
Ho
st

 In
te

rfa
ce

-- Memory contains code that is specific to each
host interface (called a driver)
-- CPU execute driver code which directs the I/O
subsystem to contact and interact with each
device
-- synchronous I/O

CPU requests
Device Interrupts

Persistent Storage Architecture

read/write block

interrupt

Persistent Storage is Block Accessed

Ho
st

 In
te

rfa
ce

4K Data Block

4K Data Block

-- Devices transfer 4K data blocks
-- Each data block has a unique block number (called a block address)
-- Driver requests access (read or write) using block number
-- Host interface translates that to physical storage location
-- platter, track, sector (disk)
-- die, chip, location (ssd)

-- Host interface also implements read and write protocols (over write, load leveling, etc.)
-- All persistent storage devices appear as “block transfer devices” that do synchronous I/O to the OS

Linux Files

• Block storage devices are all accessed as linear lists of 4K blocks
• Files are not lists of 4K blocks

• A file is a list of bytes
• A file has no unallocated bytes within it
• A file has a read/write pointer indicating the next byte to be written (it is not

addressed by byte number)
• A file has a name

• How are files implemented using block storage devices?

For example
• Consider this code:

• What does it do?
• What data (if any) is stored in

persistent storage?

int fd;
double buffer[10000];
int i;

for(i=0; I < 10000; i++) {
buffer[i] = drand48();

}

fd = open(“/tmp/foo”,O_RDWR | O_CREAT, 0600);
write(fd,buffer,sizeof(buffer));
close(fd);

What does the code do?
• The code allocates a buffer

containing 80000 bytes (since
each double is 8 bytes)
• It initializes each IEEE double

precision value in the buffer to
a random number between 0
and 1
• It opens a file called /tmp/foo

and writes the 80000 bytes to
persistent storage that can be
accessed as a file by that
name

int fd;
double buffer[10000];
int i;

for(i=0; I < 10000; i++) {
buffer[i] = drand48();

}

fd = open(“/tmp/foo”,O_RDWR | O_CREAT, 0600);
write(fd,buffer,sizeof(buffer));
close(fd);

How is the data stored?
• The file data is stored in persistent storage as separate 4K blocks
• For Linux, each block is accessed separately by block address
• The file is a logically contiguous array of bytes

…
Bytes 0,1,2…79999

4K storage blocks with random addresses on the storage device

Block #23342 Block #155675 Block #30005 Block #18345

Need a Map: The inode

Permissions, access times, owner, etc.

Storage Block Addresses

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

• Each storage block address
contains a 4K segment of the file
• The index into the storage block

addresses indicates which 4K
segment

For example

…
Bytes 0,1,2…79999

Block #23342 Block #155675 Block #30005 Block #18345

Block #23342

Storage Block Addresses

Block #155675.
.
. • Find the 7640th byte of the

file

Where is the 7640th byte of the file?

Block #23342

Storage Block Addresses

Block #155675.
.
.

• Block #23342 contains the first 4K
of the file
• Is 7640 between 0 and 4K-1? => no

• Block #155675 contains the next 4K
of the file
• Is 7640 between 4K and 8K-1? => yes
• The 7640th byte must be located in

Block #155675 on the device
• Where in Block #155675 is the

7640th byte located?
• It is the 3544th byte inside Block

#155675
• 7640 – 4096 = 3544

Byte locations in File (lesson 1)
• First, find the block

• BLOCKSIZE = 4K
• inode index = (byte #) ”div” BLOCKSIZE
• 7640 / 4096 = 1

• Next, find the byte within the block
• Byteoffset = (byte #) ”mod” BLOCKSIZE
• Byteoffset = 7640 % 4096 = 3544

Permissions, access times, owner, etc.

Storage Block Addresses

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

Modifying a byte in a file
• char c = 0;

• fd = lseek(fd,19230,SEEK_POS);
• write(fd,&c,1);

• Find the block on the device
• inode index = 19230 / 4096 = 4

• Get Block address from inode at index
• Block address = 7615

• Fetch the block from block address
into memory
• Read_disk(7615, Buffer)

• Compute byte offset
• Byteoffset = 19230 % 4096 = 2846

• Change byte in the buffer
• Buffer[2846] = 0

• Write the block back out
• Write_disk(7615,Buffer)

Permissions, access times, owner, etc.

Storage Block Addresses

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567
5674

i-node single block addressing summary
• inode contains an array of single block addresses, each of which can

contain the address of a block on the device with a fixed block size (4K for
modern Linux)
• Index into the array computes the number of blocks from the beginning of

the file that a byte in the file must occupy
• Index = (Byte #) / BLOCKSIZE

• Offset into the block is the “remainder” of the offset of the byte from the
beginning of the file
• Byteoffset = (Byte #) % BLOCKSIZE

• To access a byte within a file
• Compute inode index
• Get block number
• Get Block from device
• Compute offset into block
• Access byte at offset into block
• If the operation is a write, write the block back out

Some thoughts about i-nodes
• They are fixed size => block addresses are in an array – not a linked

list
• inode structure is defined statically when the kernel is compiled. Cannot be

changed dynamically.

• i-nodes must be stored on the device (otherwise file would be lost
when power is off) => where are they stored?
• Well-known location (block numbers 1 through N on the device are reserved)

• The general term for this type of interface is “scatter/gather”
• The disk is addresses randomly so data can be scattered => much better for

fragmentation
• The file is continuous so that data must be “gathered” (at least logically)

• At this point, answer the following question
• How large is the largest file that can be stored using this method?

Maximum File Size Problem

• Each entry in the i-node array
contains a block address of a 4K
block
• Now call these “direct blocks”

• 10 direct block entries => largest
file is 40K

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567
5674

Can’t we make it bigger?

• Sure. Let’s give the i-node 1000 direct blocks
• Largest file = 1000 * 4K = 4MB

• Bigger: 10^6 direct blocks
• Largest file: 1,000,000 * 4K = 4GB

• How big is the i-node now?
• Each element in a inode array is 8 bytes (block addresses are 8 bytes in

length)
• For a 4GB file, the inode would be 8MB
• 8MB is > 4K => we’d need another map to map 4K blocks for the i-node!
• Still max file is only 4GB

Indirect Block: A Better Solution

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567
5674

…

22343

Block #22343 contains 4K bytes

Space to hold a single
Block address is 8 bytes

23453 7975 86543 98623 2377

• How large is this file?
• How large is the largest file that can

be represented?

Blocks are allocated as needed

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567
5674

…

22343

Block #22343 contains 4K bytes

Space to hold a single
Block address is 8 bytes

23453 7975 86543 98623 2377

• How large is this file?

• 10 direct blocks = 40K
• 5 Single indirect blocks = 20K
• Answer: 60K

Largest File using Single indirect

5674

…

Block #22343 contains 4K bytes

Space to hold a single
Block address is 8 bytes

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567

22343

23453 7975 86543 98623 2377

• How large is the largest file that can be
represented?

• One disk block can hold 4K/8 = 512
Block addresses

• 10 Direct blocks = 40K
• 512 Single indirect blocks = 2048K
• Answer: 2.088 MB

Double Indirect blocks

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567

22343

5674

512 Block addresses (in 4K) each hold block address of single indirect

676543

Block 676543:

Each of these blocks
holds 512 Block addresses

• How large is the largest file that can
be represented using 1 Single and 1
Double indirect blocks?

Largest File with Direct, Single, and Double
Indirect

Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

23342
155675

3004

22456

7615

33456

100675

2234

34567

22343

5674

512 Block addresses (in 4K) each hold block address of single indirect

676543

Block 676543:

Each of these blocks
holds 512 Block addresses

• 10 * 4K = 40K in Direct blocks
• 512 * 4K = 2048K in Single indirect
• 512 * 512 * 4K = 1048576K in Double
• Answer: 1050664K = 1.050664 GB

Triple indirect block

• Triple indirect block contains 512 addresses of Double indirect blocks,
each containing 512 addresses of Single indirect blocks
• Max file size using 10 Direct, 1 Single, 1 Double, 1 Triple

• 10 * 4K = 40K Direct
• 512 * 4K = 2048K Single
• 512 * 512 * 4K = 1048576K Double
• 512 * 512 * 512 * 4K = 536870912 Triple
• Answer: 537921576K = 537.921576 GB

Current Linux EXT4

• From fs/ext4/ext4.h
• #define EXT4_NDIR_BLOCKS 12
• #define EXT4_IND_BLOCK EXT4_NDIR_BLOCKS
• #define EXT4_DIND_BLOCK (EXT4_IND_BLOCK + 1)
• #define EXT4_TIND_BLOCK (EXT4_DIND_BLOCK + 1)
• #define EXT4_N_BLOCKS (EXT4_TIND_BLOCK + 1)
• 12 Direct, 1 Single indirect, 1 Double indirect, 1 Triple indirect

https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_NDIR_BLOCKS
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_IND_BLOCK
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_NDIR_BLOCKS
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_DIND_BLOCK
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_IND_BLOCK
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_TIND_BLOCK
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_DIND_BLOCK
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_N_BLOCKS
https://elixir.bootlin.com/linux/latest/source/fs/ext4/latest/C/ident/EXT4_TIND_BLOCK

File metadata

• File permission bits
• File owner and

group
• File size (in bytes)
• File size (in blocks)
• i-node change time,

file access time, file
deletion time, file
modification time
• Ref. count,

allocated/free flag
Permissions, access times, owner, etc.

Direct Blocks (10)

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

More thinking about i-nodes
• The i-node is the file

• There is no other record of the data blocks that belong to the file
• There is one i-node / file
• Data blocks are not shared among i-nodes
• All accesses of the file require access to the i-node

• Reads and writes
• Permission changes
• Ownership changes

• All i-nodes must be stored in persistent storage
• If an i-node is lost, the file it describes is lost

• An i-node must be smaller than the size of a block
• Otherwise, we’d need an i-node to describe the blocks containing an i-node

• How are i-nodes stored in persistent storage?

The File System
• Every file has an i-node and every file (that is not empty) has data

blocks with addresses listed in the i-node or in indirect blocks linked
to the i-node
• i-nodes must be stored on persistent storage and data blocks must be

stored on persistent storage
• File system: a collection of i-nodes and data blocks that, together, can

be used as files

Simple Linux File System Implementation

• Storage partition: a set of blocks on a storage device (possibly all of
them) numbered 0 through N
• A physical device can have multiple partitions or only one partition

• Super block: always block 0 in a storage partition that is being used to
host a file system
• i-list: a contiguous list of blocks, numbered 1 to K where K << N
• Data blocks: all blocks that are not the super block or blocks in the i-

list (N – (K+1)).

Example File System Layout

super

Storage Partition: continuous set of blocks on storage device, each block is 4K in size, 1 GB total

Block # 0 1 2 3 4 5 6 7 262143262142262141262140
…

• Super block is block 0
• i-node is 1K (imagine)
• 5 blocks in the i-list

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

i-list Data blocks
i-node numbers

Observations About the Simple Linux File
System
• The i-nodes are in a well-known location (just after the superblock)
• The size of the i-list (in blocks) is fixed when the file system is

configured
• The size of an i-node must be smaller than the size of a block

• Multiple i-nodes fit into a single block

• Each i-node has a unique number
• Given an i-node number, what disk block is the i-node in?

For example: Find i-node 14

super
Block # 0 1 2 3 4 5 6 7 262143262142262141262140

…

• i-nodes/block = (block size) / (i-node size) = 4
• Block # (i-node 14) in i-list = (i-node #) / (i-nodes/block) = 14/4 = 3
• Add block number in i-list to start of list = 3 + 1 = 4
• i-node 14 is in block 4 in the disk partition
• Which i-node is i-node 14 in block 4?

• (i-node #) % (i-nodes/block) = 14 % 4 = 2

• i-node 14 in is block 4 in position 2

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

i-list Data blocks

Allocating an i-node for a file
• When a file is created, an i-node

is chosen from the i-list and
allocated to the file
• i-node contains an allocated flag

indicating it is the i-node for a file
• fd = open(“foo”,O_CREAT,0600);

• The create code in the kernel
scans the i-list looking for the
first i-node with the allocated flag
not set
• No data blocks are allocated

when the file is created

Permissions, access times, owner, etc.

Storage Block Addresses

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

Allocated flag = 1

Scan the i-list for first free i-node on create

super
0 1 2 3 4 5 6 7 262143262142262141262140

…0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

i-list Data blocks

• On file create
• Read each block in the i-list
• Check allocated flag in each

i-node in each block in the i-
list

• Return the first free i-node

Data blocks are allocated when they are
needed

Permissions, access times, owner, etc.

Storage Block Addresses

Single Indirect Block Address

Double Indirect Block Address

Triple Indirect Block Address

Allocated flag = 1

• char *buffer = “hello world\n”;
• write(fd,buffer,strlen(buffer));
• How does the kernel find a

free block to allocate?

Need a data block #
here

Data block free list

super
0 1 2 3 4 5 6 7 262143262142262141262140

…0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

i-list Data blocks
• Unlike i-nodes, data blocks cannot be marked allocated/free
• When the file system is created, all data blocks are put on a free list
• The head of the free list is kept in the super block

• When a free block is needed, it is taken from the head of the free list
• When a block is freed (the file is deleted) it is put at the head of the free

list
• Only the head of the free list need be stored in the super block

Simple File System Free List

Super: 6

0 1 2 3 4 5 6 7 262143262142262141262140
…0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

i-list Data blocks
• Write first free block number in super block
• Write next free block number in that block
• Write next next free block number in next free block…an so on
• Next value of 0 indicates end of the list
• In this example, when the first block is allocated to a file

• Block 6 is chosen on put in the i-inode in direct block index 0
• 7 replaces 6 as the head of the free list in the super block

Next: 7 Next: 8 Next:
262141

Next:
262142

Next:
262143

Next:
0

First write of example file

Super: 7

0 1 2 3 4 5 6 7 262143262142262141262140
…0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19

Data blocks

Hello world Next: 8 Next:
262141

Next:
262142

Next:
262143

Next:
0

Permissions, access times, owner, etc.

6

Storage Block Addresses

Single Indirect Block Address
Double Indirect Block Address
Triple Indirect Block Address

• char *buffer = “hello world\n”;
• write(fd,buffer,strlen(buffer));
• Block 6 comes off the free list

and is allocated to the file by
putting 6 in the file’s i-node
• 7 becomes the new head of

the free list

Creating the Simple Free List

• This approach works, but there is a problem
• How many free data blocks in a 500 GB file system?

• Need to know how many blocks in the i-list

• How many free data blocks in a 500 GB file system with 100 blocks
allocated to the i-list?
• (500 GB / 4K) - 100 = 131071900 free data blocks
• Imagine each write is 20 ms
• How much time is required to create the free list?

500 GB File System, 100 blocks on i-list,
Simple Free List

Super:101

Block # 0 1 2 3 4 100 101 102 13107200

…

• 20ms / write * 131071900 writes = 2621438 seconds
• 2621438 seconds is 30.3 days
• Simple free list takes too long to create when the file system

is first configured

0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 396,397,398,399

i-list Data blocks

131071991310719813107197

102 103 13107198 13107199 13107200 0

…

Linux SysV Free List

• Recall
• Each block address is 8 bytes
• Each 4K data block can hold 4K / 8 = 512 block addresses

• Idea:
• create blocks on the free list with addresses of free blocks (512 in each block)

The SysV Free List Organization

• Super: 101

Block 101 = 4K = 512 block address entries

102 103 104 613612611…614

Block 614 = 4K = 512 block address entries

615 616 617 112611251124…1127

Block 1127 = 4K = 512 block address entries

1128 1129 1130 163916381637…1640

How long does SysV take?

• Each write creates 512 free blocks
• 20ms / write * (131071900/512) writes = 5120 seconds
• 5120 seconds is 1.4 hours
• SysV can take a while to create a file system of this size

Allocating from SysV Free list

• Super: 101
• Scan block 101

for first non-zero
entry (not the
first entry)
• After 1st

allocation
• Write 0 into 8

bytes of block
address

• Block 102 is now
part of some i-
node

Block 101 = 4K = 512 block address entries

0 103 104 613612611…614

Block 614 = 4K = 512 block address entries

615 616 617 112611251124…1127

Block 1127 = 4K = 512 block address entries

1128 1129 1130 163916381637…1640

Another Allocation

• Super: 101
• Scan block 101

for first non-zero
entry (not the
first entry)
• After 2nd

allocation
• Write 0 into 8

bytes of block
address

• Block 103 is now
part of some i-
node

Block 101 = 4K = 512 block address entries

0 0 104 613612611…614

Block 614 = 4K = 512 block address entries

615 616 617 112611251124…1127

Block 1127 = 4K = 512 block address entries

1128 1129 1130 163916381637…1640

511th Allocation

• Super: 101
• Scan block 101

for first non-
zero entry (not
the first entry)
• Block 613 is

now part of
some i-node

Block 101 = 4K = 512 block address entries

0 0 0 000…614

Block 614 = 4K = 512 block address entries

615 616 617 112611251124…1127

Block 1127 = 4K = 512 block address entries

1128 1129 1130 163916381637…1640

512th Allocation

• Block 101 is all
zeros except for
first entry
• Set Head

pointer to block
address in first
entry
• Super: 614
• Block 101 is

now part of
some i-node

Block 101

0 0 0 000…614

Block 614 = 4K = 512 block address entries

615 616 617 112611251124…1127

Block 1127 = 4K = 512 block address entries

1128 1129 1130 163916381637…1640

Some thoughts about SysV File System

• File delete returns blocks from i-nodes to the free list at the head
• Find zero entries in head of free list using a scan
• When head of free list has 512 non-zero entries, returned block becomes new

head of free list
• Zero out the new block
• Put old free list head in first entry
• Change free list head in super block to new block address

• Details left as an exercise

• In the example SysV File System (500 GB with 100 blocks of i-list)
• What is the largest file that can be stored?
• How many files can this file system store?

Largest file in the file system?

• Largest file that can be stored in file system
• ((1024 * 1024 * 1024 * 500)/(4*1024) – 101) * (4 * 1024) = 536,870,498,304

bytes = 499 GB
• Recall if the i-node has 10 direct, 1 single, 1 double, and 1 triple

• 10 * 4K = 40K Direct
• 512 * 4K = 2048K Single
• 512 * 512 * 4K = 1048576K Double
• 512 * 512 * 512 * 4K = 536870912 Triple
• Answer: 537921576K = 537.921576 GB

• No file will ever use all of the i-node block addresses

How many files?

• 100 blocks in the i-list and an i-node that is 1K => 4 i-nodes per block
in the i-list
• File system can hold 400 files
• Two ways that SysV file system becomes full

• Runs out of free data blocks on the free list
• Runs out of free i-nodes in the i-list

mkfs: configuring the file system

• mkfs utility creates a file system
• All raw disk partitions are represented in the /dev directory
• mkfs has default a default size for the i-list (10% for i-list is common)

• mkfs for SysV
• Zeros out i-list
• Creates the SysV free list
• Writes head of free list into super block

• You will need to write a version of mkfs for your file system in this
class

Reading and writing files

• The kernel can only move blocks between persistent storage and memory
• Read => get a block from storage and put it in memory
• Write => put a block from memory into persistent storage

• Files are not accessed as blocks via the Linux file interface
• char *buffer = “hello world\n”;
• char *read_buffer[50];
• int fd;
• fd = open(“foo”,O_CREAT|O_RDWR,0600);
• write(fd,buffer,strlen(buffer));
• lseek(fd,0,SEEK_SET);
• read(fd,read_buffer,strlen(“hello”));
• printf(“%s\n”,read_buffer);

Allocate i-node and read into memory

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

Open() system call in the kernel
Step 1: Allocate a free i-node

Step 1A: allocate a buffer large enough to hold a
disk block in kernel memory
Step 1B: read the first block of the i-list into that
memory buffer
Step 1C: examine the allocate flag of each i-node
in the disk block

If allocate flag clear, copy i-node into
memory buffer for i-node and note the i-
node number

Step 1D: if no free i-node in this block, repeat 1B
with next block in i-list

Step 2: record permissions, creation time, and file
owner in i-node in memory buffer
Step 3: write the block containing the i-node back to
disk

Kernel Data Structures for Files

Ref count: 1
rd/wr offset: 0

Ref count: 1
i-node #

Open file table Inode table

Pr
oc

 A

Per process
File descriptor table

File descriptor is an index
Into process file descriptor table

Current rd/wr pointer
Is in open file table entry

In-memory copy of i-node
stored in its own buffer

After the open() which creates a
file, these are the kernel data
structures that are created in
kernel memory

NOTE that FUSE creates these for
you

You do not need to implement
these data structures in your
file system

Why these data structures?

Ref count: 2
r/w Offset: 0

Ref count: 1
i-node #

Process file desc

Open file table Inode table

Pr
oc

 A
Pr

oc
 B

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
fork();
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

Forked process shares
r/w offset for all open files

Multiple processes open a file

Ref count: 2
r/w Offset: 0

Ref count: 2
i-node #

Ref count: 1
r/w Offset: 0

Process file desc

Open file table Inode table

Pr
oc

 A
Pr

oc
 B

Pr
oc

 C

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
fork();
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

char *buffer = “hello world again\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

Allocate a data block for new data

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

write() system call in the kernel
Step 1: compute the block index and offset from the
r/w pointer

Block index = 0 / 4K
Offset = 0 % 4K

Step 2: If block address in i-node is 0 at the Block
index

Step 2A: allocate a data block from the free list
and record its block address at Block index entry
of i-node
Step 2B: allocate memory buffer large enough to
hold a data block

Step 3: copy data from user buffer to Offset inside
memory buffer holding data block
Step 4: write i-node back to its location in the i-list
Step 5: write memory buffer to data block address
contained in Block index entry of i-node

Reset the r/w offset

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

lseek() system call in the kernel
Step 1: find the open file table entry for the file from
the file descriptor table entry indexed by the file
descriptor
Step 2: set the r/w offset value to what is specified in
the system call

NOT that FUSE implements the open file table for you so
you do not need to implement lseek() for your file system.

Read some of the data back in

char *buffer = “hello world\n”;
char *read_buffer[50];
int fd;
fd = open(“foo”,O_CREAT|O_RDWR,0600);
write(fd,buffer,strlen(buffer));
lseek(fd,0,SEEK_POS);
read(fd,read_buffer,strlen(“hello”));
printf(“%s\n”,read_buffer);

read() system call in the kernel
Step 1: compute the block index and offset from the
r/w pointer

Block index = 0 / 4K
Offset = 0 % 4K

Step 2: allocate a memory buffer large enough to
hold a disk block in the kernel
Step 3: read the disk block from the block address
contained in the i-node at the Block index into
memory buffer
Step 4: copy data from Offset into memory buffer
into user’s memory buffer specified in system call

Quick summary
• File system contains three components

• Super block, i-list, data blocks
• i-list can be fixed sized and scanned
• Free data blocks are on free list stored in storage with head of free list in super block
• All data blocks are either on free list or listed in a in-node

• No data block is both

• open(), write(), and read() system calls access i-nodes and data blocks
• Data for i-nodes and data blocks must be held in memory when being accessed
• Data blocks allocated in write() when needed

• lseek() simply manipulates r/w pointer in open file table
• close() (not described) decrements reference counts and releases buffers

as needed (e.g. when ref counts go to zero)

File names and directories

• In Linux a file name is a path in a tree starting from the tree’s root
• /home/rich/cs270/foo

• each element in the path (except maybe the last) names a directory
• Each valid name is contained in the directory before it in the path (except

for the root)
• “/” (called “root”) contains “home”
• “home” contains “rich”
• “rich” contains “cs270”
• “cs270” contains “foo”

• The last element in a path is one of three things
• Directory
• File
• “Special” file (e.g. a device specifier in the directory /dev)

Directories are files with a specific structure
• Directories are files

• All Linux files are
represented by i-nodes

• Every directory has an
i-node

• Directories are files
• They contain a map

between human
readable names and i-
node numbers as data

• All data in files is
stored in data blocks

• Every directory has
one or more data
blocks in its i-node

.

.

.

“text string” i-node #

“text string” i-node #

“text string” i-node #

“text string” i-node #

“text string” i-node #

“text string” i-node #

For example: ls -i

/ (the root directory) contains strings and i-
node numbers . 2

.. 2

boot 2

cs 21689

dev 3

etc 393217

• rich@csilvm-01:~$ ls -ali /

• total 72

• 2 dr-xr-xr-x. 20 root root 4096 Sep 18 16:31 .

• 2 dr-xr-xr-x. 20 root root 4096 Sep 18 16:31 ..

• 2 dr-xr-xr-x. 6 root root 4096 Oct 5 10:22 boot

• 21689 drwxr-xr-x 5 root root 0 Oct 6 10:19 cs

• 3 drwxr-xr-x 21 root root 4000 Sep 18 16:31 dev

• 393217 drwxr-xr-x. 162 root root 12288 Oct 5 14:11 etc

• 19201 drwxr-xr-x 4 root root 0 Oct 5 16:06 fs

• 655361 drwxr-xr-x. 3 root root 4096 Sep 28 12:10 home

•

.

.

.

fs 19201

home 655361

“/” directory is i-node 2

Super: 6

0 1 2 3 4 5 6 7 262143262142262141262140
…0,1,2,3 4,5,6,7 8,9,10,11 12,13,14,15 16,17,18,19 Next:

262141
Next:
262142

Next:
262143

Next:
0

Permissions, access times, owner, etc.

6

Storage Block Addresses

Single Indirect Block Address
Double Indirect Block Address
Triple Indirect Block Address

i-node 2 . 2
.. 2
boot 2
cs 21689
dev 3
etc 393217

.

.

.

fs 19201
home 655361

root i-node

first data block is
block 6

data block 6 contains
Strings and i-node
numbers

/home/rich/cs270/foo
Root
i-node

data block containing
directory entries

home

home
i-node

rich cs270

rich
i-node

foo

cs270
i-node

foo
i-node

Contents
Of foo

More
Contents
Of foo

Find the i-node: namei
• All file system system calls (with the exception of lseek()) require the kernel

to access the i-node associated with a file
• open()

• Checks permissions on the file which are in the i-node
• Checks permissions (execute permission) in the directory if the file name is not explicit

• read()/write()
• Requires the i-node to get access to the data blocks
• Changes the access times in the inode

• chown/chmod/chgrp
• Changes permissions and ownership in i-node

• unlink()
• Decrements a reference count and deletes the file if ref count is 0 (to be discussed)

• namei(): a kernel level routine
• Find the i-node number associated associated with the file at the end of a path

Open /home/rich/cs270/foo
• fd = open(“/home/rich/cs270/foo”,O_RDONLY,0);

• Read i-node for “/”
• Read data block from first direct block in i-node for “/”
• Scan data block for string “home”
• Get i-node number for “home”
• Read i-node for “home” with that number
• Read data block from first direct block in i-node for “home”
• Scan data block for string “rich”
• Get i-node number for “rich”
• Read i-node for “cs270”
• Read data block from first direct block in i-node for “cs270”
• Scan data block for string “foo”
• Get i-node number for “foo”
• Read i-node for “foo”
• Check permissions on “foo”
• Put i-node in in-core i-node table

Disk accesses
Root
i-node

home

home
i-node

rich

rich
i-node

cs270

cs270
i-node

foo

foo
i-node

Thoughts on directories
• What happens if two different directory entries contain the same i-

node #? . 2

.. 2

boot 2

cs 21689

dev 3

etc 393217

.

.

.

fs 19201

home 655361

• Hard link: two different
names for the same file (the
same i-node)

Hard link /home/rich/cs270/foo to
/home/shereen/shereenfoo

. 98776

.. 763453

mail 874563

downloads 8846

documents 645243

shereenfoo 6654

. 232

.. 11987

c-code 87364

github 21689

foo 6654

goo 998765

Data block for /home/rich/cs270 Data block for /home/shereen

Same i-node means same file with two different names
/home/rich/cs270/foo
/home/shereen/shereenfoo

Thoughts about hard links
• There is no file delete in Linux

• unlink() system call removes a directory entry from a directory data block that
contains a i-node #

• When the last directory entry is unlinked
• The data blocks are returned to the free list in the file system
• The i-node is marked as “available” in the i–list

• i-nodes must carry a reference count on disk
• The ref count inside the on-disk i-node counts how many directory entries refer to

this i-node
• NOTE that this is different than the reference count for an in-core i-node that the

kernel keeps when a file is open
• Hard links can only be made between directories and files within the same

file system
• Why?

Multiple File Systems
• Recall that a file system has

• A super block
• An i-list
• A set of data blocks

• All of these must reside in the same partition (i.e. on the same
device)
• Computers can have more than one storage device

• Additional capacity
• Performance
• Removable media

• How does Linux configure multiple storage devices?

Stitching together file systems

• Each device has one or more partitions
• Each partition contains its own file system

• Every file exists in exactly one file system in one partition

• Every file is named by a unique path from the root (from “/”)
• How does Linux create one name ”tree” from multiple file systems?

mount
• The mount utility creates an equivalence between a leaf in one file

system and a root of another in the name tree.
/

bin usrtmp varetc libhome

Some files Some files Some filesSome files Some files Some files/

alice shereenrich weitsungbob nazmusfatih

Some files Some files Some files Some files Some files Some filesSome files

• The root of the file system containing home directories “lays over”
the directory “home” in the “root” file system for the system

Mounting and a mounted file system

/

bin usrtmp varetc libhome

Some files Some files Some filesSome files Some files Some files/

alice shereenrich weitsungbob nazmusfatih

Some files Some files Some files Some files Some files Some filesSome files

• “home” is an empty directory
in the tope level “root” file
system
• Called a “mount point”

• After the second file system
(lower) is mounted “on” the
first (upper), namei() will
change file systems and start at
the new root at the mount
point

Which file system?

• Recall that directories contain strings and i-node numbers
• But not file system identifiers!

• For example, every file system has an i-node #7
• When “7” appears in a directory entry, which file system is it in?
• NOTE that hard links create multiple names for the same i-node # => needs to

be in the same file system

• The kernel contains a table that identifies mounted file systems for
namei()

The mount table
• Kernel table that shows the mapping of file systems to mount points

device Mount point File system type parameters

/dev/vda / xfs rw,relatime,attr2,inode64,noquota

/dev/vdb /home ext4 rw,relatime

• Each partition is represented by a “special” file in the /dev directory
• Often termed a device

• In the mount table, a device is assumed to contain a file system
• Can be read and written as full 4K blocks addressed starting with block 0

• When namei() scans a data block and finds a string in a path, it checks the
mount table to see if it is a mount point
• Subsequent i-node numbers come from the file system specified in the mount

table until name-I encounters another mount point.

For example

/

bin usrtmp varetc libhome

Some files Some files Some filesSome files Some files Some files/

alice shereenrich weitsungbob nazmusfatih

Some files Some files Some files Some files Some files Some filesSome files

/dev/vda

/dev/vdb

Summarizing
• i-nodes map data blocks to files and carry meta-data for each file
• File systems contain a supe block, an i-list of i-nodes, and data blocks
• Data blocks are either on the free list or referenced in an i-node
• File descriptors reference r/w pointer in open file table which

references i-node in memory
• Reference counts for sharing

• Directories map strings to i-node # in a path from root
• namei() resolves paths to i-nodes
• Mount allows multiple file systems to form a name “tree” where

every file or directory has a unique path from the root

Performance

• Consider the following:
• 3.3 GHz x86 can do 1 instruction every 10^-9 seconds (ballpark)
• SSD/spinning disk can read/write a block every 10^-3 seconds

• CPU is 10^6 (1,000,000) x faster than persistent storage
• When CPU does a read/write to disk, it must stop and wait for the

interrupt before it “knows” the i/o has completed
• Imagine the clock speed was 1Hz (1 instruction / second)

• How long would the CPU wait for a disk access?
• Answer: 11.5 days

The Buffer Cache

• All disk I/O is in blocks
• Cache of blocks

• Hash list
• Hash (dev#||block #)

• LFU free list
• After a block is used, it

stays in the cache
• Moves to the tail of the

free list

0 % 4

1 % 4

2 % 4

3 % 4

Block % 4

28 4 32

17 5 97

98 50 10

3 35 99

Free

Buffer cache entry
next hash

Dev#,block number

prev hash

next free

prev free

Space for 4K
Data block

Cache miss and cache hit

• Read/Write Block 29, dev 0
• Miss: block 29, dev 0 not in

hash
• Head of free list is block 3
• Steps

• Remove block 3 from buffer
cache

• Use buffer cache entry for
block 29

• Add to hash list
• Use the buffer
• Put new entry at end of free

list

0 % 4

1 % 4

2 % 4

3 % 4

Block % 4

28 4 32

17 5 97

98 50 10

3 35 99

Free

Cache miss

• Steps
• Remove block 3 from

buffer cache
• Use buffer cache entry for

block 29 => (0||29 %4) = 1
• Add to hash list
• Use the buffer to transfer

data to/from user space
• Put new entry at end of

free list

0 % 4

1 % 4

2 % 4

3 % 4

Block % 4

28 4 32

17 5 97

98 50 10

29

35 99

Free

Cache hit

• Read block 99, dev 0
• (0||99)%4
• Steps

• Remove block 99 from
free list

• Use the buffer to transfer
data to/from user space

• Put 99 at end of free list

0 % 4

1 % 4

2 % 4

3 % 4

Block % 4

28 4 32

17 5 97

98 50 10

29

35 99

Free

Thoughts on the buffer cache
• Three Phase process on a read or write

• Phase 1
• Find the block in the hash list
• Miss: remove the head of the free list and remove the block in that entry from hash list
• Hit: Remove it from the free list where ever it is (since it is in use)

• Phase 2
• Use the buffer

• Read data from disk and/or transfer data from user space as part of read/write call
• Read an i-node block from the i-list and copy the i-node into in-core i-node table

• Phase 3
• Put the block at the tail of the free list

• LFU: blocks in the hash list move toward the tail as they are used
• Head is the least frequently used block

• Sizing the buffer cache => tricky since it is pinned down memory in
the kernel

CS270 File Systems Project with FUSE

• FUSE is a recognized file system type
• Linux will mount a FUSE file system and create a mount table entry for it
• When Linux namei() traverses the mount point for FUSE, your FUSE code will

be invoked

• FUSE “cuts in” to Linux after the i-node table

FUSE and Linux

Pr
oc

 A

Ref count: 1
rd/wr offset: 0

Ref count: 1
i-node #

Open file table Inode table

Per process
File descriptor table

Current rd/wr pointer
Is in open file table entry

Your Code Goes Here

Linux Kernel FUSE

Every Linux File System call has a FUSE binding

Full path name is passed

FUSE architecture

Ref count: 1
rd/wr ffset: 0

Ref count: 1
i-node #

Open file table Inode table

Per process
File descriptor table

Linux kernel
Linux disk driver code

Raw data
Blocks on
/dev/vdc

Some
User
program POSIX system call or

Other file system call

Your code goes here
(runs in user space)

FUSE daemon
FUSE binding
interface

Read/write
/dev/vdc

What you need to develop
• You write the code for each file system call and bind it with the FUSE

bindings
• You DO NOT need to implement the r/w pointer

• FUSE will pass you a full path name and a file offset on each FUSE binding call

• You DO NOT need to implement a the mount table
• Linux will take care of mount points

• You SHOULD implement namei()
• FUSE has a way for you to access the Linux i-nodes but it is tricky
• Simpler to create your own i-nodes and to manage them separately
• Your namei() does not need to check a mount table

• You MUST read and write the raw disk device in 4K blocks

