Lab 2

Cs170 UC SANTA BARBARA

User Addressesl!!!

- When dealing with user addresses, make sure you
are offsetting from main_memory

- This is a quite common bug and will result in
segfaults

- Use! ain memory [pcb->base + user address]

- This gets the byte (char) value at that user address
- This does not get a pointer
- This does not get anything else but the char

If you want to inferpret the address as something
else, cast it like this

char** pointerarray = (char**) &main memory[pcb->base + user address]

Cs170 UC SANTA BARBARA

Please read the man pages! I'll go over each of
them because people are still confused

- I'm gonna go over these calls

- loctl

- Fstat

- Exec

- Fork

- Wait

- Exit

- The other ones are preftty trivial

- Just remember that for any user address you are
accessing, you want to make sure its in bounds

Cs170 UC SANTA BARBARA

ioctl(fd, request, user_mem_address)

Check the fd

Check the request

User_mem_address is an user address so convert it to
a system address and use ioctl_console_fill

fstat(fd, user_mem_address)

Check the fd
User mem_address is an user address so convert it to
a system address and use stat_buf_fill

Cs170 UC SANTA BARBARA

Exec - replaces entire program with new one

Remember argv is a char**
- An user array filled up with user_addresses that
point to strings

Save the args
PerformExecve:
Loads user program
Sets the registers (StackRegq, brk)
Calls moveargs, initcruntime
Free the args

Cs170 UC SANTA BARBARA

Fork - makes a new program that's a mirror of
current program

- Needs to have a new memory block

- Needs a new pcb

- Needs to have a new pid

- Needs to have a new base

- Sefts parent pcb

- All the other registers are the same

- Modifies parents children

- Copies entire memory block to new block
- Adds both pcbs to readyg

Cs170 UC SANTA BARBARA

Wait

Only argument is a useraddress to wstatus variable
- Check if there are even any children

Blocks and waits for a child to call it

Delete a child from my waiters list

Set wstatus address 1o be the exitval of the child

Clean up the child

Cs170 UC SANTA BARBARA

Exit

Multiple things to do here

- Clean up the memory block

- Save the exitvalue in the pcb

- Send all children to INIT

- Clean up all the zombies (Two ways here)

- Modify parents children to remove current pcb
- Clean up current pcb if parentis INIT

- Otherwise add current pcb to parents waiters

Cs170 UC SANTA BARBARA

Quick note on input if you want it to be like linux

https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-t
esting.html

- KOS doesn’t flush input on enter so running cat80
won't have the same behavior as it does in linux

- KOS as a flag -1, that will set a global variable isTTY
to be true

- This will send a [\n,-2] on an enter, so you can
treat it as a end of input signal

- But also make sure you handle multiple -2's
because there are multiple -2's sent

Cs170 UC SANTA BARBARA

https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-testing.html
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-testing.html

Questions/office hours

Cs170 UC SANTA BARBARA

Exec

"Girl",

Exec.c:
char *path = "argtest";
char *argv[10] = { "argtest", "Once", "I", "Had", "a",
"on", "Rocky", "TOp", NULL};
printf ("printf 0x%x, Ox%x %s\n", argv, argv[0], argv[0]);

execve (path, argv);

Exec inputs:

int execve (const char *pathname, char *const argv[]);
P agv

What is the type of pcb->registers[5]°?
What is the type of pcb->registers[6]?
If main memory started at 0x0
pcb->registers[5] = 80,
pcb->base = 407

What is the value of pathname-?
At what address is the actual pathname?

Let pcb->registers[6] = 72
What is the value of argv?
What is the type of argv[0]?
If argv[l] = 96, where is “Once” located?
What is the value of argv([9]~?

Fork

How many processes return from fork?
Fix the following code for do fork()?

void SysCallReturn(struct PCB struct *pcb, int return val) {

pcb->registers[PCReg] = pcb->registers[NextPCReqg];
pcb->registers[2] = return val;

dll append(readyq, new_jval v (pcb));

kt exit();

void *do fork(void *arg) {
struct PCB_struct* pcb = (struct PCB struct*) arg;
//whats missing here
struct PCB_struct* newpcb = malloc (sizeof (struct PCB_struct));
//pcb only has base, limit, brk, pid, pPCB so far
newpcb->base = pcb->base;
newpcb->limit = pcb->limit;
newpcb->brk = pcb->brk;
newpcb->pid = pcb->pid;
newpcb->pPCB = pcb;
for (int 1 = 0; i < NumTotalRegs; i++) {
newpcb->registers[i] = pcb->registers([i];

}

memcpy (newpcb->base, pcb->base, pcb->limit);
SysCallReturn (newpcb, 0);

SysCallReturn (pcb, newpcb->pid);

Wait
Whats a zombie? Who cleans up after a zombie?
What is an orphan? Who cleans up after an orphan?

Consider the following:
Init is initialized
Who is Init’s parent?
procl is initialized
Who is proc1’s parent?
procl calls fork(), so proc2 is initialized
Who is proc2’s parent?
proc2 calls fork() twice, so proc3 and proc 4 is initialized
Who is proc3’s parent?
Who is proc4’s parent?
proc4 calls exit()
Who and when is it going to get cleaned up?
proc?2 calls exit()
Does anyone clean up proc2 yet?
Who is proc3’s parent?
procl calls wait()
Who does procl clean up in this call?
procl calls exit()
Who cleans up procl?
proc3 calls exit()
Who cleans up proc3?

	ef7411f8-9973-4c16-9ccc-38e2e285163e.pdf
	Exec
	Fork
	Wait

