
Software-Defined Internet Architecture:

Decoupling Architecture from Infrastructure

Barath Raghavan

ICSI

Teemu Koponen

Nicira

Ali Ghodsi

UC Berkeley

Martín Casado

Nicira

Sylvia Ratnasamy

UC Berkeley

Scott Shenker

ICSI / UC Berkeley

ABSTRACT
In current networks, a domain can effectively run a network
architecture only if it is explicitly supported by the network
infrastructure. This coupling between architecture and
infrastructure means that any significant architectural change
involves sizable costs for vendors (for development) and
network operators (for deployment), creating a significant
barrier to architectural evolution.

In this paper we advocate decoupling architecture from
infrastructure by leveraging the recent advances in SDN, the
re-emergence of software forwarding, and MPLS’s distinction
between network’s core and edge. We sketch our design,
called Software-Defined Internet Architecture (SDIA), and
show how it would ease the adoption of various new Internet
architectures and blur the distinction between architectures
and services.

1 Introduction
The goal of this paper is simple: to change architectural
evolution from a hardware problem into a software one. And
our solution is rather standard, borrowing heavily from long-
standing (e.g., MPLS) and emerging (e.g., SDN) deployment
practices. However, to provide the necessary context, we start
by asking two questions: what is the problem and why are
current efforts insufficient?

What is the problem? Despite the Internet’s unparalleled
success, it has long been known that the Internet architecture
has significant deficiencies. Attempts to address these archi-
tectural issues with incrementally deployable modifications
have had limited success, so the research community has
turned to exploring “clean-slate” designs to provide a deeper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

intellectual understanding of the problem. Unsurprisingly,
none of these clean-slate architectures have been deployed.

To bridge this gap between what is architecturally desirable
and what is feasibly deployable, there is a small but growing
literature on architectural evolvability [3, 8, 11, 14]. The
resulting proposals include, among other ideas, measures
to: (i) automatically cope with partial deployment (such as
the fallback behaviors in XIA [11]) and (ii) structure the
network stack with far more modularity (as discussed in
[8, 14]) so that aspects of a particular architecture are not
embedded within applications. These would greatly increase
our ability to adopt major architectural improvements through
incrementally deployable design changes.1

Why are these measures insufficient? Because even after
these advances, the architecture remains coupled to the
infrastructure. To make this clear, we first define these terms
more precisely:

• Architecture: This refers to the current IP protocol or,
more generally, any globally agreed upon convention
that dictates how packets are handled.

• Infrastructure: This refers to the physical equipment
used to build networks (routers, switches, fiber, cables,
etc.). Of particular note are the forwarding ASICs,
which take years to develop and are tailored to the
specific forwarding semantics of the IP architecture.

When we say that the architecture is coupled to the
infrastructure, we mean that any significant change to IP
(or its successors) would require replacing (or overhauling)
the routers used to build the network, because the forwarding
ASICs only have limited flexibility.2 While the proposals
for architectural evolution do away with many other barriers
to deployment (e.g., barriers such as having IP addresses
1The adoption of one of the clean-slate “evolvable” architectures
would enable subsequent incremental deployment of architectural
changes. However, the initial deployment of one of these
architectures would not be incremental.
2There are clearly some changes that can be implemented by
changing router software, but new generations of chips were
required to support IPv6 at linespeed and we expect the same would
be required for many of the new clean-slate architectures in the
literature, such as those being explored in NSF’s FIA.

1

embedded in both applications and interdomain routing),
they do not alter the basic fact that significantly changing
how packets are handled will require a new infrastructure that
has the appropriate hardware and software.

OpenFlow improves the situation, but only to a limited
degree. To support a wide range of architectures, forwarding
elements (routers, switches, middleboxes, etc.) must be
prepared to support fully general packet matching and
forwarding actions, and there is little chance that OpenFlow
will ever support such generality because it would entail
substantially higher costs, particularly in terms of the header
size over which arbitrary matching could be done. It
is therefore unlikely that such generality would be the
standardized norm for all deployed routers.3

Thus, we must find other ways of decoupling the archi-
tecture from the infrastructure. This is important because
it would greatly reduce the costs and inconvenience of
deploying a new architecture and thereby enable architectural
evolution to happen far more freely.4 We believe that the
tools for such a decoupling are already largely in hand, they
merely need to be applied more systematically, and the rest
of this paper is devoted to articulating that case.

2 Our Approach
We base our approach on current practice, so we start by not-
ing that modern network infrastructure no longer resembles
the “classic” Internet design. Among the deviations from the
classic architecture are the following:

• MPLS is widely used within domains for VPNs and
traffic engineering. Many routers never look at an IP
address, and instead rely solely on MPLS labels for
forwarding. For our purposes, the key attribute of
MPLS is that it distinguishes between the network edge
and the network core, and decouples the core from
whatever global architecture is deployed.

• Software-Defined Networking (SDN) is an emerging
technology that is used in several datacenters and at
least one WAN [12]. SDN effectively separates the
control plane from the data plane, much like earlier
efforts such as RCP [4] and 4D [10], and provides
a programmatic interface so that new control plane
functionality requires only writing code for the network
“controllers” (the servers that run the control plane for
the network).

• Middleboxes: Many, if not most, packets are processed
by one or more middleboxes that perform tasks beyond
mere IP forwarding. Middleboxes are roughly as

3Long before OpenFlow, Active Networking [20] proposed fully
general forwarding behavior, but has never been demonstrated as
feasible at today’s forwarding speeds.
4We assume that the other impediments to architectural evolution,
such as architectures embedded in applications, have been taken care
of by proposals such as in [8]. And, as noted there, those changes are
also not altogether different from what is deployed today in various
places, but merely applied consistently and comprehensively.

numerous as routers in most enterprise networks [17],
and represent the way most new network functionality
is deployed today (e.g., firewalls, WAN optimizers).

• Software Forwarding, by which we mean packet for-
warding using commodity processors such as x86s and
GPUs, is increasingly common. To be sure, forwarding
ASICs still have the overall price/performance edge at
the high end, but current deployment practices — where
software forwarding is the norm in hypervisors and in
most middleboxes — are tangible proof that software
forwarding is a viable choice in many settings.5

While these advances are well known, what has not
been adequately recognized is that when they are applied
systematically and in concert they decouple architecture
from infrastructure. That is, these developments lead us
to a design where the data plane consists of a network core,
which uses its own internal addressing scheme (much like L2
networks do today), and a network edge that uses software-
forwarding. Moreover, all architectural dependencies reside
at the edge, which can be easily modified because packet
forwarding is done in software there. The control plane of
this architecture uses SDN to control the edge routers (to
specify their forwarding actions), and leaves the design of the
core control plane up to each domain. Note, however, in our
version of SDN we do not restrict ourselves to the OpenFlow
model of control, but instead allow the controller to install
arbitrary forwarding code (either through a VM or x86 code)
on software routers.

We call this design the Software-Defined Internet Architec-
ture (SDIA), which we describe more fully below.

3 Software-Defined Internet Architecture
To motivate our design, we first provide a top-down perspec-
tive on this problem.

3.1 Top-Down Perspective
Networks are currently specified in what might be called
a “bottom-up” fashion, with an emphasis on standardizing
the behavior of each individual router. In the forwarding
plane, low-level standards dictate the packet formats and
forwarding behavior in excruciating detail. This bottom-up
approach was necessary to ensure that any two routers that
happen to be placed in the same network could interoperate.
However, when the behavior of these individual routers
is managed externally through SDN, then one need not
specify the behavior at such a fine granularity. One does
need OpenFlow (or an equivalent protocol) to specify how
the controller manages router behavior, and this should be
5In this paper we only consider the two extremes, fully custom
ASICs and fully commodity processors. Network processors occupy
the spectrum in between these two extreme points. However, we
believe network processors are neither ascendant (they are widely
seen as difficult to program) nor antithetical to our story. As long
as network processors can support general capabilities, then they
qualify as software forwarding.

2

standardized across all vendors, but one need not specify the
forwarding behavior of each box beforehand because as long
as two routers talk to the same controller they can be made to
interoperate by the controller.

This allows us to take a top-down perspective, by which we
mean that we focus not on what each box does individually
but instead first look at how to decompose Internet service
into well-defined tasks, and then consider how to implement
those tasks in a modular fashion. For instance, consider the
case where host X in domain A is trying to reach host Y in
domain B. Then, the job of providing connectivity between
X and Y can be supported by the following four tasks:

• Interdomain task: The highest-level task is for the do-
mains to carry the packet from domain A to domain B,
which may require traversing one or more intermediate
domains.

• Intradomain transit task: To support the Interdomain
task, domains must carry packets from the ingress
peering domain to the egress peering domain. Thus,
domains must be able to transit packets from one edge
to another.

• Intradomain delivery tasks: To provide full end-to-
end delivery of packets, domain A must carry the
packet from host X to the edge of domain A (where the
interdomain task takes over), and domain B must carry
the packet from the edge of B to host Y. In addition, a
domain must be capable of delivering packets between
any two hosts in its domain.

In the rest of the paper we discuss how to implement these
tasks in a modular fashion, so that the implementation of one
task is not dependent on how another is implemented.

3.2 Interdomain Task
The interdomain task is to compute interdomain routes and
then provide forwarding instructions to each domain in the
form of domain-level forwarding entries such as:

Packets from peer domain A destined for domain B
#

Forward to peer domain C

To implement this in a modular way, we first borrow from
the literature where various proposals (such as [2]) suggest
a strict separation between intradomain and interdomain
addressing.6 We propose that the interdomain addressing
uses some form of domain identifiers, and then the entire
interdomain task is implemented with respect to these
identifiers without reference to any intradomain addresses (as
we mention below, each domain can choose its own internal
addressing scheme).
6This is the only “clean-slate” aspect of our design, but there are
several ways one could accomplish the same separation in a “dirty-
slate” manner (such as using the IPv6 flow ID as the interdomain
identifier).

We then propose that each domain be represented by
a single logical server in the algorithm used to compute
interdomain routes (i.e., the server itself might be replicated
for availability, but there is only one logical entity repre-
senting the domain when executing the interdomain routing
algorithm); this is merely the extreme logical extension of
route reflectors. This route computation could be as simple as
running BGP among these logical servers, or it could involve
an entirely new route computation algorithm.7

3.3 Intradomain Tasks
There are three intradomain tasks: edge-to-edge transit,
edge-to-host delivery, and host-to-host delivery. Modularity
requires that these are implemented in a way that is indepen-
dent of how the interdomain task is implemented, but also
that different domains can adopt different implementations
of these intradomain tasks. To this end, we propose a
“fabric-like” design as advocated in [5], which in turn was
inspired by MPLS. The network is separated into an edge
and a core. The core can use any internal forwarding and
control plane mechanisms it chooses, ranging from SDN
to today’s intradomain routing protocols, as long as they
support edge-to-edge, edge-to-host, and host-to-host delivery;
in particular, each domain’s core can use their own internal
addressing scheme. The edge uses software forwarding with
commodity processors managed by an SDN controller (the
edge-controller), which understands the core management
well enough to insert the appropriate packet headers to
achieve internal or edge delivery.

The resulting design is highly modular. Only the edge
routers need to understand interdomain addressing (by
understand we mean have flow entries written in terms
of interdomain addresses), and only core routers need to
understand intradomain addressing (or they could merely
understand MPLS-like labels, and the control plane would
translate intradomain addresses to labels at the edge of
the network). Moreover, the core routers only need to
understand the intradomain addressing scheme in their
domain, so domains can independently change their internal
addressing scheme. Similarly, only the edge-controller needs
to participate in the interdomain route computation, and
only the core control plane needs to determine the internal
routes (both routes between edges, and routes to and between
internal hosts).

The key aspect of this design is that the only components
needing to forward packets based on interdomain addresses
are edge routers, which use software forwarding. As we
explain later, this gives the design great architectural freedom,
but here we first address a key point about whether it is
reasonable to assume software forwarding at the edge.

Our own measurements of an unoptimized implementation
using the Intel Data Plane Development Kit, show that
longest-prefix match forwarding on minimum-sized packets,
7We are not, at this point, discussing scalability, but that would
certainly be a consideration for any proposed algorithm.

3

including checksum verification and TTL adjustment, can
be done at 6.7Gbps on a single 3.3Ghz core; this is a bit
slower than reported in [16]. This is an optimistic estimate,
since it does not include more complicated functions such
as encapsulation or decapsulation, but it is also pessimistic
by considering minimum-sized packets. In addition, the
Routebricks work [7] suggests that one can gang many PCs
together to form a forwarding engine with a high aggregate
throughput with roughly linear scaling but at the cost of
doubling the number of cores (due to Valiant load balancing).
Is this enough to make software forwarding feasible at domain
edges? The answer to this question depends, of course, on
the amount of peering traffic a domain handles, and there is
little data on this. Some informal estimates [1, 6, 15] suggest
that 10Tbps is a reasonable order-of-magnitude estimate for
peering bandwidth for a large domain; thus, an entire large
domain’s peering bandwidth could be handled by 1500 cores.
Even if these estimates are off by a factor of two or more,
they indicate that software forwarding at the edge should be
easily within a domain’s reach.

4 Interdomain Service Models
As mentioned previously, the only components involved
in the interdomain task are the edge controllers (one per
domain) and the edge routers (whose knowledge of the
interdomain task comes only in the form of the forwarding
actions received from the edge controller). The implications
for architectural evolvability are profound.

• Changing how interdomain routing works, say changing
from BGP to some novel interdomain routing scheme,
would only involve changing software in the edge con-
trollers to participate in this new distributed interdomain
routing protocol. Of course, nothing in our design
makes it easier to achieve agreement on a new routing
scheme; only that once agreed to, deploying such a new
design on an SDIA infrastructure is relatively simple.

• Changing how domains are addressed again only
requires a change to the controller software. Because
the edge routers use software forwarding, matching
against different address structures is trivial; in fact, the
software of the edge routers requires no change if the
software was prepared to support general matching.

• Changing how hosts are addressed, say changing from
IP to IPv6, is done on a domain-by-domain basis. A
domain might have to buy new infrastructure to do so,
but this is its own internal decision.

But changing to new routing schemes or addressing struc-
tures is only a small step forward, architecturally. Stealing a
term from [8], one can consider different Interdomain Service
Models (ISMs) which are delivery services agreed upon by
all domains. As described in [8] it is easy to design host
networking stacks that can support multiple of these ISMs in
parallel, so the conceptual challenge is how to deploy new

ISMs not how to use them. To define a new ISM in SDIA
requires:

• A distributed interdomain algorithm among the edge-
controllers that computes whatever state the controllers
need to implement the service model; BGP is an
example of such a distributed algorithm. Note that this
distributed algorithm must take into account whatever
policies these domains have about participating in this
ISM (e.g., who they are willing to peer with, how they
are willing to interact, etc.).

• A set of forwarding actions that can be sent to these
edge routers by the edge-controllers. Recall that we
are assuming that these controllers can install arbitrary
code in the software forwarding engine, either in the
form of a VM or as x86 code.

• Measures to cope with partial deployment. This
requires the existence of a basic unicast packet-delivery
ISM (such as supplied by IP and BGP), so that non-
peering domains can set up tunnels with each other. In
addition, there must be some discovery mechanism
so that domains participating in an ISM are aware
of each other; this could fall out directly from the
distributed algorithm (as it would in BGP), or be a
separate mechanism.

Note that we did not include “supporting the ISM within
the domain” on this list. This is certainly something that
can be done, but need not happen before the ISM is initially
deployed. One can think of the internal domain network
much like an L2 network today; we propose deploying new
features in IP or above (such as new congestion control
algorithms, or CCN [13]) without proposing that all L2
networks change. Instead, we assume that L2 networks
merely provide overprovisioned connections between the
relevant L3 routers and are thus transparent. Similarly, we
assume that initially new ISMs can be deployed with the
edge-controller (and servers acting on its behalf) acting as the
ISM nodes within the domain, and all other hops are merely
providing overprovisioned paths to these servers.

Later, of course, it may behoove a domain to deploy core
routers with support for a new ISM. For instance, supporting
an Information-Centric Networking (ICN) design may require
a “caching" action, and a match against the current cache
table. But in the beginning ICN designs can be supported
by having caching supported only at the edge-controller and
servers acting on its behalf.

ISMs can range from low-level delivery models to high-
level services. We list a few possibilities below:

• Low-level ISMs: best effort unicast delivery with
different addressing or handling (such as in IPv6 or
AIP [2]) or different interdomain routing (such as HLP
[19] or Pathlets [9]), or interdomain multicast.

• Higher-level ISMs: HTTP-peering could be an ISM,
as could various ICN designs (e.g., CCN [13]). Going

4

further, one could imagine deploying social networking
or recommender systems as ISMs.

The notion of an ISM blurs the distinction between low-
level networking and high-level application services. An
ISM is merely a service agreed-upon by the domains, and
the notion of being able to define a new ISM with merely
software deployed on each domain’s edge-controller (which
then installs software on the edge router) could make it easier
for the domains to support new services.

When considering the limitations of the SDIA approach,
there are two key constraints to consider. The first is the
degree of processing each packet requires. Clearly designs
that require extensive per-packet computation are infeasible
within SDIA at high traffic volumes. The second is whether
per-hop processing is required (such as in XCP or other
router-assisted congestion control schemes). However, as
noted previously, using SDIA to deploy such designs is
similar in spirit to how we deploy IP over overprovisioned
L2 networks.

5 Three Detailed Examples
We now provide a more detailed demonstration of the power
of SDIA to deploy new services purely through software.
We present three ISM designs, selected for their diversity.
First we present a straightforward example: policy-compliant
interdomain source routing for best-effort packet delivery. We
then consider an ICN-style ISM that operates at the content
level. We end with a third ISM that allows end users to invoke
middlebox services; this ISM is not a packet delivery service,
but instead coordinates existing packet-handling services.

There are some basic building blocks that are common
to most ISM deployments. In each domain, an ISM imple-
mentation (which, recall, is merely code for the controller)
has access to an up-to-date database of peering links and
the neighboring domain for each such link. Similarly,
each ISM implementation can interact with the mechanisms
used in intradomain delivery, so the ISM knows which IP-
like addresses (or MPLS-like labels) to use to reach either
specific egresses or internal hosts. Also, recall that ISM
implementations have two parts: the interdomain component
which is a distributed algorithm among controllers, which we
will call the Interdomain Distributed Algorithm (IDA), and
the internal component which manages the edge switches,
which we do not discuss below because in each case it is
relatively straightforward.

5.1 Interdomain Packet Delivery via Pathlets
Here we show how a unicast best-effort packet service based
upon pathlets [9] can be supported in SDIA. The pathlet IDA
must distribute pathlet information to hosts. This can be done
in many ways, but here we describe two. The simplest is
merely for each domain to advertise the pathlets it supports to
several large Internet services which host pathlet repositories
(e.g., Google, Yahoo, etc.) The IDA then is nothing more

than agreeing on a few such repositories, and sending pathlet
information there. Thus, implementing an ISM need not be
done solely by the participating controllers, but can invoke
external parties, or even be housed on centralized servers.

A more resilient form of IDA is for the controllers to gossip
the pathlet information (as described in [9]). This guarantees
pathlet information will eventually be delivered to a host as
long as there is any path between the host and the domain
supporting that pathlet, but involves a more complicated
algorithm than relying on major Internet sites.

Once the pathlet information is available to hosts, they
start sending packets whose headers contain a list of pathlets
to use. When a transit packet arrives at a domain, the
edge router must recognize the pathlet, figure out which
egress port is appropriate for that pathlet, and then insert
a packet header that allows the intradomain transit service
to deliver the packet. This information can be supplied by
the edge-controller, which in turn gets the information from
the intradomain infrastructure. The same applies for when
a packet arrives at the end of its path (and pathlet list), and
must be delivered to a host.

5.2 An Information-Centric ISM
There has been much recent interest in information-centric
network architectures (known as ICN designs). The goal of
an ICN design is to allow clients to ask for content by name,
and have the infrastructure deliver a nearby copy if available.
Thus, an ICN ISM essentially involves implementing content
routing on an interdomain basis. The scalability of this
approach depends in part on the naming used for objects
(i.e., whether or not the naming system enables a degree of
aggregation), and there is some debate on this point within
the ICN community. However, SDIA would be capable of
supporting any such naming scheme, since the IDA is little
more than running a name-based routing algorithm.

When an object request arrives at a domain, the edge router
inspects the object being requested (which is part of the
packet header) and looks into the name-based routing table
that has been passed to it by the edge-controller. If the object
is in that domain’s cache, the edge router forwards the packet
to the controller (or to a server acting on the controller’s
behalf). If the object is not in that domain’s cache, then the
edge router’s routing table indicates the next-hop domain for
the request.

This design initially treats the controller, and various
servers it controls, as a domain-level cache. A domain can
deploy additional servers, spreading them throughout the
domain, so that the forwarding entry at an edge router points
to the closest copy within a domain. Essentially the domain
would be running its own internal centrally-controlled CDN.
However, if a domain wanted to support ICN more natively,
it could eventually deploy ICN-enabled routers.

The point is that the ICN-like service model would be
available to hosts without additional internal support; they
don’t care how the service is implemented, only that it

5

delivers reasonably good service, and our experience with
Akamai suggests that such a CDN-like approach would have
satisfactory performance.

5.3 A Middlebox-Services ISM
As noted earlier, much new network functionality is deployed
via middleboxes, and we do not expect this to change
(even with SDIA deployed). Middlebox deployment and
management is rather ad hoc, and certainly resides outside
the architecture; in particular, hosts cannot request middlebox
services from the network. There have been some recent
designs, most notably [18], which provide an interface via
which hosts can request various kinds of middlebox services.
We now describe how this could be accomplished within
SDIA, assuming that there is another ISM that supports basic
packet delivery.

The IDA portion of the Middlebox-Services ISM merely
involves the relaying of information about what middleboxes
are available in each domain. The approach described in [18]
can easily be supported through new controller software. The
other portion of this ISM involves providing an interface
for hosts, and this can be supported by the domain’s edge
controller. Once the IDA has determined which middlebox
services will be provided, and where, it then has enough
information to route the packets accordingly using the basic
packet-delivery ISM.

6 Discussion
SDIA takes the ideas of SDN, MPLS, and software forward-
ing and applies them in a coherent and systematic manner.
The result is a modular and flexible design where new
interdomain service models can be implemented in software,
but ASICs still do the bulk of the forwarding. These ISMs can
range from low-level packet delivery (like IP) to higher-level
services (more like HTTP). Initially these new ISMs require
no special support within a domain; over time, as their usage
grows, a domain may choose to deploy more specialized
support.

This is radically different from the status quo. Today,
router vendors must invest in ASIC support for new features
before they can be widely used; in short, they take all the
risk up-front. Moreover, this risk is high because domains
face significant deployment costs in adopting a new design.
In contrast, with SDIA, new infrastructure (to provide in-
domain support) only occurs (if at all) after the ISM is widely
used (so vendors can safely invest in development).

The design process can also be quite different from
today. On purely technical grounds, software enables
different tradeoffs. One could imagine very large interdomain
packet headers, including self-certifying identifiers, whereas
hardware typically favors smaller, fixed-size headers. Finally,
since the core implementation is in software, standardization
could proceed via open-source efforts rather than through
large standards bodies. One could imagine networks being as
nimble as Linux, rather than as lumbering as BGP.

7 References
[1] Akamai. Facts & Figures. http://www.akamai.com/

html/about/facts_figures.html.
[2] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet Protocol
(AIP). In Proc. of SIGCOMM, 2008.

[3] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer,
C. Cotton, M. Freedman, A. Haeberlen, Z. Ives,
A. Krishnamurthy, W. Lehr, B. T. Loo, D. MaziÃĺres,
A. Nicolosi, J. Smith, I. Stoica, R. van Renesse, M. Walfish,
H. Weatherspoon, and C. Yoo. NEBULA - A Future Internet
That Supports Trustworthy Cloud Computing. http:
//nebula.cis.upenn.edu/NEBULA-WP.pdf.

[4] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and K. van der Merwe. Design and Implementation of a
Routing Control Platform. In Proc. of NSDI, 2005.

[5] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian.
Fabric: A Retrospective on Evolving SDN. In Proc. of
HotSDN, August 2012.

[6] 10 Facts About Peering, Comcast and Level 3, November
2010. http://blog.comcast.com/.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting Parallelism to Scale Software
Routers. In Proceedings of SOSP, 2009.

[8] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla,
and J. Wilcox. Intelligent Design Enables Architectural
Evolution. In Proc. of Hotnets-X, 2011.

[9] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet
Routing. In Proc. of SIGCOMM, 2009.

[10] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean
Slate 4D Approach to Network Control and Management.
SIGCOMM CCR, 35(5), 2005.

[11] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste. XIA: Efficient Support for
Evolvable Internetworking. In Proc. of NSDI, 2012.

[12] U. Hölzle. OpenFlow @ Google. ONS, 2012.
[13] V. Jacobson et al. Networking Named Content. In Proc. of

CoNEXT, 2009.
[14] T. Koponen, S. Shenker, S. Shenker, H. Balakrishnan,

N. Feamster, I. Ganichev, A. Ghodsi, P. B. Godfrey,
N. McKeown, G. Parulkar, B. Raghavan, J. Rexford,
S. Arianfar, and D. Kuptsov. Architecting for Innovation.
SIGCOMM CCR, 41(3), 2011.

[15] NTT. About Our Network.
http://www.us.ntt.net/about/ipmap.cfm.

[16] L. Rizzo. Netmap: a Novel Framework for Fast Packet I/O. In
Proc. of USENIX ATC, 2012.

[17] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar. Making Middleboxes Someone Else’s Problem:
Network Processing as a Cloud Service. In Proc. of
SIGCOMM, 2012.

[18] J. Sherry, D. C. Kim, S. S. Mahalingam, A. Tang, S. Wang,
and S. Ratnasamy. Netcalls: End Host Function Calls to
Network Traffic Processing Services. Technical Report
EECS-2012-175, UCB, 2012.

[19] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. HLP: a Next Generation
Inter-domain Routing Protocol. In Proc. of SIGCOMM, 2005.

[20] D. L. Tennenhouse and D. J. Wetherall. Towards an Active
Network Architecture. In Proceedings of DANCE, 2002.

6

http://www.akamai.com/html/about/facts_figures.html
http://www.akamai.com/html/about/facts_figures.html
http://nebula.cis.upenn.edu/NEBULA-WP.pdf
http://nebula.cis.upenn.edu/NEBULA-WP.pdf
http://blog.comcast.com/
http://www.us.ntt.net/about/ipmap.cfm

