' —
S Py 0
» ’ ' : !‘, ' ,.‘.. ’ " t
sae P wor gt Seen. ¥
Gou’ Some vor ooo 9% P 8T8 508 25
os® P L™ H T O us. ", 2 E : '3 pr .'"- PP
L, . Y ' g « H - -IOI- "aer 4 -
vt ‘ aot “ (T Ll oS oot #
. v » ‘ “ 'TL s pr et F ee - LA H
“ ™ "B : : " g l"'. I
™ ” oot: i L S g 118 4 E &lis % L Yam
M]
L 0“.’ ‘ 8 Senee ,,, =” 19 .’-n ¥yur wew o .".
» : Y atuse g goh 4 L
v o gp e sos, "' . 4
g o eseng : ;“‘; § : z i e
." w " .1 gob (14 .." ey '=
Chad # po H !'l] o .'”3 5 5.5
. 4 4 " w H
‘ ‘ ‘ .”' “ il o L L g ".:= -'E E E é E ::.3 ” '-n. .
ety s L : 5,548 Teet g ‘00'
’: ':"‘" L) ("] '“

C S 1 7 O | e’ S L ,
o :',3 g :.:‘- i ;E i ::' z:'} ot “" ;;} 4 ol -°'
an 114

Ryan Weﬂger i
pe Jh‘ e 43 Pges

l)

3.
13

%

R 7

OI-.-a
=
3“
+=

@
' as?
o it i.o-’
L ” " 3 o]
.. - el -“‘lz E i =‘ -

g 3 ges 25d5e ek By P 5 " g T "" i o
L L ,.: * i ! ,::.. LT 1] ‘. ! ; ‘ ‘ ” Y L
L3 on® | -+ TE H . o L4 "

. » LLad i L Ll p
: H e R H sty s po - ! ’ e
T L !:::0 1t . o "’y : " vt M' ; ' ;o" w .l:' 8
ant ' ¥ i ” M (PP go? .‘.’ .. o oot ‘.‘:‘ " , ,”
3 s o g I ‘w g% ...‘ i ; ‘ o "‘.“ ' , bt
L .. '..’ “ ant 0.‘.: ..¥ ' , 1" Fons o o

1 M ﬁf o‘% ; l"’ ;“:‘ -"’ s i ‘ fr]

ae? vt - £ 5 13 Fget i "": 54 ! .‘3 8 ™ o Faht ’ , »

"“g *'ﬂ": I oy '05 E E !: LT L4 " 009 :rO': i 0‘: 1 ot

L i i i L gl »aah, T ® b " . Jant e al -,
o dp W l‘ " 4 ’ ' ¢ 1‘

A g ho ,

File Descriptors - Quick Overview

 The int fd parameter to read/write/close/dup/etc is an index into an array stored within each PCB. This can be any
size you want, but | made mine 64 entries, which is more than enough.

This array usually holds pointers to “File” objects that can somehow represent the three devices we're allowed to
perform I/O on: pipes, console, and keyboard. If an entry in the array is NULL, then it's unused.

Because files can be referred to by multiple entries in a PCB'’s fd table—as well as by multiple PCB's, in the case of
fork()-the objects need to track a reference count (look it up if you've never heard of “reference counting.” It's
exactly what it sounds like.)

Likewise, file objects should be globally allocated (i.e., via malloc). A process could create a file object representing a
pipe, and then fork and exit, which should leave the pipe still accessible to its child.

See Rich’s system call lecture notes for more details

https://sites.cs.ucsb.edu/~rich/class/cs170/notes/SystemCalls/index.html

Software Layering

* Read, write, and close system calls need to be able to operate on multiple
kinds of I/O objects (console and pipes)

« Advise creating read_console()/write_console()/close_console() and
read_pipe()/write_pipe()/close_pipe() helper functions that take care of
performing the read/write/close operation (close_console can be a no-op).
This way, do_read()/do_write()/do_close() can just handle argument
unmarshalling & error checking, then simply call out to the appropriate
helpers to perform the the operation.

» Also means that you can unit test your pipe helper functions by calling them from a “regular” Linux C program.

File Objects - Two Implementations

1. Use inheritance/polymorphism: create a base File class with method stubs for read,
write, and close, and then subclass it to implement Pipe/Console/Keyboard classes that

override and implement the necessary methods.

2. Use a flag variable/enum in each File object to identity its type, then from within
sys_write, call a corresponding pipe_write/console_write/etc helper accordingly.

Either way, your system calls need to be able to perform I/O for any (valid) File object,
so you should design it to encompass all types of concrete devices that can be referred

to by a file descriptor.

Polymorphism in C (for those

Here is one way (of many) of using
polymorphism to implement a File
"base/abstract class” and Pipe “derived class” in
plain C. The Pipe overrides File's read, write,
and close() methods with its own.
* (note do_read and do_close are
incomplete here)

Likewise, you would then create
console_read/console_write functions and
attach those to the File objects which refer to
standard in, out, and error

This means that the top-level system calls (read,
write, close) don't have to know or care at all
what type of device they're operating on.

interested)

struct File {
void xthis;
int refcount;

int (xread) (void *, char *, size_t);
int (xwrite) (void *, char x, size_t);
int (xclose) (void *);

.Z) i

1 struct Pipe { ¥

e_read(void xthis, char xbuf, size_t size) {

t pip

t pipe_write(void xthis, char xbuf, size_t size) {
int pipe_close_reader(void *this) {
int pipe_close_writer(void xthis) { }

20 struct Pipe my_pipe = { };

)3 struct File pipe_read_end = {

.device = &my_pipe,
.refcount = 1,

.read = pipe_read,

.close = pipe_close_reader,

v 4 H

32 struct File pipe_write_end = {

.device = &my_pipe,
.refcount = 1,

.write = pipe_write,

.close = pipe_close_writer,

¥

10 struct PCB {

struct File xfd_table[64];

4}

17 void *do_read(int fd, char *buf, size_t size)

struct File xtarget = calling_pcb->fd_table[fd];

(target == NULL || target->read == NULL)
syscall_return(-EBADF);

target->read(target->this, buf, size);

60 void *do_close(int fd)

Lot

struct File xtarget = calling_pcb->fd_table[fd];
(target == NULL)
syscall_return(-EBADF);

((—-target->refcount) == 0)
target->close(target->this);

Note on Reference Counting

(this is just one way to do it)

 "File” objects contain reference counts that track how many pointers to that object
exist across all PCBs' file descriptor tables

» Dup/dup2, close, exit, and fork operate directly on ONLY these counts
» Possible for multiple PCB’s to contain pointers to the same File object

* When refcount reaches 0, call the File's ->close() operation (e.g. pipe_close_writer()) & free() the File object

 Pipe objects contain a count of the number of readers and a count of the number of
writers

* These track the number of distinct “File” objects that refer to the read/write end of the pipe
* OnlyeverOor 1

* E.g., pipe_close_writer() decrements the pipe’s writers_count. If writers_count is zero, cancel any pending read()s and
return EOF to any future read(). If readers_countis also zero, free() the pipe object.

pipe(), dup(), dup2()

* Read the man pages

* Very straightforward syscalls to implement (although the Pipe objects
themselves are certainly not)

» Adpvise creating some helper classes:

* sema_q - the “semaphore-controlled” queue; identical to the one from the reader thread in lab 1.
Generalize this and use it for pipes, console read, and (optionally) console write (more on that later)

« "File” - type that is pointed to by each entry in a PCB's file descriptor array. Can represent pipe read-end,
write-end, console output, and console input devices. Holds a count for the number of references to itself

so it knows when to release the underlying object (pipe, in our case).

* Anything else you deem necessary (pipes, custom locks, etc.)

Read/write Atomicity of Pipes

From Rich’s hints: Imagine that

« writer 1 executes write(pd[1],buf,10)

« writer 2 executes write[pd[1],buf1,10)
« reader 1 executes read(pd[0],rbuf,10)
» reader 2 executes read(pd[0],rbuf1,10)

The funny thing about pipes is that regardless of the order in which these reads and writes happen, the pipe will attempt to ensure that one of the
two following conditions are true after all four system calls have completed (regardless of their execution order). Either

e rbuf contains the contents of buf and rbuf1 contains the contents of buf1, or
* rbufl contains the contents of buf and rbuf contains the contents of buf1

= Thus, use mutexes to limit access to each end of a pipe to one process at a time, just like what was done for the console in lab 1

Kicking blocked readers/writers from pipes

 Pipes with readers and no writers should indicate EOF to any read()
operations

» Likewise, write() calls on pipes with writers but no readers should return EPIPE

« What if a read() is in progress, waiting for more bytes, when the final writer
closes the write end? We need to “kick” the reader so it doesn’t block
indefinitely and immediately terminates the operation.

* How you accomplish this depends on how your pipe/queue abstractions work, so keep it in mind when
designing them. Probably you'll need to V() a semaphore one or more times to wake each blocked reader, then
have it check whether any writers still exist before continuing to retrieve bytes. (Same goes for writers blocked on
a full queue when the final reader closes its end, except you'll also need to return EPIPE to the user).

Possible Plan of Attack

1. Add file descriptor table to PCB structure (can be an array of pointers to File objects)

» Generalize existing read, write, and close system calls to operate on any entry in this file desc. table. Don't worry about implementing pipes yet, but make sure you
have a mechanism to call appropriate logic for pipes vs. console I/O.

» After refactoring, make sure functionality from lab 2 still behaves the same as before.

2. Implement dup & dup2, and modify close, exit, and fork to operate on File reference counts

None of these should malloc() anything file-related. Dup() and fork() should simply copy pointers and bump reference counts; close and exit should decrement reference counts and (possibly) free()
the File object

3. Implement pipes. You want a struct Pipe, as well as helper functions to read, write, and close either end of a Pipe.

» Testing the logic of pipes in a standalone program/unit testing framework is a good idea here, since you can trigger edge-case behavior much more directly than
when running inside the simulator.

4. Hook up pipes to the entries in your file desc. table

Enable File objects to hold pointers to a Pipe object and call the pipe I/O functions from do_read and do_write

5. Implement pipe() system call. Here is where you should malloc 1 Pipe object and 2 File objects (1 for the read end
and 1 for the write end).

6. Test.

Some gotcha’s to look out for

* Stdin/stdout/stderr can be dup’ed, so you can’t always assume that any fd
greater than 2 in a read/write/close call refers to a pipe

* Reading from a pipe should only return EOF if there are no more writers. If the
pipe is empty, then the read should block and wait for data.

 To prevent interleaving of successive write(x, x, 1) calls (e.g. due to printf),
implement a queue for the console, along with a console worker thread to
push the queue’s contents out to the console device.

» sys_write calls operating on stdout should instead push bytes into this queue, allowing back-to-back write calls
to be nonblocking (up to the size of the queue’s buffer), and thus not be interleaved with another process's

» Be careful that you don't SYSHalt() while this queue isn't yet empty—you may have to add an extra check into your
shutdown logic to prevent this from happening

Other Tips

* Don't forget to decrement reference counts of every (valid) entry in a PCB's file
descriptor table when it exits and increment them when it forks

* It's a very good idea to implement your pipes in a way that allows you to
directly unit-test them without needing to go through KOS/the simulator

* Use the console read queue implementation from lab 1 for pipes. Each pipe
gets its own queue with a buffer, head/tail index, nslots/nused semaphores,
and mutex/mutual exclusion lock

	Slide 1: CS 170
	Slide 2: File Descriptors – Quick Overview
	Slide 3: Software Layering
	Slide 4: File Objects – Two Implementations
	Slide 5: Polymorphism in C (for those interested)
	Slide 6: Note on Reference Counting (this is just one way to do it)
	Slide 7: pipe(), dup(), dup2()
	Slide 8: Read/write Atomicity of Pipes
	Slide 9: Kicking blocked readers/writers from pipes
	Slide 10: Possible Plan of Attack
	Slide 11: Some gotcha’s to look out for
	Slide 12: Other Tips

