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Abstract

We present unikernels, a new approach to deploying cloud services
via applications written in high-level source code. Unikernels are
single-purpose appliances that are compile-time specialised into
standalone kernels, and sealed against modification when deployed
to a cloud platform. In return they offer significant reduction in
image sizes, improved efficiency and security, and should reduce
operational costs. Our Mirage prototype compiles OCaml code into
unikernels that run on commodity clouds and offer an order of
magnitude reduction in code size without significant performance
penalty. The architecture combines static type-safety with a single
address-space layout that can be made immutable via a hypervisor
extension. Mirage contributes a suite of type-safe protocol libraries,
and our results demonstrate that the hypervisor is a platform that
overcomes the hardware compatibility issues that have made past
library operating systems impractical to deploy in the real-world.

Categories and Subject Descriptors D.4 [Operating Systems]:
Organization and Design; D.1 [Programming Techniques]: Ap-
plicative (Functional) Programming

Keywords microkernels, virtualization, type-safety

1. Introduction

Operating system virtualization has revolutionised the economics
of large-scale computing by providing a platform on which cus-
tomers rent resources to host virtual machines (VMs). Each VM
presents as a self-contained computer, booting a standard OS kernel
and running unmodified application processes. Each VM is usually
specialised to a particular role, e.g., a database, a webserver, and
scaling out involves cloning VMs from a template image.

Despite this shift from applications running on multi-user op-
erating systems to provisioning many instances of single-purpose
VMs, there is little actual specialisation that occurs in the image
that is deployed to the cloud. We take an extreme position on spe-
cialisation, treating the final VM image as a single-purpose appli-
ance rather than a general-purpose system by stripping away func-
tionality at compile-time. Specifically, our contributions are: (i) the
unikernel approach to providing sealed single-purpose appliances,
particularly suitable for providing cloud services; (ii) evaluation of
a complete implementation of these techniques using a functional
programming language (OCaml), showing that the benefits of type-
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Figure 1: Contrasting software layers in existing VM appliances vs.
unikernel’s standalone kernel compilation approach.

safety need not damage performance; and (iii) libraries and lan-
guage extensions supporting systems programming in OCaml.

The unikernel approach builds on past work in library OSs [1–
3]. The entire software stack of system libraries, language runtime,
and applications is compiled into a single bootable VM image that
runs directly on a standard hypervisor (Figure 1). By targeting a
standard hypervisor, unikernels avoid the hardware compatibility
problems encountered by traditional library OSs such as Exoker-
nel [1] and Nemesis [2]. By eschewing backward compatibility, in
contrast to Drawbridge [3], unikernels address cloud services rather
than desktop applications. By targeting the commodity cloud with
a library OS, unikernels can provide greater performance and im-
proved security compared to Singularity [4]. Finally, in contrast to
Libra [5] which provides a libOS abstraction for the JVM over Xen
but relies on a separate Linux VM instance to provide networking
and storage, unikernels are more highly-specialised single-purpose
appliance VMs that directly integrate communication protocols.

We describe a complete unikernel prototype in the form of
our OCaml-based Mirage implementation (§3). We evaluate it via
micro-benchmarks and appliances providing DNS, OpenFlow, and
HTTP (§4). We find sacrificing source-level backward compatibil-
ity allows us to increase performance while significantly improving
the security of external-facing cloud services. We retain compati-
bility with external systems via standard network protocols such as
TCP/IP, rather than attempting to support POSIX or other conven-
tional standards for application construction. For example, the Mi-
rage DNS server outperforms both BIND 9 (by 45%) and the high-
performance NSD server (§4.2), while using very much smaller
VM images: our unikernel appliance image was just 200 kB while
the BIND appliance was over 400 MB. We conclude by discussing
our experiences building Mirage and its position within the state of
the art (§5), and concluding (§6).
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2. Architecture of an Appliance

Virtualisation is the enabling technology for the cloud, widely
deployed via hypervisors such as Xen [6]. VM appliances are built
to provide a small, fixed set of services. Thus, datacenter appliances
typically consist of a Linux or Windows VM booted over Xen
with loosely-coupled components: a guest OS kernel hosting a
primary application (e.g., MySQL, Apache) with other services
(e.g., cron, NTP) running in parallel; and typically attaching an
external storage device with configuration files and data.

Our key insight is that the hypervisor provides a virtual hard-
ware abstraction that can be scaled dynamically – both vertically
by adding memory and vCPUs, and horizontally by spawning more
VMs. This provides an excellent target for library operating sys-
tems (libOSs), an old idea [1, 2] recently revisited to break up
monolithic OSs [3]. LibOSs have never been widely deployed due
to the difficulty of supporting a sufficient range of real-world hard-
ware, but deploying on a hypervisor such as Xen allows us to by-
pass this issue by using the hypervisor’s device drivers, affording
the opportunity to build a practical, clean-slate libOS that runs na-
tively on cloud computing infrastructure.

We dub these VMs unikernels: specialised, sealed, single-
purpose libOS VMs that run directly on the hypervisor. A libOS
is structured very differently from a conventional OS: all services,
from the scheduler to the device drivers to the network stack, are
implemented as libraries linked directly with the application. Cou-
pled with the choice of a modern statically type-safe language for
implementation, this affords configuration, performance and secu-
rity benefits to unikernels.

2.1 Configuration and Deployment

Configuration is a considerable overhead in managing the deploy-
ment of a large cloud-hosted service. Although there are (multiple)
standards for location and format of configuration files on Linux,
and Windows has the Registry and Active Directory, there are no
standards for many aspects of application configuration. To address
this, for example, Linux distributions typically resort to extensive
shell scripting to glue packages together.

Unikernels take a different approach, by integrating configura-
tion into the compilation process. Rather than treating the database,
web server, etc., as independent applications which must be con-
nected together by configuration files, unikernels treat them as li-
braries within a single application, allowing the application devel-
oper to configure them using either simple library calls for dynamic
parameters, or build system tools for static parameters. This has the
useful effect of making configuration decisions explicit and pro-
grammable in a host language rather than manipulating many ad-
hoc text files, and hence benefiting from static analysis tools and
the compiler’s type-checker. The end result is a big reduction in the
effort needed to configure complex multi-service application VMs.

2.2 Compactness and Optimisation

Resources in the cloud are rented, and minimising their use reduces
costs. At the same time, multi-tenant services suffer from high vari-
ability in load that incentivises rapid scaling of deployments to
meet current demand without wasting money. Unikernels link li-
braries that would normally be provided by the host OS, allowing
the Unikernel tools to produce highly compact binaries via the nor-
mal linking mechanism. Features that are not used in a particular
compilation are not included and whole-system optimization tech-
niques can be used. In the most specialised mode, all configuration
files are statically evaluated, enabling extensive dead-code elimi-
nation at the cost of having to recompile to reconfigure the service.
The small binary size (on the order of kilobytes in many cases)
makes deployment to remote datacenters across the Internet much
smoother.

2.3 Unikernel Threat Model and Implications

Before considering the security implications of the unikernel ab-
straction, we first state our context and threat model. We are
concerned with software that provides network-facing services in
multi-tenant datacenters. Customers of a cloud provider typically
must trust the provider not to be malicious. However, software run-
ning in such an environment is under constant threat of attack, from
both other tenants and Internet-connected hosts more generally.

Unikernels run above a hypervisor layer and treat it and the
control domain as part of the trusted computing base (for now,
see §5.3). However, rather than adopt a multi-user access control
mechanism that is inordinately complex for a specialised appliance,
unikernels use the hypervisor as the sole unit of isolation and let ap-
plications trust external entities via protocol libraries such as SSL
or SSH. Internally, unikernels adopt a defence in depth approach:
firstly by compile-time specialisation, then by pervasive type-safety
in the running code, and finally via hypervisor and toolchain exten-
sions to protect against unforseen compiler or runtime bugs.

2.3.1 Single Image Appliances

The usual need for backwards compatibility with existing applica-
tions, e.g., the POSIX API, the OS kernel and the many userspace
binaries involved mean that even the simplest appliance VM con-
tains several hundred thousand, if not millions of, lines of ac-
tive code that must be executed every time it boots (§4.5). Even
widely deployed codebases such as Samba and OpenSSL still con-
tain remote code execution exploits published as recently as April
2012 [7, 8], and serious data leaks have become all too common-
place in modern Internet services. A particularly insidious problem
is that misconfiguring an image can leave unnecessary services run-
ning that can significantly increase the remote attack surface.

A unikernel toolchain performs as much compile-time work
as possible to eliminate unnecessary features from the final VM.
All network services are available as libraries, so only modules
explicitly referenced in configuration files are linked in the output.
The module dependency graph can be easily statically verified to
only contain the desired services. While there are some Linux
package managers that take this approach [9], they are ultimately
constrained by having to support dynamic POSIX applications.

The trade-off with using too many static configuration directives
that are compiled into the image is that VMs can no longer be
cloned by taking a copy-on-write snapshot of an existing image. If
this is required, a dynamic configuration directive can be used (e.g.,
DHCP instead of a static IP). Our prototype Mirage unikernels
contain substantially fewer lines of code than the Linux equivalent,
and the resulting images are significantly smaller (§4.5).

2.3.2 Pervasive Type-Safety

The requirement to be robust against remote attack strongly moti-
vates use of a type-safe language. An important decision is whether
to support multiple languages within the same unikernel. An argu-
ment for multiple languages is to improve backwards compatibility
with existing code, but at the cost of increasing the complexity of
a single-image system and dealing with interoperability between
multiple language runtimes.

The alternative is to eschew source-level compatibility and
rewrite system components entirely in one language and specialise
that toolchain as best as possible. Although it is a daunting en-
gineering challenge to rewrite protocols such as TCP, this is pos-
sible for an experimental system such as our Mirage prototype.
In choosing this path, we support interoperability at the network
protocol level: components communicate using type-safe, efficient
implementations of standard network protocols. The advantage of
running on a hypervisor is that the reverse is also possible: ex-
isting non-OCaml code can be encapsulated in separate VMs and
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communicated with via message-passing, analogous to processes
in a conventional OS (§5.2). Likewise, access control within the
appliance no longer requires userspace processes, instead depend-
ing on the language’s type-safety to enforce restrictions. the virtual
address space can be simplified into a single-address space model.

Mirage’s single-language focus eases the integration of security
techniques to protect the remaining non-type-safe components of
the system (notably, the garbage collector) and to provide defence-
in-depth in case a compiler bug allows the type-safety property to
be violated. Some of these, such as stack canaries and guard pages,
are straightforward translations of standard techniques and so we
do not discuss them further. However, two depend on the unique
properties of the unikernel environment and we describe these next.

2.3.3 Sealing and VM Privilege Dropping

As unikernels are single-image and single-address space, they ex-
ercise fewer aspects of the VM interface and can be sealed [10] at
runtime to further defend against bugs in the runtime or compiler.
This means that any code not present in the unikernel at compile
time will never be run, completely preventing code injection at-
tacks. Implementing this policy is very simple: as part of its start-
of-day initialisation, the unikernel establishes a set of page tables
in which no page is both writable and executable and then issues
a special seal hypercall which prevents further page table mod-
ifications. The memory access policy in effect when the VM is
sealed will be preserved until it terminates. The hypervisor changes
necessary to implement the sealing operation are themselves very
simple;1 by contrast, implementing an equivalent Write Xor Exe-
cute [11] policy in a conventional operating system requires exten-
sive modifications to libraries, runtimes, and the OS kernel itself.

This approach does mean that a running VM cannot expand
its heap, but must instead pre-allocate all the memory it needs at
startup (allocation within the heap is unaffected, and the hypervisor
can still overcommit memory between VMs). This is a reasonable
constraint on cloud infrastructures, where the memory allocated to
the VM has already been purchased. The prohibition on page table
modification does not apply to I/O mappings, provided that they
are themselves non-executable and do not replace any existing data,
code, or guard pages. This means that I/O is unaffected by sealing a
VM, and does not inherently invalidate the memory access policy.

This optional facility is the only element of unikernels that
requires a patch to the hypervisor instead of running purely in
the guest. The privilege dropping patch is very simple and would
benefit any other single-address space operating system, and so it
is being upstreamed to the main Xen distribution. Note that Mirage
can run on unmodified versions of Xen without this patch, albeit
losing this layer of the defence-in-depth security protections.

2.3.4 Compile-Time Address Space Randomization

While VM sealing prevents an attacker from introducing attack
code, it does not prevent them from executing code which is already
present. Although use of whole-system optimization can eliminate
many targets for such an attack, enough might be left to assem-
ble a viable exploit using return-oriented programming style tech-
niques. Conventionally, these would be protected against using run-
time address space randomization, but this requires runtime linker
code that would introduce significant complexity into the running
unikernel. Fortunately, it is also unnecessary. The unikernel model
means that reconfiguring an appliance means recompiling it, po-
tentially for every deployment. We can thus perform address space
randomisation at compile time using a freshly generated linker
script, without impeding any compiler optimisations and without
adding any runtime complexity.

1 Including the API definition, our patch to Xen 4.1 added fewer than
50 lines of code in total.

3. Mirage Unikernels

Our Mirage prototype produces unikernels by compiling and link-
ing OCaml code into a bootable Xen VM image. We implement
all but the lowest-level features in OCaml and, to assist develop-
ers testing and debugging their code, provide the ability to produce
POSIX binaries that run Mirage services on UNIX, as well as Xen
VM images. We now discuss some of the key design decisions and
components of Mirage: use of OCaml (§3.1), the PVBoot library
that initialises a basic environment (§3.2), a modified language run-
time library for heap management and concurrency (§3.3), and its
type-safe device drivers (§3.4) and I/O stack (§3.5).

3.1 Why OCaml?

We chose to implement Mirage in OCaml for four key reasons.
First, OCaml is a full-fledged systems programming language [12]
with a flexible programming model that supports functional, im-
perative and object-oriented programming, and its brevity re-
duces lines-of-code (LoC) counts that are often considered cor-
related with attack surface. Second, OCaml has a simple yet high-
performance runtime making it an ideal platform for experimenting
with the unikernel abstraction that interfaces the runtime with Xen.
Third, its implementation of static typing eliminates type informa-
tion at compile-time while retaining all the benefits of type-safety,
another example of specialisation. Finally, the open-source Xen
Cloud Platform [12] and critical system components [13, 14] are
implemented in OCaml, making integration straightforward.

However, this choice does impose tradeoffs. OCaml is still a rel-
atively esoteric language compared with other systems languages
such as C/C++. Using OCaml also necessitated a significant engi-
neering effort to rebuild system components, particularly the stor-
age and networking stacks. Given the other benefits of OCaml, we
do not feel either of these are significant impediments for a research
prototype. One early decision decision we took is to adopt the mul-
tikernel [15] philosophy of running a VM per core, and the single-
threaded OCaml runtime has fast sequential performance that is
ideal for this need. Each Mirage unikernel runs over Xen using a
single virtual CPU, and multicore is supported via multiple com-
municating unikernels over a single instance of Xen.

We did explore applying unikernel techniques in the traditional
systems language, C, linking application code with Xen MiniOS,
a cut-down libc, OpenBSD versions of libm and printf, and the
lwIP user-space network stack. However, we found that a DNS
appliance constructed in this way from the high performance NSD
DNS server performed considerably worse than the Mirage DNS
server, even after several rounds of optimisation (Figure 10). It
seems likely that producing even a similarly performing prototype
in C would still require very significant engineering effort and
would not achieve any of the type-safety benefits.

3.2 PVBoot Library

PVBoot provides start-of-day support to initialise a VM with one
virtual CPU and Xen event channels, and jump to an entry func-
tion. Unlike a conventional OS, multiple processes and preemp-
tive threading are not supported, and instead a single 64-bit ad-
dress space is laid out for the language runtime to use. PVBoot
provides two memory page allocators, one slab and one extent. The
slab allocator is used to support the C code in the runtime; as most
code is in OCaml it is not heavily used. The extent allocator re-
serves a contiguous area of virtual memory which it manipulates in
2MB chunks, permitting the mapping of x86 64 superpages. Mem-
ory regions are statically assigned roles, e.g., the garbage collected
heap or I/O data pages. PVBoot also has a domainpoll function that
blocks the VM on a set of event channels and a timeout.
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Figure 2: Specialised virtual memory layout of a 64-bit Mirage
unikernel running on Xen.

PVBoot provides minimal support for an asynchronous, event-
driven VM that sleeps until I/O is available or times out. Device
drivers are all provided outside PVBoot in type-safe OCaml (§3.4).

3.3 Language Runtime

Mirage executes OCaml code over a specialised language runtime
modified in two key areas: memory management and concurrency.
Figure 2 shows the memory layout of a Mirage unikernel, divided
into three regions: text and data; external I/O pages; and the OCaml
heaps. The text and data segments contain the OCaml runtime,
linked against PVBoot. This is the only address space available in
the kernel. The application’s main thread is launched immediately
after boot and the VM shuts down when it returns.

The OCaml garbage collector splits the heap into two regions:
a fast minor heap for short-lived values, and a large major heap to
which longer-lived values are promoted on each minor heap col-
lection. These areas are allocated below the low virtual address
space reserved by Xen: the minor heap has a single 2 MB extent
that grows in 4 kB chunks, and the major heap has the remainder
of virtual memory, growing in 2 MB superpage chunks using the
extent allocator. Memory mapping large contiguous areas is usu-
ally discouraged to allow Address Space Randomization (ASR) to
protect against buffer overflows [16], and so a normal userspace
garbage collector maintains a page table to track allocated heap
chunks. Mirage unikernels avoid ASR at runtime in favour of a
more specialised security model (§2.3), and guarantee a contiguous
virtual address space, simplifying runtime memory management.

VMs communicate directly by having the local VM grant mem-
ory page access rights to the remote VM via the hypervisor [17].
PVBoot allocates external memory pages from a reserved area of
virtual memory, and allocates a small proxy value in the small,
fast OCaml minor heap. Mirage provides a library to reference that
data from OCaml without requiring a data copy (§3.4). Specialis-
ing memory layout to distinguish I/O pages in this way significantly
reduces the amount of data that the garbage collector has to scan.
This reduced garbage collector pressure is one of two key factors
that let the Mirage network stack exhibit predictable performance;
the other is pervasive library support for zero-copy I/O (§3.4.1).

To provide concurrency beyond PVBoot’s simple domain-
poll function, Mirage integrates the Lwt cooperative threading li-
brary [18]. This internally evaluates blocking functions into event
descriptors to provide straight-line control flow for the developer.
Written in pure OCaml, Lwt threads are heap-allocated values, with
only the thread main loop requiring a C binding to poll for external

cstruct ring hdr { auto-generates these functions:
uint32 t req prod; set req prod : buf → uint32 → unit
uint32 t req event; get req prod : buf → uint32
uint32 t rsp prod; ...
uint32 t rsp event; set stuff : buf → uint64 → unit
uint64 t stuff get stuff : buf → uint64

} as little endian

Figure 3: Syntax extension mapping C structs (left) to OCaml
values by autogenerating efficient accessor functions (right).

events. Mirage provides an evaluator that uses domainpoll to listen
for events and wake up lightweight threads. The VM is thus either
executing OCaml code or blocked, with no internal preemption or
asynchronous interrupts. The main thread repeatedly executes until
it completes or throws an exception, and the domain subsequently
shuts down with the VM exit code matching the thread return value.

A useful consequence is that most scheduling and thread logic
is contained in an application library, and can thus be modified by
the developer as they see fit. For example, threads can be tagged
with local keys for debugging, statistics or prioritisation, depending
on application needs. Thread scheduling is platform-independent
with timers stored in a heap-allocated OCaml priority queue, and
can be overridden by the application (e.g. we have previously
demonstrated the benefit of custom scheduling for the Sqlite library
database in an earlier prototype [19]). Only the run-loop is Xen-
specific, to interface with PVBoot.

3.4 Device Drivers

Mirage drivers interface to the device abstraction provided by Xen.
Xen devices consist of a frontend driver in the guest VM, and a
backend driver that multiplexes frontend requests, typically to a
real physical device [20]. These are connected by an event chan-
nel to signal the other side, and a single memory page divided into
fixed-size request slots tracked by producer/consumer pointers. Re-
sponses are written into the same slots as the requests, with the
frontend implementing flow control to avoid overflowing the ring.
Xen device classes using this model include Ethernet, block stor-
age, virtual framebuffer, USB and PCI.

Manipulating these shared memory rings is the base abstrac-
tion for all I/O throughout Mirage. The shared page is mapped
into OCaml using the built-in Bigarray module, which wraps ex-
ternally allocated memory safely into the OCaml heap and makes
it available as an array. Reading and writing into the shared page
must precisely match the C semantics, and is a relatively slow op-
eration in OCaml since fixed-size integers are boxed values that
are heap-allocated before being copied into the shared page.2 We
used camlp4 to add a new cstruct keyword to OCaml to directly
map C structures (Figure 3). Declaring a cstruct generates accessor
functions for directly manipulating the external memory array. The
extension also handles endian conversion, and is used extensively
through the network stack for header parsing [22].

This approach permits Mirage drivers to be implemented as pure
OCaml libraries relying on just two extra intrinsics: inline assem-
bly providing read and write memory barriers. The Ring module
implements the base protocol and adds an asynchronous thread-
ing interface to push requests and wait for responses. Higher-level
modules such as Netif and Blkif implement networking and block
drivers, and interoperate with unmodified Xen hosts. A beneficial
side-effect of our re-implementation of these protocols was to fuzz-
test the existing code, and we discovered and reported several edge-
case bugs in Linux/Xen as a result, including an important security
issue (XSA-39).

2 The FoxNet network stack also reported this issue in SML [21].
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Figure 4: Example zero-copy write for an HTTP GET. The appli-
cation writes its request into an I/O page, and the network stack
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3.4.1 Zero-Copy Device I/O

The Xen device protocol does not write data directly into the shared
memory page, but rather uses it to coordinate passing 4 kB memory
pages by reference. Two communicating VMs share a grant table
that maps pages to an integer offset (called a grant) in this table,
with updates checked and enforced by the hypervisor. The grant
is exchanged over the device driver shared ring, and looked up
by the remote VM to map or copy that page into its own address
space. Once within the remote (non-Mirage) VM, the data must be
transferred into the application. As POSIX APIs do not support
zero-copy sockets, this usually entails a second copy from the
receiving VM’s kernel into the appropriate userspace process.

Mirage unikernels do not have a userspace, so received pages
are passed directly to the application without requiring copying.
The cstruct library avoids incurring copying overhead by slicing
the underlying array into smaller views; once views are all garbage-
collected, the array is returned to the free page pool. The network
stack can thus safely re-use fragments of incoming network traffic
and proxy it directly into another device (e.g., an HTTP proxy)
while avoiding having to manage the page manually.

However, there are still a few resources that must be manually
tracked and freed, e.g., the contents of the shared grant table be-
tween VMs. Mirage uses the OCaml type system to enforce in-
variants that ensure resources are correctly freed, via higher-order
functions that wrap any use of a given resource such as a grant ref-
erence. When the function terminates, whether normally via time-
out or an unknown exception, the grant reference is freed. As well
as preventing resource leaks, particularly on error paths, this allows
the scheduler to free resources by cancelling light-weight threads.
These composable higher-order functions, also known as combi-
nators, are used throughout Mirage to safely expose system re-
sources. Note that these combinators do not entirely eliminate re-
source leaks, since references that are held in data structures and
never removed will remain forever, but the OCaml programming
style encourages the use of many small data structures and re-
usable utility libraries that help prevent such problems.

3.5 Type-Safe Protocol I/O

Mirage implements protocol libraries in OCaml to ensure that
all external I/O handling is type-safe, making unikernels ro-
bust against memory overflows. Protocols are structured as non-
blocking parsing libraries with separate client/server logic that
spawns lightweight threads. Libraries are accessed via preemptive
state handles, enabling multiple protocol stacks within the same
unikernel. Table 1 lists the protocols currently implemented in Mi-

Subsystem Implemented Protocols

Core Lwt, Cstruct, Regexp, UTF8, Cryptokit
Network Ethernet, ARP, DHCP, IPv4, ICMP,

UDP, TCP, OpenFlow
Storage Simple key-value, FAT-32, Append B-

Tree, Memcache
Application DNS, SSH, HTTP, XMPP, SMTP

Formats JSON, XML, CSS, S-Expressions

Table 1: System facilities provided as Mirage libraries.

rage, sufficient to self-host our website3 infrastructure, including
wiki, blog and DNS servers on the Amazon EC2 public cloud.

Data arrives to both the network and storage stacks as a stream
of discrete packets. Mirage bridges the gap between packets and
streams by using channel iteratees [23] that map functions over
infinite streams of packets to produce a typed stream. Iterators
eliminate many of the fixed-size buffers that are often used in a less
tightly coupled conventional kernel/userspace. Chained iterators
route traffic directly to the relevant application thread, blocking
on intermediate system events if necessary. We now describe the
specifics of networking (§3.5.1) and storage (§3.5.2).

3.5.1 Network Processing

The Mirage network stack emphasises application-level control
over strict modularity, exposing most details of the underlying pro-
tocol to application control. It provides two communication meth-
ods: a fast on-host inter-VM vchan transport, and an Ethernet trans-
port for external communication. vchan is a fast shared memory
interconnect through which data is tracked via producer/consumer
pointers. It allocates multiple contiguous pages for the ring to en-
sure it has a reasonable buffer and once connected, communicating
VMs can exchange data directly via shared memory without further
intervention from the hypervisor other than interrupt notifications.4

vchan is present in upstream Linux 3.3.0 onwards, enabling easy
interaction between Mirage unikernels and Linux VMs.

Internet connectivity is more complex: an application links to
a protocol library such as HTTP, which links with a TCP/IP net-
work stack, which in turns links to the network device driver.
The application reads and writes I/O pages with the protocol li-
brary so they can be transmitted directly. When reading packets,
the network stack splits out headers and data using cstruct sub-
views (§3.4.1). Writing data requires more processing as the stack
must prepend variable-length protocol headers for TCP, IP and Eth-
ernet before the data payload, and sometimes segment large pay-
loads into smaller fragments for transmission. This is solved via
scatter-gather I/O: the network stack allocates a header page for
every write, and the network libraries rearrange incoming payloads
into sub-views as needed, before writing all the fragments into the
device ring as one packet. Figure 4 illustrates this write path.

3.5.2 Storage

Traditional OS kernels layer filesystems over block devices ac-
cessed via POSIX sockets or mmap, and coalesce writes into a
kernel buffer cache [24]. Applications needing precise control over
when a write is actually persisted must either invoke the fsync
syscall or explicitly request non-buffered direct access and issue
sector-aligned requests. Modern Linux kernels provide libaio for
asynchronous block requests only, forcing applications to use dif-
ferent APIs for networking and storage.

In contrast, Mirage block devices share the same Ring abstrac-
tion as network devices, using the same I/O pages to provide effi-

3 http://openmirage.org/
4 When data is continuously flowing between VMs, each side checks for
outstanding data before blocking, reducing the number of hypervisor calls.
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cient block-level access, with filesystems and caching provided as
OCaml libraries. This gives control to the application over caching
policy rather than providing only one default cache policy. Differ-
ent caching policies can be provided as libraries (OCaml modules)
to be linked at build time, with the only built-in policy being that
all writes are guaranteed to be direct.

For example, we ported a third-party copy-on-write binary tree
storage library5 to Mirage. This can be used as a storage backend
by applications, with caching policy and buffer management be-
ing explicitly managed within in the library. Our FAT-32 storage
library also implements its own buffer management policy where
data reads are returned as iterators supplying one sector at a time.
This avoids building large lists in the heap while permitting internal
buffering within the library by having it request larger sector ex-
tents from the block driver. Finally, we found that our DNS server
gained a dramatic speed increase by applying a memoization li-
brary to network responses (§4); this technique could also be used
to implement persistent self-paging of very large datasets [25].

4. Evaluation

As Mirage is a clean-slate implementation of many OS compo-
nents, we evaluate it against more conventional deployments in
stages. We first examine micro-benchmarks (§4.1) to establish
baseline performance of key components, followed by more re-
alistic appliances: a DNS server, showing performance of our safe
network stack (§4.2); an OpenFlow controller appliance (§4.3);
and an integrated web server and database, combining storage and
networking (§4.4). Finally, we examine the differences in active
LoC and binaries in these appliances, and the impact of dead-code
elimination (§4.5).

4.1 Microbenchmarks

These microbenchmarks demonstrate the potential benefits of
unikernel specialisation by examining performance in simple, con-
trolled scenarios. Evaluations are composed of identical OCaml
code executing in different hosting environments: linux-native, a
Linux kernel running directly on the bare metal with an ELF bi-
nary version of the application; linux-pv, a Linux kernel running
as a paravirtualised Xen domU with an ELF binary version of
the application; and xen-direct, the application built as a type-safe
unikernel, running directly over Xen. We verified that CPU-bound
applications are unaffected by unikernel compilation as expected,
as the hypervisor architecture only affects memory and I/O.

4.1.1 Boot Time

Unikernels are compact enough to boot and respond to
network traffic in real-time.

Mirage generates compact VMs which boot very quickly. Fig-
ure 5 compares boot times for a Mirage webserver against a mini-

5 https://github.com/Incubaid/baardskeerder
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mal Linux kernel, and a more realistic linux-pv Debian Linux run-
ning Apache2. Time is measured from startup to the point where
boot is complete, signalled by the VM sending a special UDP
packet to the control domain. The minimal Linux kernel measures
this “time-to-userspace” via an initrd that calls the ifconfig ioctls
directly to bring up a network interface before explicitly transmit-
ting a single UDP packet. The more realistic Debian Linux running
Apache2 uses the standard Debian boot scripts and measures time-
to-userspace by waiting until Apache2 startup returns before trans-
mitting the single UDP packet. The Mirage unikernel transmits the
UDP packet as soon as the network interface is ready. As the mem-
ory size increases, the proportion of Mirage boot time due to build-
ing the domain also increases to approximately 60% for memory
size 3072 MiB. Mirage matches the minimal Linux kernel, booting
in slightly under half the time of the Debian Linux.

It is difficult to distinguish between the minimal Linux VM and
Mirage in Figure 5. The boot time is skewed by the Xen control
stack synchronously building domains, since latency isn’t normally
a prime concern for VM construction. We modified the Xen tool-
stack to support parallel domain construction, and isolate the VM
startup time in Figure 6. This clearly distinguishes the differences
between the Mirage unikernel and Linux: Mirage boots in under
50 milliseconds. Such fast reboot times mitigate the concern that re-
deployment by reconfiguration is too heavyweight, as well as open-
ing up the possibility of regular micro-reboots [14].

4.1.2 Threading

Garbage collected heap management is more efficient in a
single address-space environment. Thread latency can be
reduced by eliminating multiple levels of scheduling.

Figure 7a benchmarks thread construction time, showing the
time to construct millions of threads in parallel where each thread
sleeps for between 0.5–1.5 seconds and then terminates. The linux-
pv userspace target, which most closely mirrors a conventional
cloud application, is slowest with the same binary running on native
Linux coming in next. The two xen- targets using the different
memory allocators perform notably better due to the test being
limited by the GC speed: thread construction occurs on the OCaml
heap so creating millions of threads triggers regular compaction
and scanning. The xen- runtime is faster due to the specialised
address space layout described earlier (§2). There is little extra
benefit to using superpages (xen-extent cf. xen-malloc), as the heap
grows once to its maximum size and never subsequently shrinks.

We also evaluated the precision of thread timers: a thread
records the domain wallclock time, sleeps for 1–4 seconds and
records the difference between the wallclock time and its expected
wakeup time. Figure 7b plots the CDF of the jitter, and shows
that the unikernel target provides both lower and more predictable
latency when waking up millions of parallel threads. This is due
simply to the lack of userspace/kernel boundary eliding Linux’s
syscall overhead.
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Figure 7: Mirage thread performance.

4.1.3 Networking and Storage

Unikernel low-level networking performs competitively to
conventional OSs, despite being fully type-safe. Library-
based block management performs on par with a conven-
tional layered storage stack.

As a simple latency test against the Linux stack we flooded
10

6 pings from the Linux ping client running in its own VM
to two targets: a standard Linux VM, and a Mirage unikernel
with the Ethernet, ARP, IPv4 and ICMP libraries. This stress tests
pure header parsing without introducing any userspace element for
Linux. As expected, Mirage suffered a small (4–10%) increase in
latency compared to Linux due to the slight overhead of type-safety,
but both survived a 72-hour flood ping test.

We compared the performance of Mirage’s TCPv4 stack, im-
plementing the full connection lifecycle, fast retransmit and recov-
ery, New Reno congestion control, and window scaling, against
the Linux 3.7 TCPv4 stack using iperf. All hardware offload
was disabled to provide the most stringent test of Mirage: the nat-
urally higher overheads of implementing low-level operations in
OCaml rather than C mean that hardware offload (particularly TCP
segmentation) disproportionately improves Mirage’s performance
compared to Linux. Performance is on par with Linux: Mirage’s
receive throughput is slightly higher due to the lack of a userspace
copy, while its transmit performance is lower due to higher CPU
usage. Both Linux and Mirage can saturate a gigabit network con-
nection, and we expect that adding transmit hardware offload sup-
port will allow even our experimental TCP stack to 10 Gb/s perfor-
mance.

Configuration
Throughput [ std. dev. ] (Mbps)

1 flow 10 flows

Linux to Linux 1590 [ 9.1 ] 1534 [ 74.2 ]

Linux to Mirage 1742 [ 18.2 ] 1710 [ 15.1 ]

Mirage to Linux 975 [ 7.0 ] 952 [ 16.8 ]

Figure 8: Comparative TCP throughput performance with all hard-
ware offload disabled.
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Figure 10: DNS performance with increasing zone size.

Figure 9 shows a simple random read throughput test using
fio of a fast PCI-express SSD storage device, comparing a Mirage
xen-direct appliance against a Linux RHEL5 kernel (2.6.18) using
buffered and direct I/O. Again, as expected, the Linux direct I/O
and Mirage lines are effectively the same: both use direct I/O and
so impose very little overhead on the raw hardware performance.
However, the performance impact of the Linux buffer cache is
notable: it causes performance to plateau at around 300 MB/s in
contrast to the 1.6 GB/s achieved if the buffer cache is avoided.
The lack of a buffer cache is not significant for the appliances we
target: such applications already manage their own storage.

4.2 DNS Server Appliance

The Mirage DNS Server appliance contains the core libraries, the
Ethernet, ARP, IP, DHCP and UDP libraries from the network
stack, and a simple in-memory filesystem storing the zone in stan-
dard Bind9 format. Figure 10 compares the throughput of the Mi-
rage appliance on Xen against two best-of-breed nameservers: Bind
9.9.0, a mature and widely used DNS server; and NSD 3.2.10, a re-
cent high performance implementation.

Bind achieves 55 kqueries/s for reasonable zone file sizes.6 As
a more recent rewrite focused on performance, NSD does better,
achieving around 70 kqueries/s. The Mirage appliance initially per-
formed very poorly, but dramatically improved when we introduced
memoization of responses to avoid repeated computation. A simple
20 line patch, this increased performance from around 40 kqueries/s
to 75–80 kqueries/s. Errorbars indicate unbiased estimates of µ±σ

across 10 runs.
There is other evidence [26] that algorithmic performance im-

provements substantially exceed those due only to machine-level
optimization, and Mirage’s use of functional programming pro-
vides an effective platform for further experimentation in this re-
gard. A further example is DNS label compression, notoriously

6 We were unable to determine the cause of Bind’s poor performance with
small zone sizes, but the results are consistently reproducible.
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tricky to get right as previously seen label fragments must be care-
fully tracked. Our initial implementation used a naive mutable
hashtable, which we then replaced with a functional map using a
customised ordering function that first tests the size of the labels be-
fore comparing their contents. This gave around a 20% speedup, as
well as securing against the denial-of-service attack where clients
deliberately cause hash collisions.

DNS also provides a good example where Mirage type-safety
should bring significant security benefits. For example, in the last
10 years the Internet Systems Consortium has reported 40 vulner-
abilities in the Bind software.7 Of these, 25% were due to mem-
ory management errors, 15% to poor handling of exceptional data
states, and 10% to faulty packet parsing code, all of which would
be mitigated by Mirage’s type-safety.

Finally, the other main benefit of Mirage is shown by comparing
the size of the Linux and Mirage appliances: the Mirage appliance
is 183.5 kB in size compared with 462 MB in-use for the Linux
VM image. While some of this difference can be accounted to
the fact that our libraries do not implement the complete feature-
set of BIND9 or NSD, we do include all features required by the
queryperf test suite and the Mirage appliance is sufficient to self-
host the project infrastructure online.

We also tested both NSD and BIND compiled in libOS mode
with the newlib-1.16 embedded libc, the lwIP-1.3.0 network stack
and the standard Xen-4.1 MiniOS device drivers. Performance was
significantly lower than expected with further benchmarking re-
vealing that this is due to unexpected interactions between MiniOS
select(2) scheduling and the netfront driver. Our experiences with
the C libOS libraries reinforced our notion that such programming
is rather fragile – using embedded systems libraries often means
giving up performance (e.g., optimised libc assembly is replaced by
common calls) – and a more fruitful approach would be to break the
Linux kernel into a libOS as Drawbridge does for Windows 7 [3].

4.3 OpenFlow Controller Appliance

OpenFlow is a software-defined networking standard for Ethernet
switches [27]. It defines an architecture and a protocol by which the
controller can manipulate flow tables in Ethernet switches, termed
datapaths. Mirage provides libraries implementing an OpenFlow
protocol parser, controller, and switch. By linking against the con-
troller library, appliances can exercise direct control over hardware
and software OpenFlow switches, subject to any network adminis-
tration policies in place. Conversely, by linking against the switch
library, an appliance can be controlled as if it were an OpenFlow
switch, useful in scenarios where the appliance provides network
layer functionality, e.g., acts as a router, switch, firewall, proxy or
other middlebox. As software implementations, these libraries can
be extended according to specific appliance needs, e.g., to enable
flows to be identified by the DNS domain of either endpoint, or
defined in terms of HTTP URLs.

We benchmark our OpenFlow implementation using the OFlops
platform [28]. For the controller benchmark we use cbench to em-
ulate 16 switches concurrently connected to the controller, each
serving 100 distinct MAC addresses. Experiments run on a 16-core
AMD server with 40 GB RAM, and each controller is configured to
use a single thread. We measure throughput in requests processed
per second in response to a stream of packet-in messages produced
by each emulated switch under two scenarios: batch, where each
switch maintains a full 64 kB buffer of outgoing packet-in mes-
sages; and single, where only one packet-in message is in flight
from each switch. The first measures the absolute throughput when
servicing requests, and the second measures throughput of the con-
troller when serving connected switches fairly.

7 http://www.isc.org/advisories/bind
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Figure 12: Simple dynamic web appliance performance.

Figure 11 compares the xen-direct Mirage controller against two
existing OpenFlow controllers: Maestro [29], an optimised Java-
based controller; and the optimised C++ destiny-fast branch of
NOX [30], one of the earliest and most mature publicly available
OpenFlow controllers. Unsurprisingly, the optimised NOX branch
has the highest performance in both experiments, although it does
exhibit extreme short-term unfairness in the batch test. Maestro is
fairer but suffers significantly reduced performance, particularly on
the “single” test, presumably due to JVM overheads. Performance
of the Mirage appliance falls between NOX and Maestro, showing
that Mirage manages to achieve most of the performance benefits
of optimised C++ which retaining the high-level language features
such as type-safety.

4.4 Dynamic Web Server Appliance

Our final appliance implements a simple “Twitter-like” service.
It maintains an in-memory database of tweets and is exercised
through two API calls: one to GET the last 100 tweets for an
individual, and the other to POST a tweet to an individual. The
Mirage implementation integrates the third-party Baardskeerder B-
tree storage library, ported to Mirage with only a small patch to
use the Block APIs instead of UNIX I/O. We compare the Mirage
unikernel implementation against a Linux-based appliance running
nginx, fastCGI and web.py. We used the httperf benchmark tool as
a client on the same physical box with separate dedicated cores,
connecting over the local bridge to avoid the possibility of the
Ethernet becoming the bottleneck. Each httperf session issues 10
requests: 1 tweet and 9 ‘get last 100 tweets’.

Figure 12 shows the results. The unikernel implementation
clearly scales much better: scaling is linear up to around 80 ses-
sions (800 requests – each session consists of 10 HTTP requests,
9 GETs and 1 POST) before it becomes CPU bound. In contrast,
Linux VM performance is much worse, reaching its limit at around
20 sessions. For comparison, the same Linux VM serving two
clients just a single static page via nginx achieves up to 5,000 re-
quests/s before hitting CPU and fd limits. Although substantially
higher than the (unoptimised) Mirage implementation, there are
other benefits to Mirage discussed earlier: smaller memory foot-
print (32 MB against 256 MB), type-safety and security.
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Figure 13: Static page serving performance, comparing Mirage and
Apache2 running on Linux.

Figure 13 compares performance of the Mirage web appliance
against a standard Linux VM running Apache2 using the mpm-
worker backend with the number of workers sized to the number of
vCPUs, serving a single static page. The Linux VM was run in three
configurations: a single VM given 6 vCPUs, two VMs each given
3 vCPUs and finally 6 VMs each given a single vCPU. As Mirage
unikernels do not support multi-core, only one configuration was
run of 6 unikernels each with a single vCPU. The results show
first, that scaling out appears to improve the Apache2 appliance
performance more than having multiple cores and second, that the
Mirage unikernels exceed the Apache2 appliance in all cases.

4.5 Code and Binary Size

Direct comparison of lines-of-code (LoC) is rarely meaningful
due to factors including widespread use of conditional compila-
tion and complex build systems. We attempt to control for these
effects by configuring according to reasonable defaults, and then
pre-processing to remove unused macros, comments and whites-
pace. In addition, to attempt a fair comparison against the 7 million
LoC left in the Linux tree after pre-processing, we ignore kernel
code associated with components for which we have no analogue,
e.g., the many architectures, network protocols, and filesystems that
Linux supports. As we are concerned with network-facing guest
VMs that share the underlying hypervisor, we do not include LoC
for Xen and its management domains; these can be separately dis-
aggregated as desired [14, 31].

Figure 14a shows LoC for several popular server components,
computed by the cloc utility. Even after removing irrelevant code,
a Linux appliance involves at least 4–5x more LoC than a Mirage
appliance. Note that, although the Mirage libraries are not yet as
feature-rich as the industry-standard C applications, their library
structure ensures that unused dependencies can be shed at compile-
time even as features continue to be added. For example, if no
filesystem is used, then the entire set of block drivers are auto-
matically elided. Performing such dependency analysis across the
kernel and userspace is non-trivial in a Linux distribution.

Compiled binary size is another effective illustration of this,
and Table 2 gives binary sizes for the benchmark appliances. The
first column used the default OCaml dead-code elimination which
drops unused modules, and the second uses ocamlclean,8 a more
extensive custom tool which performs dataflow analysis to drop
unused functions within a module if not otherwise referenced; this
is safe due to the lack of dynamic linking in Mirage [32]. Either
way, all Mirage kernels are significantly more compact than even a
cut-down embedded Linux distribution, without requiring any work
on the part of the programmer beyond using the Mirage APIs to
build their application.

8 http://github.com/avsm/ocamlclean

Appliance
Binary size (MB)

Standard build Dead code elimination

DNS 0.449 0.184

Web Server 0.673 0.172

OpenFlow switch 0.393 0.164

OpenFlow controller 0.392 0.168

Table 2: Sizes of Mirage unikernels, before and after dead-code
elimination. Configuration and data are compiled directly into the
unikernel.

5. Discussion & Related Work

We next discuss the relationship of both unikernels and Mirage to
the previous work on which they build, from fields such as type-
safety, library OSs and security.

5.1 Type-safe and library OSs

The desire to apply type-safety in the OS is not new: type-safe OSs
have been built in a range of languages including Haskell [33, 34],
Java [35], Standard ML [21], C#/.Net [4], and Modula-3 [36]. The
last of these, SPIN [36], is perhaps the closest in nature to Mirage:
SPIN is an extensible OS that relies on Modula-3 type-safety to
dynamically link extensions into the kernel. More recently, Singu-
larity [4] restructured the OS to sit above the Common Language
Runtime, achieving many similar type-safety benefits. The uniker-
nel approach is somewhat orthogonal: it proposes a restructuring
of the OS to specifically target services hosted on the public cloud,
which benefits from but does not mandate type-safety. The particu-
lar implementation presented here, Mirage, also uses an extremely
portable functional language which means the Mirage core and net-
work stack can even be compiled to JavaScript for execution on
node.js;9 and ports to ARM and a FreeBSD kernel module are func-
tional in an alpha state.

Restructuring the OS into a set of libraries that are linked
into the application has been explored extensively. Exokernel [1],
Nemesis [2], and Scout [37] all pursued this approach with con-
siderable success. Indeed, the specific technique of page re-use
for efficient network I/O (§3.5.1) is directly inspired by the high-
performance Cheetah web server for the Exokernel [38]. More
recently, Drawbridge [3] adapts Windows to be a library operating
system where applications communicate via networking protocols,
showing that this approach scales to real commercial operating
systems. However, previous library OSs suffered from poor hard-
ware support with device drivers either needing to be written from
scratch or wrapped in a compatibility layer [39]. Unikernels use
similar libOS techniques but targets the cloud as a deployment
platform, with our Mirage implementation using the Xen hypervi-
sor as a low-level common hardware interface.

Finally, Libra [5] adapts the JVM to sit directly above Xen, tar-
geting Java workloads specifically. In particular, Libra uses a gate-
way server running in a standard Linux VM to provide access to
standard OS services such as a networking stack and filesystem IO.
Application-hosting VMs access these services by communicating
with the other VM via the gateway process. In contrast, Uniker-
nels are more highly-specialised but also more complete, providing
single-purpose appliance VMs that directly support standard net-
work and filesystem protocols.

5.2 Legacy Support

Perhaps the most obvious potential problem with the unikernel ap-
proach is how best to support legacy systems. The extreme position
we take does appear to require a great deal of re-implementation,

9 Admittedly without a specific purpose in mind, though it is useful for
educational purposes and ensuring portability.
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target, which links in the bytecode interpreter, makes use of the host
kernel’s networking stack, and maps keys in the k/v store to local
files. This provides a familiar development environment in which to
debug and profile application logic. Next, the developer applies the
first specialisation step, building for the posix-direct target. This
removes dependency on the standard OS sockets implementation,
instead linking in the unikernel network stack (§3.5), and generat-
ing a native-code binary that uses tuntap to handle Ethernet traffic,
and compile configuration files directly into the binary. The result
is that I/O processing is performed within the application, albeit
inefficiently due to the data copying induced by tuntap. This al-
lows testing of the unikernel locally using UNIX development tools
rather than the sparse facilities available when debugging micro-
kernels, facilitating isolation of bugs in application logic, Mirage
libraries, or due to interactions between the two.

Finally, the developer further specialises via the xen-direct tar-
get, generating a standalone unikernel. Application code is cross-
compiled and linked with the safe Mirage device drivers, and dead-
code elimination: if the application doesn’t use a component, e.g.,
TCP, it will not be compiled in. The result is a VM image bootable
on Xen locally or via a public cloud service.10 The image is much
smaller than an equivalent Linux-based distribution (Figure 14),
and crucially, all I/O traffic is processed by type-safe code, with
the performance and security benefits of the specialised runtime.

6. Conclusions

We presented the unikernel approach to significantly improving
the safety and efficiency of building and deploying appliances for
the cloud. Building on earlier work in library operating systems,
we contribute the design and evaluation of a statically type-safe
OCaml prototype for a libOS, including a complete clean-slate
set of protocol libraries which ensure that deployed unikernels are
memory-safe from the ground-up. Our approach also optionally
extends the hypervisor with special support for such dedicated VMs
to improve runtime security and boot latency.

Through our experimental implementation, we showed how se-
curity and efficiency benefits can be achieved by relaxing source-
level backwards compatibility requirements by switching to novel
programming styles such as those afforded by OCaml. Our eval-
uation showed that these benefits come at little to no cost to per-
formance in all cases, and can actually improve performance in
some. Overall we have demonstrated that the marriage of com-
modity cloud computing platforms with modern language runtimes
is fruitful. Unikernels can serve as a platform for a range of fu-
ture research exploring how to better take advantage of plenti-
ful cloud computing resources, particularly for distributed appli-
cations that benefit from horizontal scaling across cores and hosts.
Code for the Mirage prototype and our experiment scripts are open-
source, available for download under a BSD-style license from
http://openmirage.org.
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