
CS170: Operating Systems
Week 8 - Discussion Section

Agenda
● Notes on Lab 2

○ Processes
○ wait() and exit()
○ Common Errors

● Introduction to Lab 3
○ dup()
○ dup2()
○ pipe()
○ close()

● Q&A

Processes
● zombie process : created when a child process terminates but the parent doesn’t

call wait()
● orphan process : created when a parent process terminates before its child
● init / sentinel process: created when the system boots up, responsible for

adopting orphaned children

wait() and exit()
● wait() : parent process waits for its child process to terminate, then collects its exit

status and releases the child's entry from the process table
○ free a zombie child
○ remove child’s pid from pid tree / list
○ return child’s pid

● exit() : process terminates itself, releases its resources, and returns an exit status to
the parent process
○ have init / sentinel process adopt all live children
○ if process is not the init / sentinel, free any zombie children only
○ if process is the init / sentinel, free all children
○ add itself to parent’s waiter list
○ set exit code
○ kt_exit()

Common Errors
● Make sure you zero out the registers in execve() before calling PerformExec()

○ when executing argstack, if you see argc=59 and garbage values in argv, this is your issue!
● Make sure you handle PCReg and NextPCReg properly before returning from

execve()
○ if you set PCReg=0 and NextPCReg=4, the user code will start at PC=4, which produces nonsensical

output
● At the beginning of wait(), before the semaphore call, if you have no waiters and

no children, return with an error
○ not doing this can cause weird behavior with ksh

● Make sure that every memory address in your registers is a user-space address
○ therefore, they are offsets from 0

Introduction to Lab 3
● Final feature of KOS: adding a way for processes to communicate with each other
● 4 main tasks:

○ implement file descriptors
○ implement a pipe data structure
○ modify read() and write() to access the pipe data structure
○ implement dup(), dup2(), pipe(), and close()

● Reuses code from Lab 2
● No cookbook :(
● Start early!

dup(int oldfd)
● Duplicate a File Descriptor

○ the new file descriptor actually behaves like an alias of the old one
■ i.e., it refers to the same underlying file as the original file descriptor

○ choose the lowest numbered file descriptor that is unopened as the target
● Implementation

○ register 5 stores the given file descriptor
○ make sure the given file descriptor is open (otherwise, return -EBADF)
○ find the lowest free file descriptor in your table
○ copy the fd table entry and increment ref count
○ syscall return new file descriptor on success

dup2(int oldfd, int newfd)
● Duplicate to a Specific File Descriptor

○ similar to with dup(), but explicitly declare which file descriptor you want to use as the new one
○ if the new file descriptor is open, close it before duplicating

● Implementation
○ handle arguments:

■ register 5 stores the old file descriptor
■ register 6 stores the new one
■ check their validity

○ make sure the given file descriptor is open (otherwise, return -EBADF)
○ close the new file descriptor if it's already open
○ copy the fd table entry and increment ref count
○ syscall return new file descriptor on success

pipe(int pipefd[2])
● Creates a unidirectional communication channel between two processes

○ contains a write end and a read end
● A 2-element array to specify the read descriptor and the write descriptor

○ e.g. int pipefd[2]; pipe(pipefd)
● Implementation

○ register 5 stores the pointer
■ check whether it is a valid address

○ find two unused file descriptors
■ if no free file descriptors, syscall return -EMFILE

○ allocate a buffer for the new pipe
○ point the two fd's to the newly allocated buffer

■ pipefd[0] should refer to the read end of the pipe
■ pipefd[1] should refer to the write end of the pipe
■ set ref count

○ syscall return 0 on success

close(int fd)
● If the fd was pointing to the read end of a file:

○ decrement the reader ref_count
○ we don’t want writers to block forever on a full pipe, so if this proc was the last active reader: wake

up any blocked writers
● If the fd was pointing to the write end of the file:

○ decrement the writer ref_count
○ we don’t want readers to block forever on a full pipe, so if this proc was the last active writer: wake

up any blocked readers
○ notify readers that they reached eof

Q&A

