Lab 2 — Multiple Processes

Ryan Wenger



First, a humble request

Why this ... and not this???

void *do_read(void *arg)

{

void *do_read(void *arg)

{

struct PCB_struct *pcb = arg; struct PCB_struct xpcb = arg;

int fd = pcb->registers[5];
unsigned buf = pcb—>registers|[6];
unsigned count = pcb—>registers[7];

int argl = pcb—>registers[5];
int arg2 = pcb—>registers[6];
int arg3 = pcb—>registers([7];

Are we in CS87? No?? | am begging you to please give your variables useful
names. They’re right there at the top of the man page!

SYNOPSIS
#include <unistd.h>

ssize_t read(int fd, void buf[.count], size_t count);



We want to run non-basic complex programs

* i.e, ones that #include stuff
* Typically, these use the C standard library (“libc”)

* These programs need to allocate heap memory, interact with
other processes, and learn about the rest of the system

* Most C library functions aren’t system calls, but make use of
system call(s) to perform their function

* e.g. malloc() calls sbrk() when it runs out of space on the FreelList, printf()
calls write() to send data to the console



Many, many new system calls

* ioctl() — (lLimited, see cookbook)

* fstat() — (limited, see cookbook)
All of these are trivial

* getpagesize() — get memory page size in lab 2 and don’t

* getpid() — get caller’s process ID require much more

» getppid() - get caller’s parent’s process ~ thansyscall_return()
ID

* getdtablesize() - return 64
* close() —return EBADF (*until next lab)



Non-trivial system calls

* sbrk() - “shift break”: increment the process’ break pointer.
Called by libc malloc() to request additional heap memory from
the kernel.

* execve() — “execute (with vector argv & environment)”: replace the
current process image with a new one. i.e., stop the current
program and start running a new one from the beginning.

* fork() — “fork”: spawn a duplicate of the current process
* wait() — “wait”: wait until another (child) process exits



Virtual Memory

* >1 process occupying a chunk of memory == very bad

* Divide simulator’s main_memoryl[] into 8 slices, allowing 8
processes to run simultaneously without overlapping each other’s
memory

* PCB stores the starting/base index of its slice of main_memory[]
and the total size of that slice

* Right before calling run_user_code(), set global vars User_Base
and User_Limit to (base, size) so that the simulator knows which
slice of memory to use while executing

* When converting from user addresses/pointers in your system calls, don’t
forget to add PCB->base




Process memory layout




void *sbrk(int increment);

* Shifts the break pointer (stored in the PCB) by increment
* i.e., adjusts the size of the heap

* On success, returns the value of the break pointer before
Incrementing

 sbrk '= malloc

* |f you wanted, you could replace the BigBuffer array from your lab0O with
calls to sbrk() whenever the FreelList is empty

* Don’t allow the break pointer to pass the stack pointer!



int execve(const char *pathname, char *const argv|],
char *const envp[]);

* Completely replaces the calling program with a new one.
* zeros the calling process’s memory slice and registers

loads the program file at pathname

sets the program counter to the start of the new program

passes in argv and begins executing (envp is ignored in KOS)

Process ID, parent/child relationships, and file descriptors are left
untouched

* Save a copy of pathname and argv somewhere safe before zeroing
the caller’s memory (envp will be NULL)

* Other than its break pointer and registers, don’t modify the calling
PCB variable at all



Saving arguments to execve()

 pathname: pointer to the 15t character in the file path
* (pathname+1): pointer to the 2" character in the file path

* - treat this the same as arguments to write, but save a copy of it
somewhere. (hint: see strdup() from <string.h>)

e argv: pointer to a pointer to the 18t character of the 1stargument to
the new program

 (argv[0]): pointer to the 15t character of the 15t argument to the new
program

* (argv[0] + 1): pointer to the 2"9 character of the 15t argument to the new
program

* (argv + sizeof(char*)): pointer to a pointer to the 15t character of the 2"
argument to the new program



Handling execve() arguments

<inside shell spawned by 'strace --trace=execve -ff /bin/sh’ on CSIL>
sh-5.2S Is -l ~rich/cs170

strace: Process 56562 attached

[pid 56562] execve("/usr/bin/Is", ["Is", "-I", "/cs/faculty/rich/cs170"], /* 59 vars */) =0

pethname RrgVv

execve ("/usr/bin/1s", ["1s", "-1", "/cs/faculty/rich/csl1l70"], /* 59 vars */) =0

* toiterate over all characters in each element of argv, convert argv itself from a
simulator to kernel pointer

* and convert each pointer within the resulting array from sim to kernel

* Then malloc() space (don’t use the stack) to store copies of all this & make
sure none of the strings go past the process’s address space



pid_t fork(void);

* Completely duplicates the calling process and resumes execution
of both

* New process receives a different PID and the original becomes the new
one’s parent

* Allocate new PCB and new slice of main_memory[], then copy
everything from the caller into the new one

* Don’t forget to assign modified base_addr, PID, and parent/children
records

* kt_fork a new thread that has the child syscall_return(0)
* Parent returns child’s PID



pid t wait(int *wstatus);

* Waits for any of the caller’s child processes to exit, then stores the
exit code in wstatus (if wstatus isn’t NULL)
* To implement, have the waiter call P() on a semaphore

* When any of its children exit, they will V() this semaphore, waking up the
parent so that it may return



Cleaning up processes

* |If a parent hasn’t called wait() before its child exits, child becomes
zombie

* exit code, pid, etc. must be preserved in the kernel until the parent calls
wait() or exits itself

* wait() call needs to handle resource cleanup (free() PCB, recycle PID, etc)

* |f parent exits before child, child becomes an orphan and is
adopted by the init process (which in turn shuts down the entire
system when it exits)

* |t’s init’s job to reap orphaned zombie children (call free on their
PCB’s and handle cleanup)



guestions

°?



	Slide 1: Lab 2 – Multiple Processes
	Slide 2: First, a humble request
	Slide 3: We want to run non-basic complex programs
	Slide 4: Many, many new system calls
	Slide 5: Non-trivial system calls
	Slide 6: Virtual Memory
	Slide 7: Process memory layout
	Slide 8: void *sbrk(int increment);
	Slide 9: int execve(const char *pathname, char *const argv[],            char *const envp[]); 
	Slide 10: Saving arguments to execve()
	Slide 11: Handling execve() arguments
	Slide 12: pid_t fork(void);
	Slide 13: pid_t wait(int *wstatus);
	Slide 14: Cleaning up processes
	Slide 15: questions

