Inktomi at a Glance

Company Overview Applications
TOWa rds Ro b u St 4 “INKT” on NASDAQ # Search Technology

E - & Founded 1996 out of UC & Network Products
Distributed Systems Berkoley conms N

S OVRImpIDyEEs & Wireless Systems

Dr. Eric A. Brewer; . ; $sun (O

Professor, UC Berkeley

Co-Founder & Chief Scientist, Inktomi
PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

O
Our Perspective ok “Distributed Systems” don’t work::"!

Inktomi builds two =T # There exist working DS:
distributed systems: = J 2B — Simple protocols: DNS, WWW
— Global Search Engines Fe = I i E — Inktomi search, Content Delivery Networks
— Distributed Web Caches ! i — Napster, Verisign, AOL

Based on scalable & But these are not classic DS:
cluster & parallel

computing technology 3 g : \ J Eotﬁ;%n'lbthed REEES
— No y
— No modularity
— Complex ones are single owner (except phones)

4 But very little use of
classic DS research...

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Three Basic Issues

’ 4
& Where is the state? Where’s the state?

% Consistency vs. Availability (not all locations are equal)

4 Understanding Boundaries

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Santa Clara Cluster Delivering High Availability

! _ We kept up the service through:
* Very uniform — W K ¥ Crashes & disk failures (weekly)
* No monitors T :
* No people
* No cables

& Database upgrades (daily)
& Software upgrades (weekly to monthly)
% OS upgrades (twice)

« Working power N B T\ N Y & Power outage (several)
» Working A/C N R \ B
» Working BW

& Network outages (now have 11 connections)
¥ Physical move of all equipment (twice)

PODC Keynote, July 19, 2000

(] Berkeley Ninja Architecture
Persistent State is HARD

le platform for
nt-state services
¥ Classic DS focus on the computation, not the data

— this is WRONG, computation is the easy part Workstations & PCs

& Data centers exist for a reason
— can’t have consistency or availability without them

& Other locations are for caching only:
— proxies, basestations, set-top boxes, desktops
— phones, PDAs, ...

& Distributed systems can’t ignore location ; ‘ Active Proxy P
distinctions -

o into infrastructure, runs PDAs
Cellphones, Pagers, etc. mobile code (e.g. IBM Workpad)

PODC Keynote, July 19, 2000

o o
ACID vs. BASE

& DBMS research is about ACID (mostly)

C < t A I b I . t & But we forfeit “C” and “I” for availability,
onslis ency VS. Avalianii y graceful degradation, and performance

(ACID vs. BASE) This tradeoff is fundamental.

— tsasically “wvailable
— oft-state

— lyentual consistency;
PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

ACID vs. BASE
ACID

Strong consistency
Isolation
Focus on “commit”
Nested transactions
Availability?
Conservative
(pessimistic)
Difficult evolution
(e.g. schema)

0

Inktemi

BASE

Weak consistency
stale data OK

Availability first

Best effort

Approximate answers OK
Aggressive (optimistic)
Simpler!

Faster

Easier evolution

+~——— But [think it’s a spectrum ———

Forfeit Partitions

vailability

Tolerance to network

artitions

PODC Keynote, July 19, 2000

Examples
Single-site databases
Cluster databases
LDAP
xES file system

Traits
2-phase commit

cache validation
protocols
PODC Keynote, July 19, 2000

The CAP Theorem

Tolerance to network Theorem: You can have at
artitions most two of these properties
for any shared-data system

PODC Keynote, July 19, 2000

Forfeit Availability

Examples
4 Distributed databases
¢ Distributed locking
& Majority protocols

Traits

HEEEIEE IR < 4 Pessimistic locking

artitions
& Make minority

partitions unavailable
PODC Keynote, July 19, 2000

Forfeit Consistency

Examples
Coda

Web) cachinge
vailability DNS

Traits

expirations/leases

Tolerance to network 3 1
- conflict resolution
artitions B
optimistic

PODC Keynote, July 19, 2000

CAP Take Homes

% Can have consistency & availability within 2
cluster (foundation of Ninja), but it is still hard in
practice

& OS/Networking good at BASE/Availability, but
terrible at consistency

& Databases better at C than Availability
& Wide-area databases can’t have both
& Disconnected clients can’t have both

& All' systems are probabilistic...
PODC Keynote, July 19, 2000

These Tradeoffs are Real

& The whole space is useful

4 Real internet systems are a careful mixture of
ACID and BASE subsystems

We use ACID for user profiles and logging (for revenue)
4 But there is almost no work in this area

4 Symptom of a deeper problem: systems and
database communities are separate but
overlapping (with distinct vocabulary)

PODC Keynote, July 19, 2000

Understanding Boundaries

(the RPC hangover)

PODC Keynote, July 19, 2000

The Boundary

& The interface between two modules
— client/server, peers, libaries, etc...

4 Basic boundary = the procedure call

— thread traverses the boundary
— two sides are in the same address space

PODC Keynote, July 19, 2000

Trust the other side?

& What if we don’t trust the other side?
& Have to check args, no pointer passing
& Kernels get this right:

— copy/check args
— use opaque references (e.g. File Descriptors)
& Most systems do not:
TCP
— Napster
— web browsers

PODC Keynote, July 19, 2000

Different Address Spaces

& What if the two sides are NOT in the same
address space?
IPC or LRPC

& Can’t do pass-by-reference (pointers)
— Most IPC screws this up: pass by value-result
— There are TWO copies of args not one

& What if they share some memory?
— Can pass pointers, but...
— Need synchronization between client/server
— Not all pointers can be passed

PODC Keynote, July 19, 2000

Partial Failure

4 Can the two sides fail independently?
— RPC, IPC, LRPC

& Can’t be transparent (like RPC) !!
4 New exceptions (other side gone)

Reclaim local resources
— e.g. kernels leak sockets over time => reboot

4 Can use leases?
— Different new exceptions: lease expired

& RPC tries to hide these issues (but fails)

PODC Keynote, July 19, 2000

Multiplexing clients?

& Does the server have to:
deal with high concurrency?
Say “no” sometimes (graceful degradation)
Treat clients equally (fairness)
Bill for resources (and have audit trail)
Isolate clients performance, data,

& These all affect the boundary definition

PODC Keynote, July 19, 2000

Example: protocols vs. APls

& Protocols have been more successful the APIS

& Some reasons:
protocols are pass by value
protocols designed for partial failure
not trying to look like local procedure calls
explicit state machine, rather than call/return
(this exposes exceptions well)

& Protocols still not good at trust, billing, evolution

PODC Keynote, July 19, 2000

Boundary evolution?

& Can the two sides be updated independently?
(NO)

& The DLL problem...

% Boundaries need versions

& Negotiation protocol for upgrade?

& Promises of backward compatibility?.

& Affects naming too (version number)

PODC Keynote, July 19, 2000

Example: XML

& XML doesn’t solve any of these issues
& It is RPC with an extensible type system

4 It makes evolution better?
— two sides need to agree on schema
can ignore stuff'you don’t understand

& Can mislead us to ignore the real'issues

PODC Keynote, July 19, 2000

Boundary Summary

4 We have been very sloppy about boundaries
& Leads to fragile systems

& Root cause is false transparency: trying to look
like local procedure calls

& Relatively little work in evolution, federation,
client-based resource allocation, failure recoyvery:

PODC Keynote, July 19, 2000

The DQ Principle

Data/query * Queries/sec = constant = DQ
— for a given node
— for a given app/OS release

¥ A fault can reduce the capacity (Q), completeness
(D) or both

& Faults reduce this constant linearly (at best)

PODC Keynote, July 19, 2000

Conclusions

¥ Classic Distributed Systems are fragile

4 Some of the causes:
— focus on computation, not data
ignoring location distinctions
— poor definitions of consistency/availability goals
— poor understanding of boundaries (RPC'in particular)
& These are all fixable, but need to be far more
common

PODC Keynote, July 19, 2000

Harvest & Yield

& Yield: Eraction of Answered Queries
— Related to uptime but measured by queries, not by time
— Drop 1 out of 10 connections == 90% yield
— At full utilization: yield ~ capacity ~ Q.

& Harvest: Fraction of the Complete Result

— Reflects that some of the data may be missing due to faults
— Replication: maintain Diunder faults

& DQ corollary: harvest * yield ~ constant

— ACID => choose 100% harvest (reduce Q but 100% D)
— Internet => choose 100% yield (available but reduced D)

PODC Keynote, July 19, 2000

Harvest Options

1) Ignore lost nodes
— RPC gives up
— forfeit small part of the database
— reduce D, keep Q
2) Pair up nodes
RPC tries alternate
— survives one fault per pair
— reduce Q, keep D

3) n-member replica groups

Decide whern you care...

PODC Keynote, July 19, 2000

Graceful Degradation

& Goal: smooth decrease in harvest/yield
proportional to faults
— we know DQ drops linearly
& Saturation will occur
— high peak/average ratios...
— must reduce harvest or yield (or both)
— must do admission control!!!

& One answer: reduce D dynamically

disaster => redirect load, then reduce D to:
compensate for extra load

PODC Keynote, July 19, 2000

Replica Groups

With » members:

& Each fault reduces Q by 1/n
& D stable until n#h fault

& Added load is 1/(n-1) per fault

— n=2 => double load or 50% capacity
— n=4 => 133%load or 75% capacity
“load redirection problem”

& Disaster tolerance: better have >3 mirrors

PODC Keynote, July 19, 2000

Thinking Probabilistically

& Maximize symmetry
SPMD + simple replication schemes

& Make faults independent
— requires thought
avoid cascading errors/faults
— understand redirected load
KISS

4 Use randomness
makes worst-case and average case the same
— ex: Inktomi spreads data & queries randomly:
— Node loss implies a random 1% harvest reduction
PODC Keynote, July 19, 2000

Server Pollution Evolution

& Can’t fix all memory leaks Three Approaches:

Third-party software leaks memory and sockets # Flash Upgrade

— so does the OS sometimes — Fast reboot into new version
— Focus on MTTR (< 10 sec)
— Reduces yield (and uptime)

% Rolling Upgrade

Solution: planned periodic “bounce” — Upgrade nodes one at time in a “wave’”
— Not worth the stress to do any better — Temporary 1/n harvest reduction, 100% yield
Bounce time is less than 10 seconds — Requires co-existing versions
Nice to remowve load first... # “Big Flip”

& Some failures tie up local resources

PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

The Big Flip Key New Problems

& Steps: 4 Unknown but large growth
1) take down 1/2 the nodes Incremental & Absolute scalability
2) upgrade that half — 1000’s of components
3) flip the “active half” (site upgraded) # Must be truly highly available

4) upgrade secogl/d half Hot swap everything (no recovery time allowed)
5) return to 100% — No “night”

& 50% Harvest, 100% Yield — Graceful degradation under faults & saturation

— orinverse? % Constant evolution (internet time)
& No mixed versions — Software will be buggy

— can replace schema, protocols, ... — Hardware will fail

. . . — These can’t be emergencies...
& Twice used to change physical location =
PODC Keynote, July 19, 2000 PODC Keynote, July 19, 2000

Conclusions

& Parallel Programming is very relevant, except...
— historically avoids availability
— no notion of online evolution
limited notions of graceful degradation (checkpointing)
— best for CPU-bound tasks

4 Must think probabilistically about everything
— no such thing as a 100% working system
no such thing as 100% fault tolerance
partial results are often OK (and better than none)
Capacity * Completeness = Constant
PODC Keynote, July 19, 2000

Backup slides

PODC Keynote, July 19, 2000

Conclusions

% Winning solution is message-passing clusters

— fine-grain communication =>
fine-grain exception handling
— don’t want every load/store to deal with partial failure
% Key open problems:
libraries & data structures for HA shared state
support for replication and partial failure
better understanding of probabilistic systems
cleaner support for exceptions (graceful degradation)
support for split-phase I/0 and many concurrent threads
support for 10,000 threads/node (to avoid FSMs)

PODC Keynote, July 19, 2000

New Hard Problems...

4 Really need to manage disks well
— problems are I/O bound, not CPU bound

& Lots of simultaneous connections

— 50Kb/s => at least 2000 connections/node
& HAS to be highly available

— no maintenance window, even for upgrades
& Continuous evolution

— constant site changes, always small bugs...
— large but unpredictable traffic growth

& Graceful degradation under saturation:
PODC Keynote, July 19, 2000

Parallel Disk 1/O

& Want 50+ outstanding reads/disk
Provides disk-head scheduler with many choices
— Trades response time for throughput

& Pushes towards a split-phase approach to disks

4 General trend: each query is a finite-state machine
— split-phase disk/network operations are state transitions
— multiplex many FSMs over small number of threads
— FSM handles state rather than thread stack

PODC Keynote, July 19, 2000

12

