implemented easily using this approach.

Additionally, more complex algorithms that better exploit XML tag structure can also be used. For example,

12

one policy for a service discovery service would be to partition the data on service types, and apply an LRU

algorithm to the services, resulting in the least frequently queried services being paged out of memory.

3.5 Durability Mechanisms

Two related components provide the persistence and failure recovery functionality for long-lived data in XSet.

The in-memory SetServer interacts directly with the backing store on disk. It ensures durability by adding

the document to the backing store, and also pages documents out to disk as needed to free up memory. The

recovery manager (RM), exposes a useful set of recovery API calls to both internal XSet components and the

external application interface. These calls give explicit control over all durability mechanisms, including the

use and compaction of the write-ahead/redo log, when and how often the fuzzy checkpointing mechanism is

called, and the use of the in-memory log bu�ers.

The redo log records log entries both before the beginning and after the end of each operation. Each

entry records the type of operation and the unique identi�ers of the a�ected document(s). During recovery,

this approach allows large numbers of logged operations to be aggregated eÆciently into a single patch, and

applied to a checkpointed index. When a logging operation discovers a full log bu�er, it
ushes the bu�er

synchronously before proceeding. Further details of the fuzzy checkpointing and redo log optimizations are

discussed in Section 4.3.

As an application component, XSet focuses on providing the mechanisms on top of which a wide range of

policies can be implemented. This is re
ected in the in-memory log bu�er, which is regularly
ushed to disk to

ensure durability of operations. Varying the bu�er size controls the tradeo� between performance (re
ected

in frequency of I/O operations) and durability. Similarly, there are no preset algorithms for determining

when the document pager is run, or in what order documents are evicted from memory. Finally, we leave it

to the application writer to de�ne an algorithm that determines when and how often to checkpoint.

3.6 Data Cleaning Mechanism

XSet also includes an optional data cleaning component for soft-state data management. Applications that

periodically refresh their data can have the cleaner run at regular intervals with user speci�ed policies to

13

incrementally clean out the XML dataset. For example, transient user location data could be invalidated after

5 minutes, while printer description documents could have lifetimes of 5 days. This allows an administrator

to provide customized soft guarantees on the freshness of the dataset contents.

4 Semantic Guarantees

In this section, we de�ne the data semantics provided by XSet. We explain several assumptions regarding

the nature of data used by Query Enabled applications and the general access patterns on this data. We

then use these assumptions as the basis for a data model that focuses on performance and simplicity.

4.1 Partial ACID Semantics

To help the reader better gauge the relative semantics of XSet and typical databases, we discuss XSet's

semantics in terms of ACID [15] terminology, where ACID stands for Atomicity, Consistency, Isolation, and

Durability. As explained below, XSet does not support transactions, and the list below falls under that

context.

From the discussions of semantics in previous subsections, we summarize these points, which are further

explored in following sections:

� Atomicity: Atomicity is provided on the granularity of single operations.

� Consistency: Consistency is guaranteed. No inconsistency can occur during normal operations, since

only one thread is allowed into the database at one time.

� Isolation: Isolation is not provided in the context of transactions, but single operations are isolated via

the lock mechanism.

� Durability: XSet provides recovery across failures, by providing a simple and eÆcient combination

of write-ahead logging and fuzzy checkpointing. Durability of data is
exible, and we provide the

mechanism to support di�erent positions in the durability and performance tradeo�.

4.2 Applications Semantics

As stated above, XSet provides di�erent data semantics from those provided by typical database systems.

While XSet provides durability, it is motivated by applications which gather soft-state data, and pose large

14

numbers of queries against it. The queries are generally self-contained, and single queries produce useful

results. Directory services exemplify this class of applications. We optimized the XSet design towards certain

properties of data used in these applications, such as immutability and transient data. Applications using

data that break these assumptions, however, still bene�t from the overall XSet model.

The �rst simpli�cation XSet makes is its approach to concurrency. In database systems where the major-

ity of data is stored on disk, disk I/O cost dominates query latency. Concurrency is necessary to maximize

resource utilization and increase throughput. XSet, however, is a main memory database, where memory

access latency is the dominating factor. As a result, threads spend few cycles waiting for memory I/O; and

increasing concurrency does not greatly bene�t latency, since the cost of a context switch is comparable to a

memory fetch operation. Also important in this consideration is the absence of transactions in XSet. Trans-

actional databases use concurrency to eliminate waiting on user latency between operations in a transaction.

This is no longer a concern in XSet. The XSet design re
ects this shift of focus o� of concurrency control, by

placing a global lock on the server, and only allowing a single thread to enter at any time. This guarantees

single operation consistency trivially.

A second optimization derives from the types of documents XSet serves. Whereas traditional databases

operate on large numbers of small records in a single database, XSet targets large numbers of small descriptive

XML documents, the whole of which make up the XML database. These documents can describe large

numbers of di�erent objects such as services, preferences, people and locations, and tend to be compact

XML documents with limited number of attributes. XSet optimizes for this type of small records by using a

\replace-only" update model, where any changes to a document are made by replacing the existing document

with a new version. Documents become immutable. We show in the next section how by using this model,

we greatly reduce the complexity of logging and recovery.

Finally, the majority of \Query Enabled" applications use an access model consisting of single queries.

While transactions are useful in certain contexts, they introduce signi�cant additional complexity and perfor-

mance overhead. Thus, we choose the single operation as the granularity of operation. Furthermore, because

data is immutable, and operations are independent, modify operations in XSet are idempotent; that is, single

operations can be repeated in order without making the database inconsistent.

15

4.3 Fast Recovery

Checkpoint

2 Roll-forward WAL

1 Restore Checkpoint1

2 Point of Failure

Begin Chkpt End Chkpt

Figure 4: Recovery Mechanism

As a result of XSet data semantics, recovery of failures is simple and eÆcient. In addition to a stan-

dard write-ahead log, XSet includes a fuzzy checkpointing mechanism. Because of the idempotent nature of

modify operations in XSet, a fuzzy checkpoint can be taken any time without extensive use of locks. The

begin checkpoint and end checkpoint operations are both logged, and the Log Sequence Number (LSN) of

the begin checkpoint operation is stored with the checkpoint. While the checkpoint itself is inconsistent, it

is easily brought up-to-date by rolling forward all log entries after the begin checkpoint operation.

Figure 4 is a simple illustration that demonstrates how recovery occurs after a system failure. We assume

that persistent storage, such as disk, survives major failures by using mechanisms, such as replication or

mirroring. After a system failure (the loss of the server's memory contents), the recovery process follows

two steps: First, the system restores a memory image using the fuzzy checkpoint. Then, the system applies

the redo log starting at the LSN of the begin checkpoint operation. Because operations are idempotent, any

inconsistencies in the fuzzy checkpoint will be made consistent through the redo log.

As previously mentioned, log entries contain three �elds, the \begin" or \end" of an operation, the type

of operation, and unique identi�ers for documents it operates on. An additional optimization made possible

by the immutable data abstraction is that during recovery, the log can be traversed to generate a compact,

simulated mapping of \live" documents at the time of failure, each reference by their identi�er. We use this

mapping as a single patch, and apply it to the in-memory document store, bringing it up-to-date in one

single operation. This guarantees that only documents present in memory at time of failure are loaded, and

frequent insert/delete operations in the log will not impact recovery time.

16

5 Implementation and Status

XSet has undergone several major design and implementation modi�cations and a distribution is now publicly

available in two forms: a stand-alone application (http://www.cs.berkeley.edu/~ravenben/xset), and as

an application written using the Ninja distributed services framework [25]. XSet has also been integrated

or is being integrated in to several applications (see Section 1.1). In this section, we discuss speci�c details

about the current XSet implementation.

5.1 Implementation Platform

For portability and ease of implementation, we chose Java [14] as the programming language. As a result,

the stand-alone version of XSet is small (5000 lines) and runs without modi�cation on several OS platforms.

The third major revision of XSet has been implemented on top of the Ninja distributed services architec-

ture. The Ninja operating environment strives to provide services with fault-tolerance, load balancing and

fast communication. To parse XML, XSet uses the DOM API [26] for parser indepdence and the XML4J

parser from IBM Research Labs.

5.2 Persistent Datastore

For simplicity, XSet currently uses the �le system as its persistent backing store. This allows XSet to be easily

portable, while leveraging large amounts of research in �le system fault-tolerance and recovery. Furthermore,

XSet's I/O interface can easily be modi�ed to operate on top of an alternative backing store, such as a

memory-mapped interface or a log-based �le system [23].

5.3 Treaps

Treaps are probabilistically self-balancing trees that achieve O(Log2(n)) time for all operations [24]. As the

data structures for indexing documents by their tag values, they were chosen for their research value rather

than performance. While a data structure with a larger branch factor such as a B-tree would reduce the tree

traversal time, the choice of treaps gave us a chance to explore novel properties of trees with dual indices for

each object (Cartesian trees).

17

Treap performance characteristics are similar to other binary trees such as T-trees and red-black or AVL

trees, and treaps have the advantage of preserving heap order on a secondary key. This secondary key usually

is a pseudo-random \priority" generated at insertion time and used to provide self balancing qualities. In

practice, this secondary key can be further manipulated by the treap structure during accesses to implement

speci�c heap order policies. For example, incrementing the priority with a small randomized number during

each access and then rotating the treap to maintain heap order, if necessary. The net result of such a policy

is that the values accessed most often tend to \rise" in the heap, providing shorter trips down from the root

node and exploiting temporal locality for improved performance. This property could prove especially useful

when considering cache versus main-memory performance on future systems [19].

Treaps have also been shown to be extremely eÆcient for parallel algorithms on ordered sets [7]. Using

treaps allows us to investigate these fast parallel algorithms in distributed and parallel versions of XSet.

6 Performance

In this section, we evaluate the performance and scalability of the current XSet implementation, and compare

its performance under a LDAP Benchmark to that of Lore [20] and SLAPD [18], a widely-used, publicly

available stand-alone LDAP server. Both Lore and SLAPD are implemented in C. We �rst show that XSet

compares favorably against existing systems, then show that XSet scales well as the size of the dataset

increases2. For experiments, we used Linux and Windows NT platforms: Linux 2.2.13 with IBM's JDK 1.1.8

for Linux (Intel Pentium II 350 Mhz with 128MB of memory), and Windows NT 4.0 Terminal Server with

Sun Microsystems' JDK 1.1.7B (Intel Pentium II Xeon 450Mhz with 1 GB of memory).

6.1 Comparative Query Performance

Given the lack of an existing XML database benchmark, we gauge the performance of XSet by comparing

its query latency with Lore and SLAPD using an existing directory benchmark, DirectoryMark 1.13. We

2Note that we did not compare XSet performance against commercial LDAP servers as such a comparison would not

appropriate. These servers are not composable components and they represent 1000's of person-hours of hand optimization and

are written in platform-speci�c languages.
3DirectoryMark is available from Mindcraft at http://www.mindcraft.com/directorymark/ .

18

Figure 5: Query Performance under LDAP DirectoryMark 1.1

implemented an LDAP front-end to XSet that supported BASE, SINGLE, and SUB tree exact match queries.

We then implemented a similar front-end for Lore (Diet 5.0 for Linux) and con�gured SLAPD to support

similar queries. Running each LDAP server on our Linux machine (2.2.13, PII 350Mhz, 128MB RAM), we

tested two main components of DirectoryMark, Subtree matches and Base-level searches, using its small

dataset con�guration, and present our results below.

In Figure 5, we show the query latency results of the DirectoryMark 1.1 data on a logarithmic scale. We

see that on the Subtree messaging test, XSet outperforms SLAPD by more than an order of magnitude, and

Lore by more than two orders of magnitude. In the Base level search test, XSet again outperforms Lore by

two orders of magnitude, and SLAPD by 31%.

Note that we have not included the cost of transforming data between LDAP's native binary formats and

XML (approximately 200 milliseconds/query). While generalized tools for this conversion exist in Java, their

string manipulation performance is poor, thus we believe that given time, we can implement their function-

ality much more eÆciently in C, and reduce the conversion overhead to an estimated 4-5 milliseconds/query.

While this overhead is not shown in our charts, the impact of its addition will have little impact except for

the Base level search, where the performance of XSet with conversion will be similar to that of SLAPD. The

LORE test incurred a high cost as a result of the Java interface to the standalone LORE server (The C-API

for Linux was not functional at the time of our measurements). To be fair to LORE, we did not include this

19

prohibitively high data translation cost (> 1 minute) in our �nal results.

NOTE to reviewer(s): We expect to have an eÆcient ANS.1 to XML translator implemented by summer;

and should this paper by accepted, we will include the translation overhead in the results for the �nal paper.

We will also be able to include more detailed measurements and analysis.

When we analyze the di�erences in performance between XSet, SLAPD, and LORE, the key factors

to consider are language of implementation, memory- versus disk-based storage, and complexity due to

functionality. While XSet is implemented in Java, both SLAPD and LORE are implemented in C. Despite

this fact, XSet shows a considerable performance advantage, the majority of which can be attributed to its

operation as a main-memory database, whereas both SLAPD and LORE are disk-based. Finally, the high

query latency for LORE can be attributed to complexity associated with supporting additional functionality

such as proximity searches.

6.2 XSet Performance and Scalability

While we have shown XSet to compare favorably against existing databases in LDAP applications, a second

key goal is to show that XSet performance scales well with dataset size. XSet performance consists of three

components: validation, insert/delete, and queries. Validation is the one-time process of certifying that the

XML document conforms to an external DTD, and takes roughly 4 ms/query (NT). Insert/delete costs

impact operations that modify the index, and also log roll-back during database recovery. Finally, query

processing is the latency involved in servicing a query.

In our measurements, we �nd that index/delete latency is independent of dataset size and approximately

2 ms for small documents (NT). We also found that query latency scales logarithmically with dataset size,

as shown in Figure 6. As the dataset increases in size, the query latency is dominated by the cost of memory

accesses incurred through traversing the in-memory index. Since the treap index structure is probabilistically

self-balancing, each search down an index tree involves O(Log2(S)) memory fetches, where S is the number

of entries in the database. In fact, we expect that by replacing the treap in the index with a higher-branching

data structure such as the B-tree, we can further reduce the rate of latency increase to O(Logn(S)), where

n is the B-tree branch factor. The latency does stray from the logarithmic line, however, when the dataset

20

Figure 6: Query time versus dataset size (NT Server)

<?xml version="1.0"?>
<WEBLOG>
 <SOURCEIP>www.yahoo.com</SOURCEIP>
 <TIME>
 <DATE>
 <DAYOFMONTH>07</DAYOFMONTH>
 <MONTH>Dec</MONTH>
 <YEAR>1998</YEAR>
 </DATE>
 <TIMEOFDAY>
 <HOUR>01</HOUR>
 <MIN>57</MIN>
 <SEC>25</SEC>

 </TIMEOFDAY>
 </TIME>
 <TIMEZONE>-800</TIMEZONE>
 <ACTION>
 <COMMAND>GET</COMMAND>

 <HTTPPROTO>HTTP/1.0</HTTPPROTO>
 </ACTION>
 <RETCODE>200</RETCODE>
 <TRANSIZE>3868</TRANSIZE>
</WEBLOG>

 <LOCATION>/sequoia/schema/html/4.5.html</LOCATION>

Figure 7: A sample XML database �le

reaches 180,000 documents. We believe this is due to the Java garbage collection mechanism running more

frequently once a high memory utilization threshold (90%) has been reached.

To create this dataset, we converted an HTTP web server access log into small (approx. 1KB) XML �les,

where each �le encoded the information for one HTTP request. The resulting tree has a depth of 3 levels

with an average branch factor of 5 at each tag. Figure 7 shows a sample XML database �le.

Unfortunately, this dataset is not an optimal choice. Most data about each HTTP access is unique, so

queries performing exact matches only return small result sets. Also, accesses by the same IP address tend

to be grouped closely in the indexing sequence, resulting in IP address locality in the storage treaps. To

circumvent this problem in our measurements, the queries in the query set are based upon a collection of IP

21

addresses evenly distributed in the database. We then averaged the results across the query set.

7 Future Work

The main limitation to XSet's scalability is the dependence on main memory, and that can be solved by build-

ing a clustered version of XSet, where single XSet servers communicate to dynamically partition incoming

data.

Despite the increasing availability and capacity of memory chips, main memory still remains the only

obstacle between XSet and large scale datasets. Our solution is to build an inter-server communication layer

which allows servers to join a XSet server group, and dynamically repartition the data as necessary to provide

scalability. For an overloaded server handling queries on heterogeneous datatypes, the naive solution is to

partition data by its document type or DTD. For an overloaded server containing documents of one type,

we plan to use an introspective heuristic to �nd the optimal keys for partitioning. The heuristic watches the

query stream and determines the \primary" keys at regular intervals. The result is a dynamic system that

adjusts to changes in query patterns and number of nodes available.

8 Conclusion

In this paper, we have shown how the XSet datatbase leverages XML to provide eÆcient, high performance

storage and query functionality for semi-structured data. By simplifying the query language, XSet enables

applications to perform simpler and faster queries.

XSet enables these performance improvements by relaxing the strict ACID semantics of traditional

databases. In particular, XSet does not support transactions and only provides atomicity at the granu-

larity of individual operations. The performance results clearly show the bene�ts of this choice and the use

of data structures that are better tailored to the applications' data: query time scales logarithmically with

dataset size.

A portable version XSet is available publicly and XSet is being used by several large-scale distributed

applications. We are continuing to re�ne the architecture based upon our experiences and others. Future

22

versions of XSet will also address incremental scalability and dynamic data partitioning.

References

[1] Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. The Lorel query language for semistruc-

tured data. International Journal on Digital Libraries 1, 1 (April 1997), 68{88.

[2] Agrawal, D., Abbadi, A. E., and Singh, A. K. Semantics-based correctness criteria for databases. ACM

Transactions on Database Systems 18, 3 (September 1993), 460{486.

[3] Agrawal, R., Carey, M. J., and Livny, M. Concurrency control performance modeling: alternatives and

implications. ACM Transactions on Database Systems 12, 4 (1987), 609{654.

[4] ayavel Shanmugasundaram, Gang, H., Tufte, K., Zhang, C., DeWitt, D., and Naughton, J. F. Rela-

tional databases for querying xml documents: Limitations and opportunities. In Proceedings of the 1999 VLDB

Conference (September 1999), ACM SIGMOD.

[5] Badrinath, B., and Ramamritham, K. Semantics based concurrency control: Beyond commutativity. ACM

Transactions of Database Systems 17, 1 (March 1992), 163{199.

[6] Barghouti, N. S., and Kaiser, G. E. Concurrency control in advanced database applications. ACM Computing

Surveys 23, 3 (September 1991), 269{317.

[7] Blelloch, G. E., and Reid-Miller, M. Fast set operations using treaps. In 10th Annual ACM Symposium

on Parallel Algorithms and Architectures (Puerto Vallarta, Mexico, June - July 1998), ACM.

[8] Bray, T., Paoli, J., and Sperberg-McQueen, C. M. Extensible Markup Language (XML). W3C Proposed

Recommendation, December 1997. http://www.w3.org/TR/PR-xml-971208.

[9] Clark, D. D. The design philosophy of the darpa internet protocols. In SIGCOMM '88 Symposium (Stanford,

CA, August 1988), ACM, pp. 106{114.

[10] Czerwinski, S., Zhao, B. Y., Hodes, T., Joseph, A. D., and Katz, R. An architecture for a secure

service discovery service. In Proceedings of the Fifth Annual International Conference on Mobile Computing and

Networking (Seattle, WA, August 1999), ACM.

[11] Deutsch, A., Fernandez, M., Florescu, D., Levy, A., and Suciu, D. XML-QL: A Query Language for

XML, August 1998. http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[12] Farrag, A., and Ozsu, M. Using semantic knowledge of transactions to increase concurrency. ACM Transac-

tions on Database Systems 14, 4 (December 1989), 503{525.

[13] Gelernter, D. Generative communication in Linda. In Transactions on Programming Languages and Systems

(January 1985), vol. 7, ACM, pp. 80{112.

[14] Gosling, J., and McGilton, H. The Java language environment, a white paper. http://java.sun.com/docs/

white/langenv/, May 1996.

[15] Gray, J. The transaction concept: Virtues and limitations. In Proceedings of the 7th International Conference

on Very Large Data Bases (September 1981), pp. 144{154.

[16] Howes, T. A. The Lightweight Directory Access Protocol: X.500 Lite. Tech. Rep. 95-8, Center for Information

Technology Integration, U. Mich., July 1995.

[17] Kung, H. T., and Robinson, J. T. On optimistic methods for concurrency control. ACM Transactions on

Database Systems 6, 2 (June 1981), 213{226.

[18] LDAP Group, Univ. of Michigan. The SLAPD distribution. Available at http://www.umich.edu/~dirsvcs/

ldap.

[19] MacDonald, J., and Zhao, B. Y. T-treap and cache performance of indexing data structures.

http://www.cs.berkeley.edu/ ravenben/research/CS252/252Paper.pdf, December 1999.

[20] McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J. Lore: A database management

system for semistructured data. SIGMOD Record 26, 3 (September 1997), 54{66.

[21] Mockapetris, P. V., and Dunlap, K. Development of the domain name system. In Proceedings of SIGCOMM

'88 (August 1988), ACM.

23

[22] Robie, J., Lapp, J., and Schach, D. XML Query Language (XQL). In QL '98 - The Query Languages

Workshop (December 1998), W3C. http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[23] Rosenblum, M., and Ousterhout, J. K. The design and implementation of a log-structured �le system.

ACM Transactions on Computer Systems (February 1992).

[24] Seidel, R., and Aragon, C. R. Randomized search trees. Algorithmica 16 (1996), 464{497.

[25] The Ninja Team. The Ninja Project. http://ninja.cs.berkeley.edu.

[26] W3C DOM Working Group. Document Object Model, December 1998. http://www.w3c.org/DOM/.

[27] Wang, H. J., Raman, B., Chuah, C. N., Biswas, R., Gummadi, R., Hohlt, B., Hong, X., Kiciman, E.,

Mao, Z., Shih, J. S., Subramanian, L., Zhao, B. Y., Joseph, A. D., and Katz, R. H. Iceberg: An internet-

core network architecture for integrated communications. IEEE Personal Communications (2000). Special Issue

on IP-based Mobile Telecommunication Networks.

[28] Wong, M. H., and Agrawal, D. Tolerating bounded inconsistency for increasing concurrency in database

systems. In Proceedings of the 11th Symposium on Principles of Database Systems (June 1992), ACM SIGMOD.

24

