
Lab 2 – Multiple Processes
Ryan Wenger

First, a humble request

Why this … and not this???

Are we in CS8?? No?? I am begging you to please give your variables useful
names. They’re right there at the top of the man page!

We want to run non-basic complex programs

• i.e, ones that #include stuff
• Typically, these use the C standard library (“libc”)

• These programs need to allocate heap memory, interact with
other processes, and learn about the rest of the system

• Most C library functions aren’t system calls, but make use of
system call(s) to perform their function
• e.g. malloc() calls sbrk() when it runs out of space on the FreeList, printf()

calls write() to send data to the console

Many, many new system calls

• ioctl() – (limited, see cookbook)
• fstat() – (limited, see cookbook)
• getpagesize() – get memory page size
• getpid() – get caller’s process ID
• getppid() – get caller’s parent’s process

ID
• getdtablesize() – return 64
• close() – return EBADF (*until next lab)

All of these are trivial
in lab 2 and don’t
require much more
than syscall_return()

Non-trivial system calls

• sbrk() – “shift break”: increment the process’ break pointer.
Called by libc malloc() to request additional heap memory from
the kernel.

• execve() – “execute (with vector argv & environment)”: replace the
current process image with a new one. i.e., stop the current
program and start running a new one from the beginning.

• fork() – “fork”: spawn a duplicate of the current process
• wait() – “wait”: wait until another (child) process exits

Virtual Memory

• >1 process occupying a chunk of memory == very bad
• Divide simulator’s main_memory[] into 8 slices, allowing 8

processes to run simultaneously without overlapping each other’s
memory

• PCB stores the starting/base index of its slice of main_memory[]
and the total size of that slice

• Right before calling run_user_code(), set global vars User_Base
and User_Limit to (base, size) so that the simulator knows which
slice of memory to use while executing
• When converting from user addresses/pointers in your system calls, don’t

forget to add PCB->base

Process memory layout

void *sbrk(int increment);

• Shifts the break pointer (stored in the PCB) by increment
• i.e., adjusts the size of the heap

• On success, returns the value of the break pointer before
incrementing

• sbrk != malloc
• If you wanted, you could replace the BigBuffer array from your lab0 with

calls to sbrk() whenever the FreeList is empty

• Don’t allow the break pointer to pass the stack pointer!

int execve(const char *pathname, char *const argv[],
 char *const envp[]);

• Completely replaces the calling program with a new one.
• zeros the calling process’s memory slice and registers
• loads the program file at pathname
• sets the program counter to the start of the new program
• passes in argv and begins executing (envp is ignored in KOS)
• Process ID, parent/child relationships, and file descriptors are left

untouched

• Save a copy of pathname and argv somewhere safe before zeroing
the caller’s memory (envp will be NULL)

• Other than its break pointer and registers, don’t modify the calling
PCB variable at all

Saving arguments to execve()

• pathname: pointer to the 1st character in the file path
• (pathname+1): pointer to the 2nd character in the file path
• → treat this the same as arguments to write, but save a copy of it

somewhere. (hint: see strdup() from <string.h>)

• argv: pointer to a pointer to the 1st character of the 1st argument to
the new program
• (argv[0]): pointer to the 1st character of the 1st argument to the new

program
• (argv[0] + 1): pointer to the 2nd character of the 1st argument to the new

program
• (argv + sizeof(char*)): pointer to a pointer to the 1st character of the 2nd

argument to the new program

Handling execve() arguments
<inside shell spawned by 'strace --trace=execve -ff /bin/sh’ on CSIL>
sh-5.2$ ls -l ~rich/cs170
strace: Process 56562 attached
[pid 56562] execve("/usr/bin/ls", ["ls", "-l", "/cs/faculty/rich/cs170"], /* 59 vars */) = 0

• to iterate over all characters in each element of argv, convert argv itself from a
simulator to kernel pointer

• and convert each pointer within the resulting array from sim to kernel
• Then malloc() space (don’t use the stack) to store copies of all this & make

sure none of the strings go past the process’s address space

pid_t fork(void);

• Completely duplicates the calling process and resumes execution
of both
• New process receives a different PID and the original becomes the new

one’s parent

• Allocate new PCB and new slice of main_memory[], then copy
everything from the caller into the new one
• Don’t forget to assign modified base_addr, PID, and parent/children

records

• kt_fork a new thread that has the child syscall_return(0)
• Parent returns child’s PID

pid_t wait(int *wstatus);

• Waits for any of the caller’s child processes to exit, then stores the
exit code in wstatus (if wstatus isn’t NULL)
• To implement, have the waiter call P() on a semaphore
• When any of its children exit, they will V() this semaphore, waking up the

parent so that it may return

Cleaning up processes

• If a parent hasn’t called wait() before its child exits, child becomes
zombie
• exit code, pid, etc. must be preserved in the kernel until the parent calls

wait() or exits itself
• wait() call needs to handle resource cleanup (free() PCB, recycle PID, etc)

• If parent exits before child, child becomes an orphan and is
adopted by the init process (which in turn shuts down the entire
system when it exits)

• It’s init’s job to reap orphaned zombie children (call free on their
PCB’s and handle cleanup)

questions

• ?

	Slide 1: Lab 2 – Multiple Processes
	Slide 2: First, a humble request
	Slide 3: We want to run non-basic complex programs
	Slide 4: Many, many new system calls
	Slide 5: Non-trivial system calls
	Slide 6: Virtual Memory
	Slide 7: Process memory layout
	Slide 8: void *sbrk(int increment);
	Slide 9: int execve(const char *pathname, char *const argv[], char *const envp[]);
	Slide 10: Saving arguments to execve()
	Slide 11: Handling execve() arguments
	Slide 12: pid_t fork(void);
	Slide 13: pid_t wait(int *wstatus);
	Slide 14: Cleaning up processes
	Slide 15: questions

