

Xen

past, present and future

Stefano Stabellini

Xen architecture: PV domains

Xen arch: driver domains

Xen: advantages

- small surface of attack

- isolation

- resilience

- specialized algorithms (scheduler)

Xen and the Linux kernel

Xen was initially a university research project

invasive changes to the kernel to run Linux as a
PV guest

even more changes to run Linux as dom0

Xen and the Linux kernel

Xen support in the Linux kernel not upstream

Great maintance effort on distributions

Risk of distributions dropping Xen support

Xen and the Linux kernel

- PV support went in Linux 2.6.26

- basic Dom0 support went in Linux 2.6.37

- Netback went in Linux 2.6.39

- Blkback went in Linux 3.0.0

A single 3.0.0 Linux kernel image boots on native,
on Xen as domU, as dom0 and PV on HVM guest

Xen and Linux distributions

2010

- Fedora and Ubuntu dropped Xen support from
 their Linux kernels
- Debian, Suse, Gentoo still provide Xen kernels
- XenServer went Open Source with XCP

Present

- Fedora and Ubuntu are adding Xen support
 back in kernel in the next releases

Xen architecture: HVM domains

Xen architecture: stubdoms

Xen and Qemu

- initially forked in 2005

- updated once every few releases

- Xen support went in upstream Qemu at the
 beginning of 2011

- Upstream Qemu is going to be used as device
 model with Xen 4.2

New developments: Libxenlight

Multiple toolstacks:

- Xend, Xapi, XenVM, LibVirt, …

- code duplications, inefficiencies, bugs, wasted
 efforts

Xend:

- difficult to understand, modify and extend

- significant memory footprint

Libxenlight

What is Libxenlight:

- a small lower level library in C

- simple to understand

- easy to modify and extend

Goals:

- provide a simple and robust API for toolstacks

- create a common codebase to do Xen

 operations

XL

- the unit testing tool for libxenlight

- feature complete

- a minimal toolstack

- compatible with xm

Do more with less!

XL: design principles

- smallest possible toolstack on top of libxenlight

- stateless

CLI → XL → libxenlight → EXIT

XL vs. Xend

XL: pros

- very small and easy to read

- well tested

- compatible with xm

Xend: pros

- provide XML RPC interface

- provide ”managed domains”

Libxenlight: the new world

Linux PV on HVM

paravirtualized interfaces in HVM guests

Linux as a guests: problems

Linux PV guests have limitations:

- difficult “different” to install

- limited set of virtual hardware

Linux HVM guests:

- install the same way as native

- very slow

Linux PV on HVM: the solution

- install the same way as native

- PC-like hardware

- access to fast paravirtualized devices

- exploit nested paging

Linux PV on HVM: initial feats

Initial version in Linux 2.6.36:

- introduce the xen platform device driver

- add support for HVM hypercalls, xenbus and
 grant table

- enables blkfront, netfront and PV timers

- add support to PV suspend/resume

- the vector callback mechanism

Old style event injection

Receiving an interrupt

do_IRQ

handle_fasteoi_irq

handle_irq_event

xen_evtchn_do_upcall

ack_apic_level ← >=3 VMEXIT

The new vector callback

Receiving a vector callback

xen_evtchn_do_upcall

Linux PV on HVM: newer feats

Later enhancements (2.6.37+):

- ballooning

- PV spinlocks

- PV IPIs

- Interrupt remapping onto event channels

- MSI remapping onto event channels

Interrupt remapping

MSI remapping

PV spectrum

HVM guests Classic
PV on HVM

Enhanced
PV on HVM

Hybrid PV
on HVM

PV guests

Boot
sequence

emulated emulated emulated paravirtualized

Memory hardware hardware hardware paravirtualized

Interrupts emulated emulated paravirtualized paravirtualized

Timers emulated emulated paravirtualized paravirtualized

Spinlocks emulated emulated paravirtualized paravirtualized

Disk emulated paravirtualized paravirtualized paravirtualized

Network emulated paravirtualized paravirtualized paravirtualized

Privileged
operations

hardware hardware hardware paravirtualized

Benchmarks: the setup

Hardware setup:

Dell PowerEdge R710
CPU: dual Intel Xeon E5520 quad core CPUs @ 2.27GHz
RAM: 22GB

Software setup:

Xen 4.1, 64 bit
Dom0 Linux 2.6.32, 64 bit
DomU Linux 3.0 rc4, 8GB of memory, 8 vcpus

PCI passthrough: benchmark

PCI passthrough of an Intel Gigabit NIC
CPU usage: the lower the better:

interrupt remapping no interrupt remapping
0

20

40

60

80

100

120

140

160

180

200

CPU usage domU

CPU usage dom0

Kernbench

Results: percentage of native, the lower the better

PV on HVM 64 bit PV on HVM 32 bit HVM 64 bit HVM 32 bit PV 64 bit PV 32 bit
90

95

100

105

110

115

120

125

130

135

140

PBZIP2

Results: percentage of native, the lower the better

PV on HVM 64 bit PV 64 bit PV on HVM 32 bit PV 32 bit
100

110

120

130

140

150

160

SPECjbb2005

PV 64 bit PV on HVM 64 bit
0

10

20

30

40

50

60

70

80

90

100

Results: percentage of native, the higher the better

Iperf tcp

Results: gbit/sec, the higher the better

PV 64 bit PV on HVM 64 bit PV on HVM 32 bit PV 32 bit HVM 64 bit HVM 32 bit
0

1

2

3

4

5

6

7

8

Conclusions

PV on HVM guests are very close to PV guests
in benchmarks that favor PV MMUs

PV on HVM guests are far ahead of PV guests
in benchmarks that favor nested paging

Questions?

