MQTT-S — A Publish/Subscribe Protocol For
Wireless Sensor Networks

Urs Hunkeler & Hong Linh Truong
IBM Zurich Research Laboratory, Switzerland
Email: {hun,hlt} @zurich.ibm.com

Abstract— Wireless Sensor Networks (WSNs) pose novel chal-
lenges compared with traditional networks. To answer such
challenges a new communication paradigm, data-centric commu-
nication, is emerging. One form of data-centric communication
is the publish/subscribe messaging system. Compared with other
data-centric variants, publish/subscribe systems are common
and wide-spread in distributed computing. Thus, extending
publish/subscribe systems into WSNs will simplify the integration
of sensor applications with other distributed applications. This
paper describes MQTT-S [1], an extension of the open pub-
lish/subscribe protocol Message Queuing Telemetry Transport
(MQTT) [2] to WSNs. MQTT-S is designed in such a way that
it can be run on low-end and battery-operated sensor/actuator
devices and operate over bandwidth-constraint WSNs such as
ZigBee-based networks. Various protocol design points are dis-
cussed and compared. MQTT-S has been implemented and is
currently being tested on the IBM wireless sensor networking
testbed [3]. Implementation aspects, open challenges and future
work are also presented.

I. INTRODUCTION

In the past few years, Wireless Sensor Networks (WSNs)
have been gaining increasing attention, both from commercial
and technical point of views, because of their potential of
enabling of novel and attractive solutions in areas such as
industrial automation, asset management, environmental mon-
itoring, transportation business, etc. Many of these applications
require the transfer of data collected by the sensors to applica-
tions residing on a traditional network infrastructure (e.g In-
ternet, LAN, enterprise network, etc.). Thus the WSNs need to
be integrated with these traditional networks. Figure 1 shows
the typical structure of such an integrated network, in which
gateways are used to connect multiple WSNs to a traditional
network. Within the WSNs, a large number of battery-operated
Sensor/Actuator (SA) devices, usually equipped with a limited
amount of storage and processing capabilities, collect informa-
tion about their environment and send them to the gateways for
further transfer to the applications. Even for networks without
actuators, information also flows in the opposite direction,
e.g., for sensor management and configuration as well as for
software updates.

The entire network is very dynamic. On the WSN side,
SA devices may change their network addresses at any time.
Wireless links are quite likely to fail. Furthermore, SA nodes
could also fail at any time, and rather than being repaired, it is
expected that they will be replaced by new ones. Applications
can be hosted and run on any machines anywhere in the
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traditional network. Our work on the IBM wireless sensor net-
working testbed [3] have shown that even in a static network
some networking protocols (e.g., ZigBee) change the device
address from time to time. In such situations, the conventional
approach of using network addresses as communication means
between the SA devices and the applications may be very
problematic because of their dynamic and temporal nature.
Applications requiring interactions with the wireless SA de-
vices would need to manage and maintain the addresses of
a large number of nodes. In most cases they do not need
to know the address or identity of the devices that deliver
the information; they are more interested in the content of
the data. For example, an asset-tracking application is more
interested in the current geographical location of a certain asset
than in the network address of the GPS receivers that deliver
this information. Moreover, several applications may have an
interest in the same sensor data but for different purposes. In
this case, the SA nodes would need to manage and maintain
communication means with multiple applications in parallel.
This might exceed the limited capabilities of the simple and
low-cost SA devices.

The problem described above can be overcome by using a
data-centric communication approach [4], in which informa-
tion is delivered to the consumers not based on their network
addresses, but rather as a function of their contents and
interests. Publish/Subscribe (pub/sub) messaging systems [5]
are well-known examples of data-centric communication and
are widely used in enterprise networks, mainly because of
their scalability and support of a dynamic application topol-
ogy. These features are achieved by decoupling the various
communicating components from each other such that it is



easy to add new data sources/consumers or to replace existing
modules [6].

This paper describes the pub/sub protocol MQTT-S [1].
MQTT-S is an extension of the open publish/subscribe pro-
tocol Message Queuing Telemetry Transport (MQTT) [2]. It
is designed especially for operation on low-cost and low-
power SA devices and running over bandwidth constrained
WSNs such as ZigBee [7] or TinyOS [8] based networks.
ZigBee [9] is an open and global communication standard for
WSNs. ZigBee is based on the IEEE 802.15.4 standard [10]
for wireless personal area networks (WPANS). It adds on top
on this standard the required network, security and application
layers, thus providing interoperability between products from
different vendors. The processing and storage capabilities of
the SA devices are assumed to be equivalent to the original
Berkeley Mica mote [11]. Our solution not only provides a
simple but scalable communication means for interacting with
a large number of SA devices, but also enable a seamless
integration of the WSNs into traditional networks.

We begin with an overview on what a pub/sub messaging
system is and which advantages it provides for WSNs. In
Section IIT we then briefly present pub/sub protocols already
known in the area of sensor networks, with special focus on the
open protocol MQTT [2]. MQTT-S is then described in Sec-
tion IV, with a discussion of the most important design points.
Our implementation of MQTT-S is presented in Section V.
Open challenges and future work are presented in Section VI,
and the conclusions are given in Section VII.

II. PUBLISH/SUBSCRIBE SYSTEMS

The principle of the publish/subscribe (pub/sub) commu-
nication model is that components which are interested in
consuming certain information register their interest. This
process of registering an interest is called subscription, the
interested party is therefore called a subscriber. Components
which want to produce certain information do so by publishing
their information. They are thus called publishers. The entity
which ensures that the data gets from the publishers to the
subscribers is the broker. The broker coordinates subscriptions,
and subscribers usually have to contact the broker explicitly
to subscribe.

There are three principal types of pub/sub systems: topic-
based, type-based and content-based [5]. With topic-based
systems, the list of topics is usually known in advance,
e.g., during the design phase of an application. Subscriptions
and publications can only be made on a specified set of
topics. In type-based systems, a subscriber states the type of
data it is interested in (e.g., temperature data). Type-based
systems are not very common. Content-based systems are the
most versatile ones. The subscriber describes the content of
messages it wants to receive. Such a subscription could be for
any messages containing both temperature and light readings
where the temperature is below a certain threshold and the
light is on.

A form of content-based messaging is TinyDB [12]. The
user issues an SQL-like query that describes the data the

user is interested in. TinyDB even allows the aggregation of
data inside the network. On the other hand, TinyDB is not a
general-purpose communication platform but rather a querying
system for sensors. To implement a general-purpose content-
based publish/subscribe system, the data has to be augmented
with meta-data to identify the different data fields. We believe
that adding such meta-data incurs too high an overhead for

the very constrained platforms we target.
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Fig. 2. Topic-based Pub/Sub Communication Model

Owing to its simplicity when compared with the other types
of pub/sub systems, we believe that topic-based systems are
most appropriate for WSNs based on hardware similar to
the original Berkeley mote [11]. The communication model
of a topic-based pub/sub system is shown in Figure 2. A
subscriber sends a sub(topic) message to inform the broker
of its interest in the indicated fopic, whereas a publisher
sends a pub(topic,data) message which contains the data to be
published together with the related fopic. If there is a match
between the publisher’s and the subscriber’s topics, the broker
transfers the pub(topic,data) message to the subscriber. A
single pub message may be distributed to multiple subscribers
if its topic matches the topics of these subscribers.

Figure 3 shows the resulting architecture of the same
integrated network as the one in Figure 1, when a pub/sub
system is used as communication middleware. A broker is
introduced in the traditional network, and all other components
are connected to it and communicate with each other using the
broker’s pub/sub service. The main function of the gateways
is to provide the SA devices with access to the broker. The
broker is located in the traditional network because of its
higher performance in terms of bandwidth and capabilities.
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Fig. 3. Integrated Wireless Sensor Networks with Pub/Sub Communication

An application or a SA device can be both subscriber and
publisher. Subscribers and publishers are decoupled from each
other by the broker, even if they reside on the same device. For
example a temperature sensor may need to be monitored by



multiple applications for different reasons. When the data is
available, the sensor simply adds the appropriate topic and
publishes it to the broker. The broker will then distribute
the published data to those applications that have subscribed
to that topic. The set of publishers and subscribers that are
coupled together by matching topics can dynamically change
over time without the subscribers or publishers being aware of
this. This is particularly interesting for WSNs, where devices
might fail and new ones could be added to replace failed
nodes or to extend the network at anytime. Applications do
not need to be aware of the failures and changes; they just
receive their data when the new devices begin to operate. The
same applies to the SA publisher nodes: they do not need to
know which applications are interested in their data. They just
send their data to the broker, which will then take care of the
data distribution to the applications.

For application developers, the pub/sub system hides the
complexity of the underlying network and lets them concen-
trate on the design of the application itself. To receive data of a
certain SA device, the only thing that they need to know is the
topic the SA device uses when it publishes its data. Similarly,
if they want to send control information to a SA device, they
only have to know the topics to which the SA device has
subscribed, not its actual network addresses. Even if a SA
device is moved to another WSN (e.g., because of network
congestion), no change needs to be done to the applications
and gateways as long as the SA is still using the same topics
for its publications and subscriptions. Moreover, these topics
are defined by the application developers themselves, and not
by the networks or by the broker.

If the enterprise networks already use pub/sub systems as
communication middleware, extending the pub/sub protocols
into the WSNs will significantly simplify the interconnection
of the two networks. Existing broker infrastructure can be
used for interacting with and managing the SA devices. Field
data collected by the SAs can be made seamlessly available
to all applications like any other enterprise information, and
in the same way also the control and management of the SA
nodes can be performed from any application located in the
enterprise network.

ITI. RELATED WORK
A. Publish/Subscribe Protocols for WSNs

The Global Sensor Network (GSN) [13] sees WSNs as black
boxes. It offers a unified way to query WSNs independently
of where or how they are connected to the backbone network.
Similarly, IrisNet [14] aims at unifying data from sensor
networks worldwide. MQTT-S differs in that it aims at hiding
the end-point details. An application running on either the
backbone network or inside the WSN does not know whether
the data is coming from a device in a WSN or the backbone
network. Devices from different WSNs can intercommunicate.
MQTT-S not only allows data to be collected from a WSN, it
also allows data to be sent to devices inside WSNGs.

TinySIP [15] is similar to MQTT-S in that it is an ex-
tension of a well-known protocol into the world of WSNs.

TinySIP makes the functionality of the Session Initiator Pro-
tocol (SIP) [16] available to WSNs. TinySIP supports session
semantics, publish/subscribe, and instant messaging. TinySIP
offers support for multiple gateways. Most communication is
done by addressing individual devices. As device addresses
are related to the gateway being used, changing the gateway
on the fly is difficult.

Asene [17] is an implementation of an active database inside
a WSN. It uses publish/subscribe to communicate among
nodes. The basic principle of Asene is to wait for events, then
evaluate a condition and, if the condition is true, execute a
given action. Asene is not a generic transport mechanism.

Mires [18] is a publish/subscribe architecture for WSNs. Ba-
sically sensors only publish readings if the user has subscribed
to the specific sensor reading. Messages can be aggregated
in cluster heads. Subscriptions are issued from the sink node
(typically directly connected to a PC), which then receives all
publications.

DV/DRP [19] is another publish/subscribe architecture for
WSNs. DV/DRP stands for Distance Vector/Dynamic Receiver
Partitioning. Subscriptions are made based on the content
of the desired messages. Subscriptions are flooded in the
network. Intermediate nodes aggregate subscriptions. They
forward publications only if there is an interest for this pub-
lication. Because of the complexity of matching subscriptions
to arbitrary data packets it would be difficult to implement this
protocol on the devices we target.

Messo and Preso [20] are two complementary pub-
lish/subscribe protocols for WSNs. Messo allows data to be
collected from sensors in a WSN, whereas Preso allows data to
be sent to actuators in the WSN. Messo and Preso rely, as does
MQTT-S, on an external broker. Messo and Preso differ from
MQTT-S in that they do not establish individual connections
between the devices and the broker. Their implementation
takes advantage of the possibility of processing data inside
the WSN. Each node decides locally whether to forward a
message. If data is collected with Messo, nodes that relay mes-
sages can also combine multiple messages. Currently, Messo
and Preso rely on predefined topics. They cannot dynamically
add new topics. They also require a single gateway.

B. MQTT (“Message Queuing Telemetry Transport”)

As mentioned, MQTT is an open pub/sub protocol [2] de-
signed for constrained devices used in telemetry applications.
Howeyver, it does not consider the case of SA devices; its
extension for sensor networks, “MQTT-S”, will be described
in Section IV.

MQTT is designed in such a way that its implementation on
the client’s side (i.e., the SA’s side) is very simple. All of the
system complexities reside on the broker’s side. MQTT does
not specify any routing or networking techniques; it assumes
that the underlying network provides a point-to-point, session-
oriented, auto-segmenting data transport service with in-order
delivery (such as TCP/IP) and employs this service for the
exchange of messages.



MQTT is a topic-based pub/sub protocol that uses char-
acter strings to provide support of hierarchical topics. This
also facilitates the subscription to multiple topics. For ex-
ample, a temperature sensor located on floor “F2”, room
“R248” could publish its data using the hierarchical topic
“wsn/sensor/F2/R248/temperature”. The forward slash char-
acter “/” is used to separate each part of the topic. Wild-
card characters can then be used to replace any part of the
topic, e.g., the string “wsn/sensor/F2/+/temperature” could be
employed to subscribe to data generated by all temperature
sensors on floor F2. In this example the character “+” was
used as wildcard for any pattern at the 4th level of the topic.

MQTT supports basic end-to-end Quality of Service
(QoS) [21]. Depending on how reliably messages should be
delivered to their receivers, MQTT distinguishes between three
QoS levels. QoS level 0 is the simplest one: it offers a best-
effort delivery service, in which messages are delivered either
once or not at all to their destination. No retransmission or
acknowledgment is defined. QoS level 1 provides a more
reliable transport: messages with QoS level 1 are retransmitted
until they are acknowledged by the receivers. Consequently,
QoS level 1 messages are certain to arrive, but they may
arrive multiple times at the destination because of the re-
transmissions. The highest QoS level, QoS level 2, ensures
not only the reception of the messages, but also that they
are delivered only once to the receiving entities. It is up to
the application to select the appropriate QoS level for its
publications and subscriptions. For example, a temperature-
monitoring application could decide to use QoS level O for
the publication of normal and regular measurement reports,
but QoS level 1 for transferring alarm messages when the
temperature exceeds a certain threshold.

MQTT is a connection-oriented protocol in the sense that it
requires a client to setup a connection with the broker before it
can exchange publications and subscriptions with the broker.
To this end, a “CONNECT” message is defined. It contains,
among other connection parameters, a Client Id, which enables
the broker to identify the connected client. This Client Id is
used by the broker, for example to make sure that QoS level
1 and 2 publications are delivered correctly when the client
reconnects after a network failure. The broker supervises the
liveliness of the client/connection by a “keep-alive” timer,
which defines the maximum time interval that may elapse
between two messages received from that client. If during
this time interval the client has no data-related messages to
be transmitted, it will send a PING message to the broker,
which is acknowledged by the broker. Thus the keep-alive
timer enables the broker to detect the failure of either the
client or the network link.

A related and interesting MQTT feature is its support of the
so-called “Will” concept. At connection time, a client could
ask the broker to store a “Will” message together with a “Will”
topic. The broker will only send this “Will” publication to the
subscribers when it abnormally loses the connection with the
client. Applications could use this feature to detect failures of
devices and links.

IV. MQTT-S, A MQTT-BASED PUB/SUB PROTOCOL FOR
SENSOR NETWORKS

In this section we will describe MQTT-S, a pub/sub protocol
based on MQTT and especially designed for WSNs. MQTT-S
is developed based on the following design points:

1) As close as possible to MQTT: This allows a seamless
connection of the SA devices to an MQTT broker, thus
enabling a smooth integration of the WSNs with the
existing communication infrastructure. This also enables
a very simple and lossless implementation of the gate-
ways. As a consequence, MQTT-S supports not only
all MQTT features (e.g., those described in Section III-
B) but also almost all the message flows and contents
defined by MQTT.

2) Optimized for tiny SA devices: The protocol is de-
signed in such a way that it can be implemented for low-
cost, battery-operated devices with limited processing
and storage. Whenever complexities are required, they
reside on the gateway/broker’s side; the client running
on the SA devices is kept as simple as possible.

3) Consideration of wireless network constraints such
as high link failure rates, low bandwidth, and short
message payload: Wireless radio links in general have
higher failure rates than wired links, owing to their sus-
ceptibility to fading and interference disturbances. They
have also a lower transmission capacity. For example,
WSNs based on the IEEE 802.15.4 standard provide an
aggregate (shared) bandwidth of a theoretic maximum
of 250kbit/s in the 2.4 GHz band [10]. In practice
the bandwidth is even lower because of free channel
assessment and retransmissions. Procedures should be
defined to reduce the risk of having SAs disconnected
from the infrastructure owing to link failures or network
congestion.

Moreover, to be resistant against transmission errors,
wireless networks have a much shorter packet length
than wired networks. In the case of IEEE 802.15.4, the
physical layer provides a maximum packet length of 128
bytes. Half of these 128 bytes could be taken away by
the overhead information required by other supporting
layers and functions such as MAC, network, security,
etc., see for example [22] for the case of ZigBee. That
means, MQTT-S messages should be shorter than 64
bytes. This is very little if human-readable data formats
(such as topic names) are to be supported.

How MQTT-S copes with these issues is described
below.

4) Network independent: MQTT-S is designed to run on
any network that provides the two following services:

a) Point-to-point data transfer service (unicast ser-
vice): A datagram service that allows the transport
of messages between any two points based on their
network address. The two points involved may be
multiple hops away from each other.



b) One-hop broadcast data transfer service: This is
in principle supported by all wireless networks;
messages sent by a node can be received by all
nodes within the transmission range.

In contrast to MQTT, MQTT-S does not assume a
connection-oriented service, and does not rely on mes-
sage segmentation, nor in-order delivery of those seg-
ments.

A. MQTT-S Architecture
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Fig. 4. MQTT-S Architecture

The architecture of MQTT-S is shown in Figure 4. There
are two types of components: MQTT-S clients and MQTT-S
gateways (GWs). MQTT-S clients are on the WSN side and
enable the SA devices to access the pub/sub services of a
MQTT broker located on the traditional network. They connect
to the gateway using the MQTT-S protocol, and the gateway
connects to the broker. The main function of the gateway
is to translate between the MQTT and MQTT-S protocols.
A MQTT-S gateway may or may not be integrated with the
broker. In the case of stand-alone operation, i.e., the gateway
is not integrated into the broker, the gateway uses the MQTT
protocol to communicate with the broker.

MQTT-§ MQTT MQTT-S MQTT
O= Broker O= \‘ ‘B/roker
O O<—>/
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Fig. 5. Transparent and Aggregating Gateways

Depending on how a gateway performs the protocol trans-
lation between MQTT and MQTT-S, we can differentiate
between two types of gateways, namely, transparent and
aggregating GWs, see Fig. 5:

1) Transparent Gateway: For each connected MQTT-S
client, a transparent GW sets up and maintains a MQTT
connection to the MQTT broker. There will be as many
MQTT connections between the GW and the broker as
there are MQTT-S clients connected to the GW. The

transparent GW will perform a “translation” between the
two protocols. As all MQTT-S messages can be mapped
to MQTT ones and vice versa, all functions and features
that are implemented by the broker can be offered to the
client.

2) Aggregating Gateway: Instead of having an MQTT
connection for each connected client, an aggregating
GW will have only one MQTT connection to the broker.
All message exchanges between a MQTT-S client and an
aggregating GW end at the GW. The GW then decides
which information will be transported further to the
broker.

Although the implementation of a transparent GW is simpler
than that of an aggregating GW, the main issue with a
transparent GW is the system scalability in terms of number
of connected clients: because the gateway and broker have to
maintain a connection to every active client, its performance
may deteriorate in networks with a very large number of SA
devices. An aggregating GW may be helpful because it allows
a significant reduction of the number of MQTT connections
that the broker has to support concurrently.

B. Support for multiple gateways

As mentioned above, one of the weaknesses of wireless
networks is their high link failure rates. Links between a SA
device and a gateway may fail at anytime, thus disconnecting
the SA device from the broker. It is therefore highly desirable
that a SA device has access to at least two gateways, so that
if its connection to one gateway fails it can re-connect via
the other one. Another reason for requiring the presence of at
least two gateways is the low transmission capacity of the
wireless links. Links in the proximity of a gateway could
become congested if a large number of SAs exchange their
messages with that gateway. Having more than one gateway
helps remedy that situation because the traffic toward the
broker can be spread evenly between the gateways. The Tenet
architecture [23] argues that future large-scale sensor network
deployments will have a back-end network to render the WSN
more stable. MQTT-S provides the means of doing exactly
this: the WSN is linked to a more powerful traditional network
through the gateways.

Gateway

Client

SEARCHGW /
N

AN

P

Client

GWINFO

N
v

Fig. 6. Gateway Discovery Procedure
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MQTT-S supports the presence of multiple gateways via



a gateway discovery procedure. As shown in Figure 6, its
message flow is kept as simple as possible. To find a gateway,
a client broadcasts a SEARCHGW message, which is replied-
to by a gateway by means of a GWINFO message. A client
also answers with a GWINFO message if it has the address
of a gateway. To give priority to the gateways and to reduce
the number of messages, clients delay their transmissions for a
random time; if during this delay they receive a GWINFO mes-
sage sent by another node (gateway or client), they do not send
their reply. The procedure is thus very bandwidth-efficient; a
single SEARCHGW and GWINFO message exchange could
already provide the required information to multiple clients
that are concurrently searching for a gateway. If there is no
response, the SEARCHGW message is retransmitted, with the
time interval between two consecutive transmissions being
increased exponentially.

Both SEARCHGW and GWINFO messages are locally
broadcasted, i.e., they are not repeated by the receiving nodes.
With this one-hop broadcasting, we exploit the inherent broad-
cast nature of radio transmissions to transfer the messages to
all nodes within the transmission range of the sender. There
is no “extra” bandwidth consumed by these broadcasts!

C. Support of short message payload

Another issue with wireless networks is that their packets
are very short. As mentioned above, the payload provided by
ZigBee to an application is limited to around 60 bytes. MQTT
uses human-readable strings for client IDs and topic names.
In particular two messages may become quite long. The first
is the CONNECT message, which may contain three large
parameters: the Client Id, the Will topic, and the Will message
(see Section III-B for an explanation of these concepts). The
second is the PUBLISH message, which contains the topic
name, and a potentially large data field.

There are in principle three approaches for resolving this
issue. The first and obvious one is to define a generic
segmentation and reassembly procedure. Segmentation and
reassembly are, for instance, used for ATM, TCP/IP, Bluetooth,
etc. Although protocols and algorithms for implementing this
method are well-known, we rejected it for the following
reasons: it increases the memory footprint of the client; it
requires additional overhead in the message, thus reducing the
application payload further; and it does not reduce the wasted
bandwidth consumed by such messages like the PUBLISH
ones, which in most cases contain the same topic name.

The second method is to split a long message into multiple
shorter ones. We applied this idea to the CONNECT message,
and divide this message into three smaller ones: the first
carrying the string for the Client Id, the second for the
Will topic, and the third for the Will message. The resulting
message flow is shown in Figure 7.

However, we did not apply this approach to the PUBLISH
message, because it still does not help us reduce the bandwidth
wasted by sending the same topic name every time. To get
rid of that redundant information, we replace the topic name
by a short, two-byte long “topic id” and define a registration

Client Gateway

CONNECT (clientID)
le WILLTOPIC_REQUEST
WILLTOPIC(willTopic)
WILLMSG_REQUEST
WILLMSG (willMessage)
l< CONNECT_ACK
Fig. 7. Connect Procedure

procedure to allow clients to register their topic names with the
gateway and obtain the assigned topic ids, see Figure 8. After
this registration of the topic name, PUBLISH messages sent
by the client will contain the assigned short topic id instead
of the longer topic name. The same procedure is also used
by the gateway in the opposite direction to inform the client
about a new topic name before sending PUBLISH messages

with this topic to the client.
Client Gateway
REG_ACK(topicID)

REGISTER(topicName)

PUBLISH(topicID, data)

Fig. 8. Register Procedure

With the procedure according to Figure 8, there is a risk that
a client wrongly uses a topic id assigned to another topic in
the gateway. This may happen when the gateway uses a single
table for topic id to topic name mapping. However, to keep
the client’s implementation simple, we refrain from defining
a topic id synchronization algorithm. Instead, we prefer to
implement for each client a dedicated mapping table in the
gateway. With this solution, the probability that the client uses
a wrong topic id is reduced to almost zero.

To further simplify the client’s implementation, we in-
troduce so-called pre-defined topic ids that clients can use
immediately for publishing without prior registration of topics.
In this case the topic id’s mapping table in the gateway is pre-
configured by an administrator.

V. TESTBED IMPLEMENTATION

We have implemented an MQTT-S client and gateway to
study MQTT-S’ behavior on real systems. In our testbed [3]
the gateway client is connected over a serial port to a PC,
where the gateway software runs. In the following we first
describe the implementation details of the client and then those
of the gateway.



A. MQTT-S Client

The ZigBee client is written in C such that there is as
little dependency on the hardware platform as possible. The
client runs on multiple ZigBee hardware platforms currently
commercially available. As of this writing no multi-hop point-
to-point communication protocol for ZigBee exist that are
compatible across products from different vendors. For this
reason we rely on vendor-specific transport protocols that are
available for vendor-specific profiles. Although this results in
MQTT-S not being able to communicate across devices from
different vendors, the client code should be easy to adapt
to a standardized transport protocol once one is available.
Moreover, it is possible to communicate between devices from
different vendors if the devices from a single vendor form an
independent subnetwork that is connected to the broker.

The TinyOS client is written in NesC, a variant of C
for TinyOS. The client code uses the collection tree proto-
col (CTP)[24] as its underlying routing protocol. Essentially
CTP allows to send data from any node to the closest gateway.
On top of CTP we have added a reverse route table: each
time a node forwards a message to the gateway, it stores the
source node’s address in a reverse route table. This effectively
extends the routing layer to allow bidirectional communication
between any node and its closest gateway. The TinyOS client
currently runs on Tmote [25] and MicaZ motes. Our TinyOS
network can communicate with our ZigBee network through
the broker.

Most of the protocol logic is handled by the broker and
the gateway. This makes the client implementation extremely
lightweight. A full implementation of the client is about 12 kB.
In comparison, the ZigBee protocol stack and the support
functions provided by the hardware vendors are around 50 kB.
On devices with only 64 kB of program memory available, this
gets very close to the limit of what can be done. It is however
possible to further reduce the complexity and the memory
requirements of the MQTT-S client code. For instance, if the
client is built for a very specific purpose, predefined topic IDs
could be used. In this case the code that handles dynamic topic
registration can be omitted. Similarly if it is known that the
client will only ever act as either publisher or subscriber, the
unneeded functionality can be removed. As the broker or the
gateway will never use a functionality of the MQTT-S protocol
that the client has not previously requested, the client can be
stripped down even further in this way.

B. MQTT-S Gateway

The gateway is written in Java. It uses the Java Com-
munications API to communicate with the gateway devices
over the serial port. The gateway devices simply forward any
packets they receive from the wireless network stack over the
serial port, only adding framing information. The gateway then
deframes the data it receives from the devices. The gateway
connects to the broker using the MQTT Client API.

The gateway stores session information for any client device
that connects through it to the broker. The session informa-
tion is mostly limited to topic mappings. All other protocol

messages are simply translated from one format to the other
and sent on. Most of the session handling, protocol state and
other protocol processing is done in the broker.

If a client changes the gateway, it merely reissues a connect.
The gateway forwards the connection request to the broker.
The broker then realizes that the client is already connected
through a different gateway. It will close the connection to the
first gateway and, if it was not instructed to clean-start a new
session, transfer it to the new gateway. This feature of MQTT
assures that the change of the gateway will not result in the
loss of the session.

Using the MQTT Client API results in some limitations of
the functionality of the gateway. For instance, the Client API
automatically sends keep-alive messages. So even though a
device has failed and no longer sends messages, the Client
API will still continue to send ping requests. However, in
this scenario the broker will never learn that the client device
has disconnected abnormally, and the will message that the
client might have registered will never be sent. If we detect
the failure of the device in the gateway, we have no means of
triggering the will message either. All we can do is disconnect
from the broker. But in this case the disconnection will not
be seen as abnormal, and the broker will not send the will
message either.

Moreover, it is currently not possible to send messages
with QoS 1 or 2 from the broker to the client device. The
reason for this is that the gateway cannot delay acknowledging
the message once it has received it from the Client API. To
correctly implement QoS 1 and 2, the gateway would have to
be able to wait with the acknowledgment to the broker until
it has received the respective acknowledgment from the client
device. With the current implementation of the Client API,
however, this would result in the API stalling during the wait.

Apart from these small limitations, the gateway is fully
functional. We have written unit tests that show that the
gateway keeps working correctly even in the case of message
losses and unexpected or incorrectly formed messages. Testing
the protocol for several weeks on our testbed [3] has revealed
additional problem cases which we did not consider while
writing the original unit tests. MQTT-S is now stable and
has been running for several weeks over our multi-hop test
network.

VI. OPEN CHALLENGES AND FUTURE WORK

The current implementation of the MQTT-S gateway has
two open problems: in the case of node failure it is not possible
to trigger the will message and it is not possible to send
message with QoS 1 or 2 from the broker to the clients. Both
problems are directly related to the current implementation
of the MQTT Client API. One way around this would be
to implement an MQTT protocol module ourselves. We do
not like this approach as it would mean that the MQTT
protocol implementation would not be maintained by the
MQTT developers. We instead intend to implement a MQTT-S
protocol module directly into the broker.



A more critical problem is the handling of the duty cycle of
the client devices. To save as much energy as possible, client
devices would like to enter a sleep mode whenever they are
not used. They will wake up and publish whenever they have
new data. As the sleeping times could potentially be very large
(on the order of several seconds to several minutes to multiple
hours), the gateway and the broker need to be aware of this.
ZigBee router devices can be used to store messages until
the client wakes up. However there might be more messages
than a ZigBee router device can store (being itself a relatively
constrained device). We are currently working on how the
broker could interact optimally with sleeping devices.

So far, we have only tested our implementation with a
limited number of real devices. We plan to extend our test
network (to more than 50 nodes) with several gateways and
run it for several weeks to test the actual performance of the
protocol.

VII. CONCLUSION

We have presented MQTT-S [1], an adaption of the MQTT
protocol to the constraints of WSNs. MQTT-S is based on ex-
perience with out testbed [3]. The publish/subscribe paradigm
naturally fits many requirements for communication in WSNs
as it hides the topology of the network and allows data to
be delivered based on interests rather than individual device
addresses. A particular advantage of MQTT-S over other
protocols is that it is based on a well-known publish/subscribe
protocol already widely used. MQTT-S allows a transparent
data exchange between WSNs and traditional networks and
even between different WSNs. In addition, MQTT-S is ex-
tremely lightweight and can be further stripped down to a
bare minimum.

Implementing MQTT-S revealed many challenges of WSNs
that we would not have thought of otherwise. In particular, the
need to support sleeping clients is going to be addressed in
the next version. The implementation also demonstrates that
the protocol can easily be implemented on devices with only
limited resources.
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