
CS170

Lab 2

CS170

User Addresses!!!

- When dealing with user addresses, make sure you
are offsetting from main_memory

- This is a quite common bug and will result in
segfaults

- Use main_memory[pcb->base + user_address]
- This gets the byte (char) value at that user address
- This does not get a pointer
- This does not get anything else but the char

- If you want to interpret the address as something
else, cast it like this

char** pointerarray = (char**) &main_memory[pcb->base + user_address]

CS170

Please read the man pages! I’ll go over each of
them because people are still confused

- I’m gonna go over these calls
- Ioctl
- Fstat
- Exec
- Fork
- Wait
- Exit
- The other ones are pretty trivial
- Just remember that for any user address you are

accessing, you want to make sure its in bounds

CS170

ioctl(fd, request, user_mem_address)
Check the fd
Check the request
User_mem_address is an user address so convert it to
a system address and use ioctl_console_fill

fstat(fd, user_mem_address)
Check the fd
User_mem_address is an user address so convert it to
a system address and use stat_buf_fill

CS170

Exec - replaces entire program with new one

Remember argv is a char**
- An user array filled up with user_addresses that

point to strings

Save the args
PerformExecve:

Loads user program
Sets the registers (StackReg, brk)
Calls moveargs, initcruntime

Free the args

CS170

Fork - makes a new program that's a mirror of
current program

- Needs to have a new memory block
- Needs a new pcb
- Needs to have a new pid
- Needs to have a new base
- Sets parent pcb
- All the other registers are the same
- Modifies parents children
- Copies entire memory block to new block
- Adds both pcbs to readyq

CS170

Wait

Only argument is a useraddress to wstatus variable
- Check if there are even any children
- Blocks and waits for a child to call it
- Delete a child from my waiters list
- Set wstatus address to be the exitval of the child
- Clean up the child

CS170

Exit

Multiple things to do here

- Clean up the memory block
- Save the exitvalue in the pcb
- Send all children to INIT
- Clean up all the zombies (Two ways here)
- Modify parents children to remove current pcb
- Clean up current pcb if parent is INIT
- Otherwise add current pcb to parents waiters

CS170

Quick note on input if you want it to be like linux

https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-t
esting.html

- KOS doesn’t flush input on enter so running cat80
won’t have the same behavior as it does in linux

- KOS as a flag -t, that will set a global variable isTTY
to be true

- This will send a [\n,-2] on an enter, so you can
treat it as a end of input signal

- But also make sure you handle multiple -2’s
because there are multiple -2’s sent

https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-testing.html
https://sites.cs.ucsb.edu/~rich/class/cs170/labs/linux-testing.html

CS170

Questions/office hours

Exec
Exec.c:

char *path = "argtest";

char *argv[10] = { "argtest", "Once", "I", "Had", "a", "Girl",

"on", "Rocky", "Top", NULL};

printf("printf 0x%x, 0x%x %s\n", argv, argv[0], argv[0]);

execve(path, argv);

Exec inputs:
int execve(const char *pathname, char *const argv[]);

What is the type of pcb->registers[5]?
What is the type of pcb->registers[6]?
If main_memory started at 0x0
 pcb->registers[5] = 80,
 pcb->base = 40?

​ What is the value of pathname?
​ At what address is the actual pathname?

Let pcb->registers[6] = 72
​ What is the value of argv?
​ What is the type of argv[0]?
​ If argv[1] = 96, where is “Once” located?
​ What is the value of argv[9]?

Fork
How many processes return from fork?
Fix the following code for do_fork()?

void SysCallReturn(struct PCB_struct *pcb, int return_val) {

pcb->registers[PCReg] = pcb->registers[NextPCReg];
pcb->registers[2] = return_val;
dll_append(readyq, new_jval_v(pcb));
kt_exit();

}

void *do_fork(void *arg){
struct PCB_struct* pcb = (struct PCB_struct*) arg;
//whats missing here
struct PCB_struct* newpcb = malloc(sizeof(struct PCB_struct));
//pcb only has base, limit, brk, pid, pPCB so far
newpcb->base = pcb->base;
newpcb->limit = pcb->limit;
newpcb->brk = pcb->brk;
newpcb->pid = pcb->pid;
newpcb->pPCB = pcb;
for (int i = 0; i < NumTotalRegs; i++) {

newpcb->registers[i] = pcb->registers[i];
}
memcpy(newpcb->base, pcb->base, pcb->limit);
SysCallReturn(newpcb, 0);
SysCallReturn(pcb, newpcb->pid);

}

Wait
Whats a zombie? Who cleans up after a zombie?
What is an orphan? Who cleans up after an orphan?

Consider the following:
Init is initialized
​ Who is Init’s parent?
proc1 is initialized
​ Who is proc1’s parent?
proc1 calls fork(), so proc2 is initialized
​ Who is proc2’s parent?
proc2 calls fork() twice, so proc3 and proc 4 is initialized
​ Who is proc3’s parent?
​ Who is proc4’s parent?
proc4 calls exit()
​ Who and when is it going to get cleaned up?
proc2 calls exit()
​ Does anyone clean up proc2 yet?
​ Who is proc3’s parent?
proc1 calls wait()
​ Who does proc1 clean up in this call?
proc1 calls exit()
​ Who cleans up proc1?
proc3 calls exit()
​ Who cleans up proc3?

	ef7411f8-9973-4c16-9ccc-38e2e285163e.pdf
	Exec
	Fork
	Wait

